Advertisement

pp 1-37 | Cite as

Morphology of Composite Polymer Latexes: An Update on Synthesis and Applications, Modeling, and Characterization

  • Shaghayegh Hamzehlou
  • Jose Ramon Leiza
Chapter
Part of the Advances in Polymer Science book series

Abstract

Polymer latexes are used in a wide range of technological and industrial products. Polymer–polymer and polymer–inorganic composite (hybrid) latexes have found specific applications in coatings, adhesives, impact modifiers, and medical diagnostics, among others. Control of latex particle morphology is a key factor to achieve a desired application in structured polymer latex particles. Fundamental knowledge of the effects of different synthetic routes and reaction parameters such as temperature, glass transition temperature, and functional groups is vital to obtain the required morphology of polymer–polymer and polymer–inorganic hybrids. Subsequently an unambiguous characterization of particle morphology is essential, which requires determining the shape of the particles, the surface composition, and the internal composition. In this review, we focus on the most recent developments (of the last 5 years) in the synthesis and application of composite (hybrid) latex particles, including polymer–polymer and polymer–inorganic latex systems. Furthermore, we discuss the most recent modeling efforts to simulate the development of particle morphology in composite polymer latexes synthesized by (mini)emulsion polymerization and the latest advances and improvements in characterization techniques to determine the morphology of composite polymer latexes.

Keywords

Characterization Composite Emulsion Latex Mathematical model Particle morphology Polymer hybrid Polymerization 

Notes

Acknowledgements

The financial support of MINECO (grant CTQ2014-59016-P) and Basque Government (IT 999-16) is gratefully acknowledged.

References

  1. 1.
    Asua JM (2007) Polymer reaction engineering. Blackwell, OxfordCrossRefGoogle Scholar
  2. 2.
    Asua JM (ed) (1997) Polymeric dispersions: principles and applications1st edn. Springer Netherlands, DordrechtGoogle Scholar
  3. 3.
    Urban D, Takamura K (2002) Polymer dispersions and their industrial applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Schork FJ, Tsavalas J (2004) The morphology of alkyd/acrylate latexes produced via hybrid miniemulsion polymerization: grafting mechanisms. Colloid Polym Sci 124:126–130Google Scholar
  5. 5.
    Tsavalas JG, Schork FJ, Landfester K (2004) Particle morphology development in hybrid miniemulsion polymerization. J Coat Technol Res 1:53–63CrossRefGoogle Scholar
  6. 6.
    Herrera V, Pirri R, Asua JM, Leiza JR (2007) Morphology control in polystyrene/pol(methyl methacrylate) composite latex particles. J Polym Sci A Polym Chem 45:2484–2493ADSCrossRefGoogle Scholar
  7. 7.
    Goikoetxea M, Minari RJ, Beristain I, Paulis M, Barandiaran MJ, Asua JM (2009) Polymerization kinetics and microstructure of waterborne acrylic/alkyde nanocomposites synthesized by miniemulsion. J Polym Sci A Polym Chem 47:4871–4885ADSCrossRefGoogle Scholar
  8. 8.
    Li CY, Chiu WY, Don TM (2007) Morphology of PU/PMMA hybrid particles from miniemulsion polymerization: thermodynamic consideration. J Polym Sci A Polym Chem 45:3359–3369ADSCrossRefGoogle Scholar
  9. 9.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J Polym Sci A Polym Chem 38:4419–4430ADSCrossRefGoogle Scholar
  10. 10.
    Chu HH, Ou ED (2000) Emulsion polymerization of 2-hydroxyethyl methacrylate and partition of monomer between particles and water phase. Polym Bull 44:337–344CrossRefGoogle Scholar
  11. 11.
    Reyes Y, Akhmatskaya E, Leiza JR, Asua JM (2013) Particle morphology. In: van Herk AM (ed) Chemistry and technology of emulsion polymerization2nd edn. Wiley, SingaporeGoogle Scholar
  12. 12.
    Sundberg DC, Durant YG (2003) Latex particle morphology, fundamental aspects: a review. Polym React Eng 11:379–432CrossRefGoogle Scholar
  13. 13.
    Schuler B, Baumstark R, Kirsch S, Pfau A, Sandor M, Zosel A (2000) Structure and properties of multiphase particles and their impact on the performance of architectural coatings. Prog Org Coat 40:139–150CrossRefGoogle Scholar
  14. 14.
    Goikoetxea M, Reyes Y, de las Heras Alarcón CM, Minari RJ, Beristain I, Paulis M, Barandiaran MJ, Keddie JL, Asua JM (2012) Transformation of waterborne hybrid polymer particles into films: morphology development and Modeling. Polymer 53:1098–1108CrossRefGoogle Scholar
  15. 15.
    Paulis M, Asua JM (2016) Knowledge-based production of waterborne hybrid polymer materials. Macromol React Eng 10:8–21CrossRefGoogle Scholar
  16. 16.
    van Herk AM, Landfester K (eds) (2010) Hybrid latex particles: preparation with (mini)emulsion polymerization. Springer, BerlinGoogle Scholar
  17. 17.
    Asua JM (2002) Miniemulsion polymerization. Prog Polym Sci 27:1283–1346CrossRefGoogle Scholar
  18. 18.
    Asua JM (2014) Challenges for industrialization of miniemulsion polymerization. Prog Polym Sci 39:1797–1826CrossRefGoogle Scholar
  19. 19.
    Stubbs JM, Sundberg DC (2008) Core-shell and other multiphase latex particles-confirming their morphologies and relating those to synthesis variables. J Coat Technol Res 5:169–180CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Wang Z (2013) Fluorinated poly(isobornyl methacrylate-co-butyl acrylate) core-shell latex nanoparticles: synthesis, morphology and wettability of films. Polymer 54:3047–3054CrossRefGoogle Scholar
  21. 21.
    Bonnefond, A.; González, E.; Asua, J. M.; Leiza, J. R.; Ieva, E.; Brinati, G.; Carella, S.; Marrani, A.; Veneroni, A.; Kiwi, J.; et al. Stable photocatalytic paints prepared from hybrid core-shell fluorinated/acrylic/TiO2 waterborne dispersions. Crystals 2016, 6(10), 136 doi: 10.3390/cryst6100136.
  22. 22.
    Tan C, Tirri T, Wilen C-E (2016) The effect of core–shell particle morphology on adhesive properties of poly(styrene-co-butyl acrylate). Int J Adhes Adhes 66:104–113CrossRefGoogle Scholar
  23. 23.
    Lopez A, Degrandi-Contraires E, Canetta E, Creton C, Keddie JL, Asua JM (2011) Waterborne polyurethane-acrylic hybrid nanoparticles by miniemulsion polymerization: applications in pressure-sensitive adhesives. Langmuir 27:3878–3788PubMedCrossRefGoogle Scholar
  24. 24.
    Lopez A, Degrandi E, Canetta E, Keddie JL, Creton C, Asua JM (2011) Simultaneous free radical and addition miniemulsion polymerization: effect of the diol on the microstructure of polyurethane-acrylic pressure-sensitive adhesives. Polymer 52:3021–3030CrossRefGoogle Scholar
  25. 25.
    Lopez A, Reyes Y, Degrandi-Contraires E, Canetta E, Creton C, Asua JM (2013) Waterborne hybrid polymer particles: tuning of the adhesive performance by controlling the hybrid microstructure. Eur Polym J 49:1541–1552CrossRefGoogle Scholar
  26. 26.
    Hamzehlou S, Ballard N, Carretero P, Paulis M, Asua JM, Reyes Y, Leiza JR (2014) Mechanistic investigation of the simultaneous addition and free-radical polymerization in batch miniemulsion droplets: Monte Carlo simulation versus experimental data in polyurethane/acrylic systems. Polymer 55:4801–4811CrossRefGoogle Scholar
  27. 27.
    Degrandi-Contraires E, Udagama R, McKenna T, Bourgeat-Lami E, Plummer CJG, Creton C (2014) Influence of composition on the morphology of polyurethane/acrylic latex particles and adhesive films. Int J Adhes Adhes 50:176–182CrossRefGoogle Scholar
  28. 28.
    Bourgeat-Lami E (2003) Hollow particles: synthetic pathways and potential applications. In: Elaissari A (ed) Colloidal polymers. Surfactant science series. Marcel Dekker, New York, pp 189–223Google Scholar
  29. 29.
    Pan TY, Lee CF, Chu CH (2013) Synthesis and characteristics of poly(methacrylic acid-co-N-isopropylacrylamide) thermosensitive composite hollow latex particles and their application as drug carriers. J Polym Sci A Polym Chem 51:5203–5214ADSCrossRefGoogle Scholar
  30. 30.
    Jiang YM, Li BT, Wang WJ, Xu M, Kan CY (2014) Effect of the shell crosslinking level and core/shell ratio on the morphology of latex particles in the preparation of hollow latexes. Chin J Polym Sci 32:177–186CrossRefGoogle Scholar
  31. 31.
    Deng W, Ji W, Jiang Y, Kan C (2013) Influence of unsaturated acid monomer on the morphology of latex particles in the preparation of hollow latex via the alkali post-treatment. J Appl Polym Sci 127:651–658CrossRefGoogle Scholar
  32. 32.
    Yuan T, Shao Q, Hu J, Wang F, Tu W (2015) Effect of the intermediate layer-core ratio on the morphology and opacity ability of hollow latex particles. J Appl Polym Sci 132:1–7CrossRefGoogle Scholar
  33. 33.
    Blenner D, Stubbs J, Sundberg D (2017) Multi-lobed composite polymer nanoparticles prepared by conventional emulsion polymerization. Polymer 114:54–63CrossRefGoogle Scholar
  34. 34.
    Niu Q, Pan M, Yuan J, Liu X, Wang X, Yu H (2013) Anisotropic nanoparticles with controllable morphologies from non-cross-linked seeded emulsion polymerization. Macromol Rapid Commun 34:1363–1367PubMedCrossRefGoogle Scholar
  35. 35.
    Li K, Zeng X, Li H, Lai X (2015) Role of acrylic acid in the synthesis of core-shell fluorine-containing polyacrylate latex with spherical and plum blossom-like morphology. J Appl Polym Sci 132:42527–42534Google Scholar
  36. 36.
    Chang Y, Pan M, Yuan J, Liu Y, Wang X, Jiang P, Wang Y, Zhong G-J, Li Z-M (2015) Morphology and film performance of phthalate-free plasticized poly(vinyl chloride) composite particles via the graft copolymerization of acrylate swelling flower-like latex particles. RSC Adv 5:40076–40087CrossRefGoogle Scholar
  37. 37.
    Paulis M, Leiza JR (2010) Polymer/clay nanocomposites through emulsion and suspension polymerization. In: Mittal V (ed) Advances in polymer nanocomposite technology. Nova Science, New York, pp 53–101Google Scholar
  38. 38.
    Mičušík M, Reyes Y, Paulis M, Leiza JR (2010) Polymer–clay nanocomposites by miniemulsion polymerization. In: Mittal V (ed) Polymer nanocomposites by emulsion and suspension polymerization. Royal Society of Chemistry, LondonGoogle Scholar
  39. 39.
    Weiss CK, Landfester K (2010) Miniemulsion polymerization as a means to encapsulate organic and inorganic materials. Adv Polym Sci 233:185–236CrossRefGoogle Scholar
  40. 40.
    Bourgeat-Lami E, Lansalot M (2010) Organic/inorganic composite latexes: the marriage of emulsion polymerization and inorganic chemistry. Adv Polym Sci 233:53–123CrossRefGoogle Scholar
  41. 41.
    Faucheu J, Gauthier C, Chazeau L, Cavaillé JY, Mellon V, Lami EB (2010) Miniemulsion polymerization for synthesis of structured clay/polymer nanocomposites: short review and recent advances. Polymer 51:6–17CrossRefGoogle Scholar
  42. 42.
    Diaconu G, Micusik M, Bonnefond A, Paulis M, Leiza JR (2009) Macroinitiator and macromonomer modified montmorillonite for the synthesis of acrylic/MMT nanocomposite latexes. Macromolecules 42:3316–3325ADSCrossRefGoogle Scholar
  43. 43.
    Mičušík M, Bonnefond A, Reyes Y, Bogner A, Chazeau L, Plummer C, Paulis M, Leiza JR (2010) Morphology of polymer/clay latex particles synthesized by miniemulsion polymerization: modeling and experimental results. Macromol React Eng 4:432–444CrossRefGoogle Scholar
  44. 44.
    Mballa MAM, Heuts JPA, Van Herk AM (2013) Encapsulation of non-chemically modified montmorillonite clay platelets via emulsion polymerization. Colloid Polym Sci 291:501–513CrossRefGoogle Scholar
  45. 45.
    Greesh N, Ray SS (2016) Impact of non-ionic surfactant chemical structure on morphology and stability of polystyrene nanocomposite latex. Colloid Polym Sci 294:157–170CrossRefGoogle Scholar
  46. 46.
    Wang S, Tian X, Sun J, Liu J, Duan J (2016) Morphology and mechanical properties of natural rubber latex films modified by exfoliated Na-montmorillonite/polyethyleneimine-G-poly (methyl methacrylate) nanocomposites. J Appl Polym Sci 133:1–8Google Scholar
  47. 47.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. II. Preparation and characterization of styrene miniemulsion droplets containing TiO2 particles. J Polym Sci A Polym Chem 38:4431–4440ADSCrossRefGoogle Scholar
  48. 48.
    Aguirre M, Johansson Salazar-Sandoval E, Johansson M, Ahniyaz A, Paulis M, Leiza JR (2014) Hybrid acrylic/CeO2 nanocomposites using hydrophilic, spherical and high aspect ratio CeO2 nanoparticles. J Mater Chem A 2:20280–20287CrossRefGoogle Scholar
  49. 49.
    Aguirre M, Barrado M, Iturrondobeitia M, Okariz A, Guraya T, Paulis M, Leiza JR (2015) Film forming hybrid acrylic/ZnO latexes with excellent UV absorption capacity. Chem Eng J 270:300–308CrossRefGoogle Scholar
  50. 50.
    Nguyen D, Zondanos HS, Farrugia JM, Serelis AK, Such CH, Hawkett BS (2008) Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers. Langmuir 24:2140–2150PubMedCrossRefGoogle Scholar
  51. 51.
    Aguirre M, Paulis M, Leiza JR (2013) UV screening clear coats based on encapsulated CeO2 hybrid latexes. J Mater Chem A 1:3155–3162CrossRefGoogle Scholar
  52. 52.
    Bourgeat-Lami E, Duguet E (2006) Polymer encapsulation of inorganic particles. In: Ghosh SK (ed) Functional coatings: by polymer microencapsulation. Wiley-VCH, Weinheim, pp 85–152CrossRefGoogle Scholar
  53. 53.
    Erdem B, Sudol ED, Dimonie VL, El-Aasser MS (2000) Encapsulation of inorganic particles via miniemulsion polymerization. III. Characterization of encapsulation. J Polym Sci A Polym Chem 38:4441–4450ADSCrossRefGoogle Scholar
  54. 54.
    De San Luis A, Bonnefond A, Barrado M, Guraya T, Iturrondobeitia M, Okariz A, Paulis M, Leiza JR (2017) Toward the minimization of fluorescence loss in hybrid cross-linked core-shell PS/QD/PMMA nanoparticles: effect of the shell thickness. Chem Eng J 313:261–269CrossRefGoogle Scholar
  55. 55.
    Fleischhaker F, Zentel R (2005) Photonic crystals from core-shell colloids with incorporated highly fluorescent quantum dots. Chem Mater 17:1346–1351CrossRefGoogle Scholar
  56. 56.
    Joumaa N, Lansalot M, Théretz A, Elaissari A, Sukhanova A, Artemyev M, Nabiev I, Cohen JHM (2006) Synthesis of quantum dot-tagged submicrometer polystyrene particles by miniemulsion polymerization. Langmuir 22:1810–1816PubMedCrossRefGoogle Scholar
  57. 57.
    González E, Bonnefond A, Barrado M, Casado Barrasa AM, Asua JM, Leiza JR (2015) Photoactive self-cleaning polymer coatings by TiO2 nanoparticle Pickering miniemulsion polymerization. Chem Eng J 281:209–217CrossRefGoogle Scholar
  58. 58.
    Bonnefond A, Gonzalez E, Asua JM, Leiza JR, Kiwi J, Pulgarin C, Rtimi S (2015) New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight. Colloids Surf B Biointerfaces 135:1–7PubMedCrossRefGoogle Scholar
  59. 59.
    Landfester K, Weiss CK (2010) Encapsulation by miniemulsion polymerization. Adv Polym Sci 229:1–49CrossRefGoogle Scholar
  60. 60.
    Kobayashi S, Mullen K (eds) (2014) Encyclopedia of polymeric nanomaterials. Springer-Verlag, BerlinGoogle Scholar
  61. 61.
    Ali SI, Heuts JPA, Hawkett BS, Van Herk AM (2009) Polymer encapsulated Gibbsite nanoparticles: efficient preparation of anisotropic composite latex particles by RAFT-based starved feed emulsion polymerization. Langmuir 25:10523–10533PubMedCrossRefGoogle Scholar
  62. 62.
    Costoyas A, Ramos J, Forcada J (2009) Encapsulation of silica nanoparticles by miniemulsion polymerization. J Polym Sci A Polym Chem 47:935–939ADSCrossRefGoogle Scholar
  63. 63.
    Reyes Y, Peruzzo PJ, Ferna M, Paulis M, Leiza JR (2013) Encapsulation of clay within polymer particles in a high-solid content aqueous dispersion. Langmuir 29:9849–9856PubMedCrossRefGoogle Scholar
  64. 64.
    Mballa Mballa MA, Heuts JPA, Van Herk AM (2013) The effect of clay on the morphology of multiphase latex particles. Colloid Polym Sci 291:1419–1427CrossRefGoogle Scholar
  65. 65.
    Nguyen D, Such CH, Hawkett BS (2013) Polymer coating of carboxylic acid functionalized multiwalled carbon nanotubes via reversible addition-fragmentation chain transfer mediated emulsion polymerization. J Polym Sci A Polym Chem 51:250–257ADSCrossRefGoogle Scholar
  66. 66.
    Huynh VT, Nguyen D, Such CH, Hawkett BS (2015) Polymer coating of graphene oxide via reversible addition-fragmentation chain transfer mediated emulsion polymerization. J Polym Sci A Polym Chem 53:1413–1421ADSCrossRefGoogle Scholar
  67. 67.
    Loiko OP, Spoelstra AB, van Herk AM, Meuldijk J, Heuts JPA (2016) An ATRP-based approach towards water-borne anisotropic polymer–Gibbsite nanocomposites. Polym Chem 7:3383–3391CrossRefGoogle Scholar
  68. 68.
    Loiko OP, Spoelstra AB, van Herk AM, Meuldijk J, Heuts JPA (2016) Encapsulation of unmodified Gibbsite via conventional emulsion polymerisation using charged co-oligomers. RSC Adv 6:80748–80755CrossRefGoogle Scholar
  69. 69.
    Cenacchi A, Pearson S, Kostadinova D, Leroux F, D’Agosto F, Lansalot M, Bourgeat-Lami E, Prevot V (2017) Nanocomposite latexes containing layered double hydroxides via RAFT-assisted encapsulating emulsion polymerization. Polym Chem 8:1233–1243CrossRefGoogle Scholar
  70. 70.
    Aguirre M, Paulis M, Leiza JR, Guraya T, Iturrondobeitia M, Okariz A, Ibarretxe J (2013) High-solids-content hybrid acrylic/CeO2 latexes with encapsulated morphology assessed by 3D-TEM. Macromol Chem Phys 214:2157–2164Google Scholar
  71. 71.
    Aguirre M, Paulis M, Barrado M, Iturrondobeitia M, Okariz A, Guraya T, Ibarretxe J, Leiza JR (2014) Evolution of particle morphology during the synthesis of hybrid acrylic/CeO2 nanocomposites by miniemulsion polymerization. J Polym Sci A Polym Chem 53:792–799ADSCrossRefGoogle Scholar
  72. 72.
    Aguirrre M, Paulis M, Leiza JR (2014) Particle nucleation and growth in seeded semibatch miniemulsion polymerization of hybrid CeO2/acrylic latexes. Polymer 55:752–761CrossRefGoogle Scholar
  73. 73.
    Garnier J, Warnant J, Lacroix-Desmazes P, Dufils PE, Vinas J, van Herk A (2013) Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes. J Colloid Interface Sci 407:273–281ADSPubMedCrossRefGoogle Scholar
  74. 74.
    Warnant J, Garnier J, van Herk A, Dufils P-E, Vinas J, Lacroix-Desmazes P (2013) A CeO2/PVDC hybrid latex mediated by a phosphonated macro-RAFT agent. Polym Chem 4:5656CrossRefGoogle Scholar
  75. 75.
    Désert A, Morele J, Taveau J-C, Lambert O, Lansalot M, Bourgeat-Lami E, Thill A, Spalla O, Belloni L, Ravaine S, et al. (2016) Multipod-like silica/polystyrene clusters. Nanoscale 8:5454–5469ADSPubMedCrossRefGoogle Scholar
  76. 76.
    Chomette C, Duguet E, Mornet S, Yammine E, Manoharan VN, Schade NB, Hubert C, Ravaine S, Perro A, Tréguer-Delapierre M (2016) Templated growth of gold satellites on dimpled silica cores. Faraday Discuss 191:105–116ADSPubMedCrossRefGoogle Scholar
  77. 77.
    Negrete-Herrera N, Putaux JL, David L, Bourgeat-Lami E (2006) Polymer/laponite composite colloids through emulsion polymerization: influence of the clay modification level on particle morphology. Macromolecules 39:9177–9184ADSCrossRefGoogle Scholar
  78. 78.
    Bon SAF, Colver PJ (2007) Pickering miniemulsion polymerization using Laponite clay as a stabilizer. Langmuir 23:8316–8322PubMedCrossRefGoogle Scholar
  79. 79.
    Sheibat-Othman N, Bourgeat-Lami E (2009) Use of silica particles for the formation of organic-inorganic particles by surfactant-free emulsion polymerization. Langmuir 25:10121–10133PubMedCrossRefGoogle Scholar
  80. 80.
    Colver PJ, Colard CAL, Bon SAF (2008) Multilayered nanocomposite polymer colloids using emulsion polymerization stabilized by solid particles. J Am Chem Soc 130:16850–16851PubMedCrossRefGoogle Scholar
  81. 81.
    Xu Z, Xia A, Wang C, Yang W, Fu S (2007) Synthesis of raspberry-like magnetic polystyrene microspheres. Mater Chem Phys 103:494–499CrossRefGoogle Scholar
  82. 82.
    Zgheib N, Putaux J-L, Thill A, D’Agosto F, Lansalot M, Bourgeat-Lam E (2012) Stabilization of miniemulsion droplets by cerium oxide nanoparticles: a step toward the elaboration of armored composite. Langmuir 28:6163–6174PubMedCrossRefGoogle Scholar
  83. 83.
    Liu Y, Chen X, Wang R, Xin JH (2006) Polymer microspheres stabilized by Titania nanoparticles. Mater Lett 60:3731–3734CrossRefGoogle Scholar
  84. 84.
    Chen JH, Cheng CY, Chiu WY, Lee CF, Liang NY (2008) Synthesis of ZnO/polystyrene composites particles by Pickering emulsion polymerization. Eur Polym J 44:3271–3279CrossRefGoogle Scholar
  85. 85.
    Bonnefond A, Mičušík M, Paulis M, Leiza JR, Teixeira RFA, Bon SAF (2013) Morphology and properties of waterborne adhesives made from hybrid polyacrylic/montmorillonite clay colloidal dispersions showing improved tack and shear resistance. Colloid Polym Sci 291:167–180CrossRefGoogle Scholar
  86. 86.
    González-Matheus K, Leal GP, Asua JM (2014) Pickering-stabilized latexes with high silica incorporation and improved salt stability. Part Part Syst Charact 31:94–100CrossRefGoogle Scholar
  87. 87.
    Fischer V, Bannwarth MB, Jakob G, Landfester K, Muñoz-Espí R (2013) Luminescent and magnetoresponsive multifunctional chalcogenide/polymer hybrid nanoparticles. J Phys Chem C 117:5999–6005CrossRefGoogle Scholar
  88. 88.
    Bonnefond A, Ibarra M, Gonzalez E, Barrado M, Chuvilin A, Maria Asua J, Ramon Leiza J (2016) Photocatalytic and magnetic titanium dioxide/polystyrene/magnetite composite hybrid polymer particles. J Polym Sci A Polym Chem 54:3350–3356ADSCrossRefGoogle Scholar
  89. 89.
    Gonzalez-Ortiz LJ, Asua JM (1995) Development of particle morphology in emulsion polymerization. 1. Cluster dynamics. Macromolecules 28:3135–3145ADSCrossRefGoogle Scholar
  90. 90.
    Gonzalez-Ortiz LJ, Asua JM (1996) Development of particle morphology in emulsion polymerization. 2. Cluster dynamics in reacting systems. Macromolecules 29:383–389ADSCrossRefGoogle Scholar
  91. 91.
    Gonzalez-Ortiz LJ, Asua JM (1996) Development of particle morphology in emulsion polymerization. 3. Cluster nucleation and dynamics in polymerizing systems. Macromolecules 29:4520–4527ADSCrossRefGoogle Scholar
  92. 92.
    Asua JM (2014) Mapping the morphology of polymer-inorganic nanocomposites synthesized by miniemulsion polymerization. Macromol Chem Phys 215:458–464CrossRefGoogle Scholar
  93. 93.
    Reyes Y, Asua JM (2010) Modeling multiphase latex particle equilibrium morphology. J Polym Sci A Polym Chem 48:2579–2583ADSCrossRefGoogle Scholar
  94. 94.
    Stubbs J, Carrier R, Sundberg DC (2008) Monte Carlo simulation of emulsion polymerization kinetics and the evolution of latex particle morphology and polymer chain architecture. Macromol Theory Simul 17:147–162CrossRefGoogle Scholar
  95. 95.
    Akhmatskaya E, Asua JM (2012) Dynamic modeling of the morphology of latex particles with in situ formation of graft copolymer. J Polym Sci A Polym Chem 50:1383–1393ADSCrossRefGoogle Scholar
  96. 96.
    Akhmatskaya E, Asua JM (2013) Dynamic modeling of the morphology of multiphase waterborne polymer particles. Colloid Polym Sci 291:87–98CrossRefGoogle Scholar
  97. 97.
    Hamzehlou S, Leiza JR, Asua JM (2016) A new approach for mathematical modeling of the dynamic development of particle morphology. Chem Eng J 304:655–666CrossRefGoogle Scholar
  98. 98.
    Chen YC, Dimonie V, El-Aasser MS (1992) Role of surfactant in composite latex particle morphology. J Appl Polym Sci 45:487–499CrossRefGoogle Scholar
  99. 99.
    Stubbs JM, Sundberg DC (2005) A round Robin study for the characterization of latex particle morphology – multiple analytical techniques to probe specific structural features. Polymer 46:1125–1138CrossRefGoogle Scholar
  100. 100.
    Gonzalez E, Tollan C, Chuvilin A, Barandiaran MJ, Paulis M (2012) Determination of the coalescence temperature of latexes by environmental scanning electron microscopy. ACS Appl Mater Interfaces 4:4276–4282PubMedCrossRefGoogle Scholar
  101. 101.
    Nzudie DT (1992) Contribution a L’etude de L’interphase Des Lates “core- Shell” Par Lat RMN Du Solide a Haute Resolution. Universite de Haute-Alsace, MulhouseGoogle Scholar
  102. 102.
    Song M, Hourston DJ, Reading M, Pollock HM, Hammiche A (1999) Modulated differential scanning Calorimetry. Analysis of interphases in multi-component polymer materials. J Therm Anal Calorim 56:991–1004CrossRefGoogle Scholar
  103. 103.
    Hourston DJ, Song M, Hammiche A, Pollock HM, Reading M (1997) Modulated differential scanning calorimetry: 6. Thermal characterization of multicomponent polymers and interfaces. Polymer 38:1–7CrossRefGoogle Scholar
  104. 104.
    Tripathi AK, Tsavalas JG, Sundberg DC (2013) Thermochimica acta quantitative measurements of the extent of phase separation during and after polymerization in polymer composites using DSC. Thermochim Acta 568:20–30CrossRefGoogle Scholar
  105. 105.
    Luo H, Scriven LE, Francis LF (2007) Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development. J Colloid Interface Sci 316:500–509ADSPubMedCrossRefGoogle Scholar
  106. 106.
    Crassous JJ, Ballauff M, Drechsler M, Schmidt U, Talmon Y (2006) Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 22:2403–2406PubMedCrossRefGoogle Scholar
  107. 107.
    Geng X, Zhai MX, Sun T, Meyers G (2013) Morphology observation of latex particles with scanning transmission electron microscopy by a hydroxyethyl cellulose embedding combined with RuO4 staining method. Microsc Microanal 19:319–326ADSPubMedCrossRefGoogle Scholar
  108. 108.
    Libera MR, Egerton RF (2010) Advances in the transmission electron microscopy of polymers. Polym Rev 50:321–339CrossRefGoogle Scholar
  109. 109.
    Sawyer LC, Grubb DT, Meyers GF (2008) Polymer microscopy3rd edn. Springer, New YorkGoogle Scholar
  110. 110.
    Smith RW, Bryg V (2006) Staining polymers for microscopical examination. Rubber Chem Technol 79:520–540CrossRefGoogle Scholar
  111. 111.
    Midgley PA, Weyland M (2003) 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431PubMedCrossRefGoogle Scholar
  112. 112.
    Tosaka M, Danev R, Nagayama K (2005) Application of phase contrast transmission microscopic methods to polymer materials. Macromolecules 38:7884–7886ADSCrossRefGoogle Scholar
  113. 113.
    Horiuchi S, Hanada T, Yase K, Ougizawa T (1999) Analysis of an interface between an immiscible polymer pair by electron spectroscopic imaging. Macromolecules 32:1312–1314ADSCrossRefGoogle Scholar
  114. 114.
    Hoiruchi S, Kiyoshi Y, Kitano T, Higashida N, Ougizawa T (1997) EFTEM for the characterization of polymer blend morphologies. Polym J 29:380–383CrossRefGoogle Scholar
  115. 115.
    Lieser G, Schmid SC, Wegner G (1996) Electrically conducting polymers: preparation and investigation of oxidized poly(acetylene) by EFTEM. J Microsc 183:53–59CrossRefGoogle Scholar
  116. 116.
    Garcia-Meitin E, Bar G, Blackson J, Reuschle D (2008) High resolution polymer imaging using scanning transmission electron microscopy. Microsc Microanal 14:1380–1381ADSCrossRefGoogle Scholar
  117. 117.
    Horiuchi S, Yin D, Ougizawa T (2005) Nanoscale analysis of polymer interfaces by energy-filtering transmission electron microscopy. Macromol Chem Phys 206:725–731CrossRefGoogle Scholar
  118. 118.
    Linares EM, Leite CAP, Valadares LF, Silva CA, Rezende CA, Galembeck F (2009) Molecular mapping by low-energy-loss energy-filtered transmission electron microscopy imaging. Anal Chem 81:2317–2324PubMedCrossRefGoogle Scholar
  119. 119.
    Hofer F, Warbichler P (2005) Elemental mapping using energy fiktered imaging. Transmission electron energy loss spectrometry in materials science and the EELS atlas. Wiley-VCH, WeinheimGoogle Scholar
  120. 120.
    Jeanguillaume C, Colliex C (1989) Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28:252–257CrossRefGoogle Scholar
  121. 121.
    Hunt JA, Williams DB (1991) Electron energy-loss spectrum-imaging. Ultramicroscopy 38:47–73CrossRefGoogle Scholar
  122. 122.
    Kim G, Sousa A, Meyers D, Shope M, Libera M (2006) Diffuse polymer interfaces in lobed nanoemulsions preserved in aqueous media. J Am Chem Soc 128:6570–6571PubMedCrossRefGoogle Scholar
  123. 123.
    Kim G, Sousa A, Meyers D, Libera M (2008) Nanoscale composition of biphasic polymer nanocolloids in aqueous suspension. Microsc Microanal 14:459–468ADSPubMedCrossRefGoogle Scholar
  124. 124.
    Yakovlev S, Libera M (2008) Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope. Micron 39:734–740PubMedCrossRefGoogle Scholar
  125. 125.
    Drummy LF, Wang YC, Schoenmakers R, May K, Jackson M, Koerner H, Farmer BL, Mauryama B, Vaia RA (2008) Morphology of layered silicate-(NanoClay-) polymer nanocomposites by electron tomography and small-angle X-ray scattering. Macromolecules 41:2135–2143ADSCrossRefGoogle Scholar
  126. 126.
    Voorn DJ, Ming W, van Herk AM (2006) Clay platelets encapsulated inside latex particles. Macromolecules 39:4654–4656ADSCrossRefGoogle Scholar
  127. 127.
    Midgley PA, Weyland M, Yates TJV, Arslan I, Dunin-Borkowski RE, Thomas JM (2006) Nanoscale scanning transmission electron tomography. J Microsc 223:185–190MathSciNetPubMedCrossRefGoogle Scholar
  128. 128.
    Ziese U, De Jong KP, Koster AJ (2004) Electron tomography: a tool for 3D structural probing of heterogeneous catalysts at the nanometer scale. Appl Catal A Gen 260:71–74CrossRefGoogle Scholar
  129. 129.
    Mori Y, Kawaguchi H (2007) Impact of initiators in preparing magnetic polymer particles by miniemulsion polymerization. Colloids Surf B Biointerfaces 56:246–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.POLYMAT, Kimika Aplikatua saila, Kimika Zientzien FakultateaUniversity of the Basque Country (UPV/EHU)Donostia/San SebastiánSpain

Personalised recommendations