Poly(lactic acid) as Biomaterial for Cardiovascular Devices and Tissue Engineering Applications

  • Waled Hadasha
  • Deon BezuidenhoutEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 282)


Synthetic bioabsorbable polymers, such as poly-lactic acid (PLA) and its copolymers (PLA-based polymers), have attracted a lot of attention in the medical field. With their excellent biocompatibility, mechanical properties, and tunable biodegradability, PLA-based polymers have found uses in various clinical applications, including sutures and orthopedic fixation devices (e.g. pins, plates, and screws). PLA-based polymers have also been the materials of choice for various cardiovascular applications. For example, they are extensively used as coatings for metallic drug-eluting coronary stents and in the development of the new generation of fully bioresorbable vascular scaffolds. In addition, the emergence of tissue engineering and regenerative medicine (TERM) has further extended the applications of PLA. In this chapter, we discuss the importance of PLA-based polymers as biomaterials and review the applications of this family of materials in cardiovascular applications, specifically in coronary stenting and TERM approaches to vascular grafts, heart valves, and cardiac patches. A brief insight is also given into the current market value and growth potential of PLA-based biomaterials.


Biomaterial Cardiac patches Heart valves PLA Stents Tissue engineering Vascular grafts 



The authors wish to thank the National Research Foundation of South Africa Incentive Program for Rated Researchers (CPRR) and the University of Cape Town Faculty of Health Sciences Postdoctoral Fellowship for funding and support.

Potential Conflict of Interest None.


  1. 1.
    Williams D (1999) Bioinertness: an outdated principle. In: Zilla P, Greisler HP (eds) Tissue engineering of vascular prosthetic grafts. RG Landes, Austin, pp 459–462Google Scholar
  2. 2.
    Zilla P, Brink J, Human P, Bezuidenhout D (2008) Prosthetic heart valves: catering for the few. Biomaterials 29(4):385–406PubMedCrossRefGoogle Scholar
  3. 3.
    Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28(34):5009–5027PubMedCrossRefGoogle Scholar
  4. 4.
    van der Sijde JN, Regar E (2015) Stent platforms anno 2015: is there still a place for bare metal stents at the front line? Neth Hear J 23(2):122–123CrossRefGoogle Scholar
  5. 5.
    Samson RH, Morales R, Showalter DP, Lepore Jr MR, Nair DG (2016) Heparin-bonded expanded polytetrafluoroethylene femoropopliteal bypass grafts outperform expanded polytetrafluoroethylene grafts without heparin in a long-term comparison. J Vasc Surg 64(3):638–647PubMedCrossRefGoogle Scholar
  6. 6.
    Reinthaler M, Jung F, Landmesser U, Lendlein A (2016) Trend to move from permanent metals to degradable, multifunctional polymer or metallic implants in the example of coronary stents. Expert Rev Med Devices 13(11):1001–1003PubMedCrossRefGoogle Scholar
  7. 7.
    Frey BM, Zeisberger SM, Hoerstrup SP (2016) Tissue engineering and regenerative medicine – new initiatives for individual treatment offers. Transfus Med Hemother 43(5):318–319PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Asti A, Gioglio L (2014) Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation. Int J Artif Organs 37:187–274PubMedGoogle Scholar
  9. 9.
    Amoabediny G, Salehi-Nik N, Heli B (2011) The role of biodegradable engineered scaffold in tissue engineering. In: Pignatello R (ed) Biomaterials science and engineering. InTech, Shanghai, pp 153–172Google Scholar
  10. 10.
    Dhandayuthapani B, Yoshida Y, Maekawa T, Sakthi Kumar D (2011) Polymeric scaffolds in tissue engineering application: a review. International Journal of Polymer Science 2011:290602CrossRefGoogle Scholar
  11. 11.
    Treiser M, Abramson S, Langer R, Kohn J (2013) Degradable and resorbable biomaterials. In: Ratner ASH BD, Schoen FJ, Lemons JE (eds) Biomaterials science3rd edn. Elsevier, LondonGoogle Scholar
  12. 12.
    Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  14. 14.
    Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81(7):1119–1129CrossRefGoogle Scholar
  15. 15.
    Puaux J-P, Banu I, Nagy I, Bozga G (2007) A study of L-lactide ring-opening polymerization kinetics. Macromol Symp 259(1):318–326CrossRefGoogle Scholar
  16. 16.
    Masutani K, Kimura Y (2015) PLA synthesis. From the monomer to the polymer. Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, Cambridge, pp 1–36Google Scholar
  17. 17.
    Xiao L, Wang B, Yang G, Gauthier M (2012) Poly (lactic acid)-based biomaterials: synthesis, modification and applications. InTechGoogle Scholar
  18. 18.
    Tian H, Tang Z, Zhuang X, Chen X, Jing X (2012) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280CrossRefGoogle Scholar
  19. 19.
    Deng C, Tian H, Zhang P, Sun J, Chen X, Jing X (2006) Synthesis and characterization of RGD peptide grafted poly(ethylene glycol)-b-poly(l-lactide)-b-poly(l-glutamic acid) triblock copolymer. Biomacromolecules 7(2):590–596PubMedCrossRefGoogle Scholar
  20. 20.
    Wang S, Cui W, Bei J (2005) Bulk and surface modifications of polylactide. Anal Bioanal Chem 381(3):547–556PubMedCrossRefGoogle Scholar
  21. 21.
    Manavitehrani I, Fathi A, Badr H, Daly S, Negahi Shirazi A, Dehghani F (2016) Biomedical applications of biodegradable polyesters. Polymers 8(1):20CrossRefGoogle Scholar
  22. 22.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    D’Souza S, Faraj J, Dorati R, DeLuca P (2016) Enhanced degradation of lactide-co-glycolide polymer with basic nucleophilic drugs. Adv Pharm 2015:10Google Scholar
  24. 24.
    Dånmark S, Finne-Wistrand A, Schander K, Hakkarainen M, Arvidson K, Mustafa K, et al. (2011) In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization. Acta Biomater 7(5):2035–2046PubMedCrossRefGoogle Scholar
  25. 25.
    Ramot Y, Haim-Zada M, Domb AJ, Nyska A (2016) Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev 107:153–162PubMedCrossRefGoogle Scholar
  26. 26.
    Saini P, Arora M, Kumar MNVR (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59PubMedCrossRefGoogle Scholar
  27. 27.
    Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (1996) Biomaterial Science3rd edn. Academic Press, BostonGoogle Scholar
  28. 28.
    Lopes MS, Jardini AL, Filho RM (2012) Poly (lactic acid) production for tissue engineering applications. Proc Eng 42:1402–1413CrossRefGoogle Scholar
  29. 29.
    Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16(1):108–108PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chung S, Ingle NP, Montero GA, Kim SH, King MW (2010) Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater 6(6):1958–1967PubMedCrossRefGoogle Scholar
  31. 31.
    Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regen Med 5(1):107PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5(4):303–306PubMedCrossRefGoogle Scholar
  33. 33.
    Azzalini L, L’Allier PL, Tanguay J-F (2016) Bioresorbable scaffolds: the revolution in coronary stenting? Aims Med Sci 3(1):126–146CrossRefGoogle Scholar
  34. 34.
    Bainey KR, Norris CM, Graham MM, Ghali WA, Knudtson ML, Welsh RC (2008) Clinical in-stent restenosis with bare metal stents: is it truly a benign phenomenon? Int J Cardiol 128(3):378–382PubMedCrossRefGoogle Scholar
  35. 35.
    Mani G, Feldman MD, Patel D, Agrawal CM (2007) Coronary stents: a materials perspective. Biomaterials 28(9):1689–1710PubMedCrossRefGoogle Scholar
  36. 36.
    Serruys PW, Kutryk MJB, Ong ATL (2006) Coronary-artery stents. N Engl J Med 354(5):483–495PubMedCrossRefGoogle Scholar
  37. 37.
    Lincoff AM, Furst JG, Ellis SG, Tuch RJ, Topol EJ (1997) Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J Am Coll Cardiol 29(4):808–816PubMedCrossRefGoogle Scholar
  38. 38.
    Ernst A, Bulum J (2014) New generations of drug-eluting stents – a brief review. EMJ Int Cardiol 1:100–106Google Scholar
  39. 39.
    Ho M-Y, Chen C-C, Wang C-Y, Chang S-H, Hsieh M-J, Lee C-H, et al. (2016) The development of coronary artery stents: from bare-metal to bio-resorbable types. Metals 6(7):168CrossRefGoogle Scholar
  40. 40.
    Tenekecioglu E, Farooq V, Bourantas CV, Silva RC, Onuma Y, Yılmaz M, et al. (2016) Bioresorbable scaffolds: a new paradigm in percutaneous coronary intervention. BMC Cardiovasc Disord 16(1):38PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Iqbal J, Onuma Y, Ormiston J, Abizaid A, Waksman R, Serruys P (2014) Bioresorbable scaffolds: rationale, current status, challenges, and future. Eur Heart J 35(12):765–776PubMedCrossRefGoogle Scholar
  42. 42.
    Onuma Y, Ormiston J, Serruys PW (2011) Bioresorbable scaffold technologies. Circ J 75(3):509–520PubMedCrossRefGoogle Scholar
  43. 43.
    Campos CM, Ishibashi Y, Eggermont J, Nakatani S, Cho YK, Dijkstra J, et al. (2015) Echogenicity as a surrogate for bioresorbable everolimus-eluting scaffold degradation: analysis at 1-, 3-, 6-, 12- 18-, 24-, 30-, 36- and 42-month follow-up in a porcine model. Int J Cardiovasc Imaging 31(3):471–482PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Vorpahl M, Nakano M, Perkins LEL, Otsuka F, Jones RL, Acampado E, et al. (2014) Vascular healing and integration of a fully bioresorbable everolimus-eluting scaffold in a rabbit iliac arterial model. EuroIntervention 10(7):833–841PubMedCrossRefGoogle Scholar
  45. 45.
    Stack RS, Califf RM, Phillips HR, Pryor DB, Quigley PJ, Bauman RP, et al. (1988) Interventional cardiac catheterization at Duke Medical Center. Am J Cardiol 62(10 Pt 2):3f–24fPubMedGoogle Scholar
  46. 46.
    Tamai H, Igaki K, Kyo E, Kosuga K, Kawashima A, Matsui S, et al. (2000) Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102(4):399PubMedCrossRefGoogle Scholar
  47. 47.
    Muramatsu T, Onuma Y, Zhang Y-J, Bourantas CV, Kharlamov A, Diletti R, et al. (2013) Progress in treatment by percutaneous coronary intervention: the stent of the future. Rev Esp Cardiol 66(06):483–496. English EditionPubMedCrossRefGoogle Scholar
  48. 48.
    Yamawaki T, Shimokawa H, Kozai T, Miyata K, Higo T, Tanaka E, et al. (1998) Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J Am Coll Cardiol 32(3):780–786PubMedCrossRefGoogle Scholar
  49. 49.
    Wittchow E, Adden N, Riedmüller J, Savard C, Waksman R, Braune M (2013) Bioresorbable drug-eluting magnesium-alloy scaffold: design and feasibility in a porcine coronary model. EuroIntervention 8(12):1441–1450PubMedCrossRefGoogle Scholar
  50. 50.
    Ferdous J, Kolachalama VB, Shazly T (2013) Impact of polymer structure and composition on fully resorbable endovascular scaffold performance. Acta Biomater 9(4):6052–6061PubMedCrossRefGoogle Scholar
  51. 51.
    Abbott (2016) Abbott’s Absorb™ bioresorbable stent approved as the first fully dissolving heart stent in Japan.
  52. 52.
    Chen G, Ushida T, Tateishi T (2002) Scaffold design for tissue engineering. Macromol Biosci 2(2):67–77CrossRefGoogle Scholar
  53. 53.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  54. 54.
    Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG (1998) Polymer concepts in tissue engineering. J Biomed Mater Res 43(4):422–427PubMedCrossRefGoogle Scholar
  55. 55.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chen G, Ushida T, Tateishi T (2001) Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng C 17(1–2):63–69CrossRefGoogle Scholar
  57. 57.
    Pan Z, Ding J (2012) Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2(3):366–377PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Villarreal-Gomez LJ, Cornejo-Bravo JM, Vera-Graziano R, Grande D (2016) Electrospinning as a powerful technique for biomedical applications: a critically selected survey. J Biomater Sci Polym Ed 27(2):157–176PubMedCrossRefGoogle Scholar
  59. 59.
    An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1(2):261–268CrossRefGoogle Scholar
  60. 60.
    Do A-V, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4(12):1742–1762PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sultana N, Hassan MI, Lim MM (2015) Scaffold fabrication protocols. Composite synthetic scaffolds for tissue engineering and regenerative medicine. Springer, Cham, pp 13–24Google Scholar
  62. 62.
    Aishwarya V, D S (2016) A review on scaffolds used in tissue engineering and various fabrication techniques. Int J Res Biosci 5:1–9Google Scholar
  63. 63.
    Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233PubMedCrossRefGoogle Scholar
  65. 65.
    Ivanova EP, Bazaka K, Crawford RJ (2014) Natural polymer biomaterials: advanced applications. In: Ivanova EP, Bazaka K, Crawford RJ (eds) New functional biomaterials for medicine and healthcare1st edn. Woodhead Publishing, OxfordGoogle Scholar
  66. 66.
    Place ES, George JH, Williams CK, Stevens MM (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151PubMedCrossRefGoogle Scholar
  67. 67.
    O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14(3):88–95CrossRefGoogle Scholar
  68. 68.
    Guo B, Ma PX (2014) Synthetic biodegradable functional polymers for tissue engineering: a brief review. SCIENCE CHINA Chem 57(4):490–500CrossRefGoogle Scholar
  69. 69.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683PubMedGoogle Scholar
  70. 70.
    Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13(1):27–53PubMedCrossRefGoogle Scholar
  71. 71.
    Kim K, Evans G (2005) Tissue engineering: the future of stem cells. Top Tissue Eng 2:1–21Google Scholar
  72. 72.
    Perán M, García M, Lopez-Ruiz E, Jiménez G, Marchal J (2013) How can nanotechnology help to repair the body? Advances in cardiac, skin, bone, cartilage and nerve tissue regeneration. Materials 6(4):1333PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Demirbag B, Huri PY, Kose GT, Buyuksungur A, Hasirci V (2011) Advanced cell therapies with and without scaffolds. Biotechnol J 6(12):1437–1453PubMedCrossRefGoogle Scholar
  74. 74.
    Sutherland FWH, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, et al. (2005) From stem cells to viable autologous semilunar heart valve. Circulation 111(21):2783–2791PubMedCrossRefGoogle Scholar
  75. 75.
    Cheung DY, Duan B, Butcher JT (2015) Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin Biol Ther 15(8):1155–1172PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Shinoka T, Breuer CK, Tanel RE, Zund G, Miura T, Ma PX, et al. (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60(6 Suppl):S513–S516PubMedCrossRefGoogle Scholar
  77. 77.
    Jana S, Tefft BJ, Spoon DB, Simari RD (2014) Scaffolds for tissue engineering of cardiac valves. Acta Biomater 10(7):2877–2893PubMedCrossRefGoogle Scholar
  78. 78.
    Fang NT, Xie SZ, Wang SM, Gao HY, Wu CG, Pan LF (2007) Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J 120(8):696–702PubMedGoogle Scholar
  79. 79.
    Bechtel JF, Stierle U, Sievers HH (2008) Fifty-two months’ mean follow up of decellularized SynerGraft-treated pulmonary valve allografts. J Heart Valve Dis 17(1):98–104. Discussion 104PubMedGoogle Scholar
  80. 80.
    Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J (2005) Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res 16(3):369–378PubMedCrossRefGoogle Scholar
  81. 81.
    Taylor PM, Allen SP, Dreger SA, Yacoub MH (2002) Human cardiac valve interstitial cells in collagen sponge: a biological three-dimensional matrix for tissue engineering. J Heart Valve Dis 11(3):298–306. Discussion 306–297PubMedGoogle Scholar
  82. 82.
    Sodian R, Hoerstrup SP, Sperling JS, Daebritz S, Martin DP, Moran AM, et al. (2000) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102(Suppl 3):Iii-22–Iii-29Google Scholar
  83. 83.
    Fong P, Shin’oka T, Lopez-Soler RI, Breuer C (2006) The use of polymer based scaffolds in tissue-engineered heart valves. Prog Pediatr Cardiol 21(2):193–199CrossRefGoogle Scholar
  84. 84.
    Morsi YS (2014) Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: an update. Int J Artif Organs 37(9):651PubMedCrossRefGoogle Scholar
  85. 85.
    Liu C, Xia Z, Czernuszka JT (2007) Design and development of three-dimensional scaffolds for tissue engineering. Chem Eng Res Des 85(7):1051–1064CrossRefGoogle Scholar
  86. 86.
    Stock UA, Mayer Jr JE (2001) Tissue engineering of cardiac valves on the basis of PGA/PLA co-polymers. J Long-Term Eff Med Implants 11(3–4):249–260PubMedGoogle Scholar
  87. 87.
    Zund G, Breuer CK, Shinoka T, Ma PX, Langer R, Mayer JE, et al. (1997) The in vitro construction of a tissue engineered bioprosthetic heart valve. Eur J Cardiothorac Surg 11(3):493–497PubMedCrossRefGoogle Scholar
  88. 88.
    Sodian R, Sperling JS, Martin DP, Stock U, Mayer Jr JE, Vacanti JP (1999) Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng 5(5):489–494PubMedCrossRefGoogle Scholar
  89. 89.
    Gottlieb D, Kunal T, Emani S, Aikawa E, Brown DW, Powell AJ, et al. (2010) In vivo monitoring of function of autologous engineered pulmonary valve. J Thorac Cardiovasc Surg 139(3):723–731PubMedCrossRefGoogle Scholar
  90. 90.
    Hinderer S, Seifert J, Votteler M, Shen N, Rheinlaender J, Schäffer TE, et al. (2014) Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35(7):2130–2139PubMedCrossRefGoogle Scholar
  91. 91.
    Svenja H, Nian S, Léa-Jeanne R, Jan H, Dieter PR, Sara YB, et al. (2015) In vitro elastogenesis: instructing human vascular smooth muscle cells to generate an elastic fiber-containing extracellular matrix scaffold. Biomed Mater 10(3):034102CrossRefGoogle Scholar
  92. 92.
    Lueders C, Jastram B, Hetzer R, Schwandt H (2014) Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur J Cardiothorac Surg 46(4):593–601PubMedCrossRefGoogle Scholar
  93. 93.
    Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G (2005) A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Anim 41(7):188–196PubMedCrossRefGoogle Scholar
  94. 94.
    Nuttelman CR, Henry SM, Anseth KS (2002) Synthesis and characterization of photocrosslinkable, degradable poly(vinyl alcohol)-based tissue engineering scaffolds. Biomaterials 23(17):3617–3626PubMedCrossRefGoogle Scholar
  95. 95.
    Verma S, Szmitko PE, Weisel RD, Bonneau D, Latter D, Errett L, et al. (2004) Should radial arteries be used routinely for coronary artery bypass grafting? Circulation 110(5):e40–e46PubMedCrossRefGoogle Scholar
  96. 96.
    Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74B(1):570–581CrossRefGoogle Scholar
  97. 97.
    Weinberg C, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400PubMedCrossRefGoogle Scholar
  98. 98.
    In Jeong S, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, et al. (2007) Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials 28(6):1115–1122PubMedCrossRefGoogle Scholar
  99. 99.
    Stegemann JP, Kaszuba SN, Rowe SL (2007) Review: advances in vascular tissue engineering using protein-based biomaterials. Tissue Eng 13(11):2601–2613PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kim MJ, Kim J-H, Yi G, Lim S-H, Hong YS, Chung DJ (2008) In vitro andin vivo application of PLGA nanofiber for artificial blood vessel. Macromol Res 16(4):345–352CrossRefGoogle Scholar
  101. 101.
    Koch S, Flanagan TC, Sachweh JS, Tanios F, Schnoering H, Deichmann T, et al. (2010) Fibrin-polylactide-based tissue-engineered vascular graft in the arterial circulation. Biomaterials 31(17):4731–4739PubMedCrossRefGoogle Scholar
  102. 102.
    Roh JD, Nelson GN, Brennan MP, Mirensky TL, Yi T, Hazlett TF, et al. (2008) Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials 29(10):1454–1463PubMedCrossRefGoogle Scholar
  103. 103.
    Yokota T, Ichikawa H, Matsumiya G, Kuratani T, Sakaguchi T, Iwai S, et al. (2008) In situ tissue regeneration using a novel tissue-engineered, small-caliber vascular graft without cell seeding. J Thorac Cardiovasc Surg 136(4):900–907PubMedCrossRefGoogle Scholar
  104. 104.
    Janairo RRR, Zhu Y, Chen T, Li S (2014) Mucin covalently bonded to microfibers improves the patency of vascular grafts. Tissue Eng Part A 20(1–2):285–293PubMedCrossRefGoogle Scholar
  105. 105.
    Zhao W, Li J, Jin K, Liu W, Qiu X, Li C (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C 59:1181–1194CrossRefGoogle Scholar
  106. 106.
    Yeon CJ, Young JK, Ki CS, Ok LJ, Hoon JS (2010) Fabrication and in vivo evaluation of the electrospun small diameter vascular grafts composed of elastin/PLGA/PCL and heparin-VEGF. J Tissue Eng Regen Med 7:149–154Google Scholar
  107. 107.
    Hashi CK, Zhu Y, Yang G-Y, Young WL, Hsiao BS, Wang K, et al. (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci 104(29):11915–11920PubMedCrossRefGoogle Scholar
  108. 108.
    Hashi CK, Derugin N, Janairo RRR, Lee R, Schultz D, Lotz J, et al. (2010) Antithrombogenic modification of small-diameter microfibrous vascular grafts. Arterioscler Thromb Vasc Biol 30(8):1621–1627PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Kurobe H, Maxfield MW, Tara S, Rocco KA, Bagi PS, Yi T, et al. (2015) Development of small diameter nanofiber tissue engineered arterial grafts. PLoS One 10(4):e0120328PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al. (1996) Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials 17(2):115–124PubMedCrossRefGoogle Scholar
  111. 111.
    Udelsman BV, Khosravi R, Miller KS, Dean EW, Bersi MR, Rocco K, et al. (2014) Characterization of evolving biomechanical properties of tissue engineered vascular grafts in the arterial circulation. J Biomech 47(9):2070–2079PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Patterson JT, Gilliland T, Maxfield MW, Church S, Naito Y, Shinoka T, et al. (2012) Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again. Regen Med 7(3):409–419PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Shin’oka T, Matsumura G, Hibino N, Naito Y, Watanabe M, Konuma T, et al. (2005) Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg 129(6):1330–1338PubMedCrossRefGoogle Scholar
  114. 114.
    Watanabe M, Shin’oka T, Tohyama S, Hibino N, Konuma T, Matsumura G, et al. (2001) Tissue-engineered vascular autograft: inferior vena cava replacement in a dog model. Tissue Eng 7(4):429–439PubMedCrossRefGoogle Scholar
  115. 115.
    Matsumura G, Miyagawa-Tomita S, Shin’oka T, Ikada Y, Kurosawa H (2003) First evidence that bone marrow cells contribute to the construction of tissue-engineered vascular autografts in vivo. Circulation 108(14):1729–1734PubMedCrossRefGoogle Scholar
  116. 116.
    Shin’oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533PubMedCrossRefGoogle Scholar
  117. 117.
    Naito Y, Imai Y, Shin'oka T, Kashiwagi J, Aoki M, Watanabe M, et al. (2003) Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg 125(2):419–420PubMedCrossRefGoogle Scholar
  118. 118.
    Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. (1999) Functional arteries grown in vitro. Science 284(5413):489–493PubMedCrossRefGoogle Scholar
  119. 119.
    Niklason LE, Abbott W, Gao J, Klagges B, Hirschi KK, Ulubayram K, et al. (2001) Morphologic and mechanical characteristics of engineered bovine arteries. J Vasc Surg 33(3):628–638PubMedCrossRefGoogle Scholar
  120. 120.
    Matsumura G, Nitta N, Matsuda S, Sakamoto Y, Isayama N, Yamazaki K, et al. (2012) Long-term results of cell-free biodegradable scaffolds for in situ tissue-engineering vasculature: in a canine inferior vena cava model. PLoS One 7(4):e35760PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Arnal-Pastor M, Chachques JC, Pradas MM, Vallés-Lluch A (2013) Biomaterials for cardiac tissue engineering. In: Andrades JA (ed) Regenerative medicine and tissue engineering. InTech, RijekaGoogle Scholar
  122. 122.
    Liu Q, Tian S, Zhao C, Chen X, Lei I, Wang Z, et al. (2015) Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering. Acta Biomater 26:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Amezcua R, Shirolkar A, Fraze C, Stout AD (2016) Nanomaterials for cardiac myocyte tissue engineering. Nanomaterials 6(7). doi: 10.3390/nano6070133
  124. 124.
    Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kenar H, Kose GT, Toner M, Kaplan DL, Hasirci V (2011) A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion. Biomaterials 32(23):5320–5329PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Zong X, Bien H, Chung C-Y, Yin L, Fang D, Hsiao BS, et al. (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26):5330–5338PubMedCrossRefGoogle Scholar
  127. 127.
    Simon-Yarza T, Rossi A, Heffels KH, Prosper F, Groll J, Blanco-Prieto MJ (2015) Polymeric electrospun scaffolds: neuregulin encapsulation and biocompatibility studies in a model of myocardial ischemia. Tissue Eng Part A 21(9–10):1654–1661PubMedCrossRefGoogle Scholar
  128. 128.
    Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PML, et al. (2015) Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS One 10(5):e0126338PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Prabhakaran MP, Mobarakeh LG, Kai D, Karbalaie K, Nasr-Esfahani MH, Ramakrishna S (2014) Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates. J Biomed Mater Res B Appl Biomater 102(3):447–454PubMedCrossRefGoogle Scholar
  130. 130.
    Yu J, Lee A-R, Lin W-H, Lin C-W, Wu Y-K, Tsai W-B (2014) Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A 20(13–14):1896–1907PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Senel-Ayaz HG, Perets A, Govindaraj M, Brookstein D, Lelkes PI (2010) Textile-templated electrospun anisotropic scaffolds for tissue engineering and regenerative medicine. Conf Proc IEEE Eng Med Biol Soc 2010: 255–258, doi: 10.1109/IEMBS.2010.5627466Google Scholar
  132. 132.
    Bursac N, Loo Y, Leong K, Tung L (2007) Novel anisotropic engineered cardiac tissues: studies of electrical propagation. Biochem Biophys Res Commun 361(4):847–853PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Kellar RS, Landeen LK, Shepherd BR, Naughton GK, Ratcliffe A, Williams SK (2001) Scaffold-based three-dimensional human fibroblast culture provides a structural matrix that supports angiogenesis in infarcted heart tissue. Circulation 104(17):2063–2068PubMedCrossRefGoogle Scholar
  134. 134.
    Kellar RS, Shepherd BR, Larson DF, Naughton GK, Williams SK (2005) Cardiac patch constructed from human fibroblasts attenuates reduction in cardiac function after acute infarct. Tissue Eng 11(11–12):1678–1687PubMedCrossRefGoogle Scholar
  135. 135.
    Molamma PP, Dan K, Laleh G-M, Seeram R (2011) Electrospun biocomposite nanofibrous patch for cardiac tissue engineering. Biomed Mater 6(5):055001CrossRefGoogle Scholar
  136. 136.
    Prabhakaran MP, Nair AS, Kai D, Ramakrishna S (2012) Electrospun composite scaffolds containing poly(octanediol-co-citrate) for cardiac tissue engineering. Biopolymers 97(7):529–538PubMedCrossRefGoogle Scholar
  137. 137.
    Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C 44:268–277CrossRefGoogle Scholar
  138. 138.
    Ozawa T, Mickle DAG, Weisel RD, Koyama N, Ozawa S, Li R-K (2002) Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106(12 Suppl 1):I-176–I-182Google Scholar
  139. 139.
    Stout DA, Basu B, Webster TJ (2011) Poly(lactic–co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 7(8):3101–3112PubMedCrossRefGoogle Scholar
  140. 140.
    Gelmi A, Zhang J, Cieslar-Pobuda A, Ljunngren MK, Los MJ, Rafat M et al (2015) Electroactive 3D materials for cardiac tissue engineering. Proc SPIE 9430:94301T doi:10.1117/12.2084165Google Scholar
  141. 141.
    Gelmi A, Cieslar-Pobuda A, de Muinck E, Los M, Rafat M, Jager EWH (2016) Direct mechanical stimulation of stem cells: a beating electromechanically active scaffold for cardiac tissue engineering. Adv Healthc Mater 5(12):1471–1480PubMedCrossRefGoogle Scholar
  142. 142.
    Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, et al. (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6(11):720–725PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Stout DA, Yoo J, Santiago-Miranda AN, Webster TJ (2012) Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular application. Int J Nanomedicine 7:5653–5669PubMedPubMedCentralGoogle Scholar
  144. 144.
    Tian B, Liu J, Dvir T, Jin L, Tsui JH, Qing Q, et al. (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11(11):986–994PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Engelmayr GC, Cheng M, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7(12):1003–1010PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847PubMedCrossRefGoogle Scholar
  147. 147.
    Asiri AM, Marwani HM, Khan SB, Webster TJ (2014) Greater cardiomyocyte density on aligned compared with random carbon nanofibers in polymer composites. Int J Nanomedicine 9:5533–5539PubMedPubMedCentralGoogle Scholar
  148. 148.
    Asiri AM, Marwani HM, Khan SB, Webster TJ (2015) Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA. Int J Nanomedicine 10:89–96PubMedCrossRefGoogle Scholar
  149. 149.
    Mooney E, Mackle JN, Blond DJP, O’Cearbhaill E, Shaw G, Blau WJ, et al. (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33(26):6132–6139PubMedCrossRefGoogle Scholar
  150. 150.
    Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 22(4):1053–1062PubMedCrossRefGoogle Scholar
  151. 151.
    Humpolicek P, Kasparkova V, Saha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162(7–8):722–727CrossRefGoogle Scholar
  152. 152.
    Kai D, Prabhakaran MP, Jin G, Ramakrishna S (2011) Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. J Biomed Mater Res B Appl Biomater 98B(2):379–386CrossRefGoogle Scholar
  153. 153.
    Hsiao C-W, Bai M-Y, Chang Y, Chung M-F, Lee T-Y, Wu C-T, et al. (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34(4):1063–1072PubMedCrossRefGoogle Scholar
  154. 154.
    Jin L, Wang T, Feng Z-Q, Zhu M, Leach MK, Naim YI, et al. (2012) Fabrication and characterization of a novel fluffy polypyrrole fibrous scaffold designed for 3D cell culture. J Mater Chem 22(35):18321–18326CrossRefGoogle Scholar
  155. 155.
    Stout DA, Raimondo E, Marostica G, Webster TJ (2014) Growth characteristics of different heart cells on novel nanopatch substrate during electrical stimulation. Biomed Mater Eng 24(6):2101–2107PubMedGoogle Scholar
  156. 156.
    Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Sangeetha VH, Deka H, Varghese TO, Nayak SK (2016) State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym Comp doi:10.1002/pc.23906Google Scholar
  158. 158.
    Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRefGoogle Scholar
  159. 159.
    Prasad E. (2016) Polylactic acid market by application (packaging, agriculture, electronics, textiles, bio-medical). Global opportunity analysis and industry forecast 2014–2020. Allied Market Research, PortlandGoogle Scholar
  160. 160.
    NICE (2016) Absorb bioresorbable vascular scaffold for coronary artery disease. National Institute for Health and Care Excellence (NICE), London
  161. 161.
    Transparency Market Research (2017) Biodegradable stents market (stent type – coronary artery stent and peripheral artery stents, material – polymer based and metal based, end users – hospitals, cardiac catheterization laboratories, and ambulatory surgery centers) – Global industry analysis, size, share, growth, trends and forecast 2016–2024. Transparency Market Research, AlbanyGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Cardiovascular Research Unit, Christiaan Barnard Division of Cardiothoracic Surgery, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa

Personalised recommendations