Poly(lactic acid)-Based Materials for Automotive Applications

  • Amani BouzouitaEmail author
  • Delphine Notta-Cuvier
  • Jean-Marie RaquezEmail author
  • Franck Lauro
  • Philippe Dubois
Part of the Advances in Polymer Science book series (POLYMER, volume 282)


As a result of increasingly stringent environmental regulations being imposed on the automotive sector, ecofriendly alternative solutions are being sought through the use of next-generation bioplastics and biocomposites as novel vehicle components. Thanks to its renewability, low cost, high strength, and rigidity, poly(lactic acid), PLLA, is considered a key material for such applications. Nevertheless, to compete with traditional petroleum-sourced plastics some of the properties of PLLA must be improved to fulfill the requirements of the automotive industry, such as heat resistance, mechanical performance (especially in terms of ductility and impact toughness), and durability. This review focuses on the properties required for plastics used in the automotive industry and discusses recent breakthroughs regarding PLLA and PLLA-based materials in this field.


Automotive industry Bioplastic Injection molding Poly(lactic acid) 











Biomax® Strong (Commercial impact modifier)


Chain extender


Cloisite® 25A


Bis(2-ethylhexyl) adipate


Dioctyl adipate


Differential scanning calorimetry


Ethylene bis-stearamide (nucleating agent)


Ethylene-methyl acrylate-glycidyl methacrylate


Epoxidized natural rubber


Glyceryl triacetate


Heat deflection temperature


Halloysite nanotube


Nylon-clay hybrid


Original equipment manufacturer


Organic modified clay


Organically modified layered silicate




Oligomericpoly(1,3-butylene glycol adipate)






Poly(d-lactic acid)


Polyether block amide


Polyethylene glycol


Polyethylene terephtalate




Poly(l,d-lactic acid)


Polymer-layered silicate nanocomposites


Poly(methyl methacrylate)




Poly(1,2-propylene glycol adipate)




Polytrimethylene terephtalate




Relative humidity


Stereocomplex of polylactide






Thermoplastic polyurethane



LAMIH authors are grateful to CISIT, the Nord-Pas-de-Calais Region, the European Community, the Regional Delegation for Research and Technology, the Ministry of Higher Education and Research, and the National Center for Scientific Research for their financial support. UMONS and Materia Novaauthors are grateful to the “RegionWallonne” and the European Community (FEDER, FSE) in the frame of “Pole d’ExcellenceMateria Nova” INTERREG IV—NANOLAC project and in the excellence program OPTI2MAT for their financial support. CIRMAP thanks the “Belgian Federal Government Office Policy of Science (SSTC)” for general support in the frame of the PAI-7/05. J.O. thanks F.R.I.A. for its financial support thesis grant. J.-M. Raquez is a “Chercheur Qualifié” by the F.R.S.-FNRS (Belgium).


  1. 1.
    Brostow W, Datashvili T (2016) Environmental impact of natural polymers. In: Natural polymers. Springer, Berlin, pp 315–338Google Scholar
  2. 2.
    Akampumuza O et al (2016) Review of the applications of biocomposites in the automotive industry. Polym Compos. doi: 10.1002/pc.23847 CrossRefGoogle Scholar
  3. 3.
    Niaounakis M (2015) Automotive applications. In: Biopolymers: applications and trends. William Andrew, Oxford, pp. 257–289CrossRefGoogle Scholar
  4. 4.
    Garlotta DA (2001) Literature review of poly(lactic acid). J Polym Environ 9(2):63–84CrossRefGoogle Scholar
  5. 5.
    Avérous L (2008) Polylactic acid: synthesis, properties and applications. In: Gandini MNB (ed) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 433–450CrossRefGoogle Scholar
  6. 6.
    Maxwell J (1994) Plastics in the automotive industry. Elsevier, AmsterdamCrossRefGoogle Scholar
  7. 7.
    Auras RA et al (2011) Poly(lactic acid): synthesis, structures, properties, processing, and applications, vol 10. Wiley, HobokenGoogle Scholar
  8. 8.
    Reynolds N, Ramamohan AB (2013) High-volume thermoplastic composite technology for automotive structures. In: Advanced composite materials for automotive applications. Wiley, Hoboken, pp 29–50Google Scholar
  9. 9.
    Rowe J (2012) Advanced materials in automotive engineering. Elsevier, AmsterdamCrossRefGoogle Scholar
  10. 10.
    Götz Klink GR, Znojek B, Wadivkar O (2012) Plastics. The future for automakers and chemical companies. A.T. Kearney, KoreaGoogle Scholar
  11. 11.
    Swift TK, Moore M, Sanchez E (2015) Plastics and polymer composites in light vehicles. Economics and Statistics Department/American Chemistry CouncilGoogle Scholar
  12. 12.
    Philp JC et al (2013) Biobased plastics in a bioeconomy. Trends Biotechnol 31(2):65–67PubMedCrossRefGoogle Scholar
  13. 13.
    Thielen M (2012) Bioplastics: basics, applications, markets. Polymedia, MönchengladbachGoogle Scholar
  14. 14.
    Pilla S (2011) Handbook of bioplastics and biocomposites engineering applications, vol 81. Wiley, HobokenCrossRefGoogle Scholar
  15. 15.
    Siracusa V et al (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643CrossRefGoogle Scholar
  16. 16.
    European Bioplastics (2013) Applications for bioplastics. European Bioplastics, Berlin.
  17. 17.
    Lee E, Flanigan C (2012) Automotive plastics and composites. In: Encyclopedia of polymer science and technology. Wiley, HobokenGoogle Scholar
  18. 18.
    Szeteiová K (2010) Automotive materials: plastics in automotive markets today. Institute of Production Technologies, Slovak University of Technology, BratislavaGoogle Scholar
  19. 19.
    Andrea DJ, Brown WR (1993) Material selection processes in the automotive industry. OSAT, MichiganGoogle Scholar
  20. 20.
    Ghassemieh E (2011). Materials in automotive application, state of the art and prospects. In: Chiaberge M (ed) New trends and developments in automotive industry. Intech, Rijeka, pp 366–394. doi: 10.5772/13286
  21. 21.
    Weber M, Weisbrod J (2003) Requirements engineering in automotive development-experiences and challenges. In: IEEE joint international conference on requirements engineering, 2002. IEEE, pp 331–340. doi: 10.1109/MS.2003.1159025
  22. 22.
    Biron M (2012) Thermoplastics and thermoplastic composites. William Andrew, OxfordGoogle Scholar
  23. 23.
    Babu RP et al (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):1–16CrossRefGoogle Scholar
  24. 24.
    Fiori S (2014) Industrial uses of PLA. In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, London, pp 315–333. doi: 10.1039/9781782624806-00315
  25. 25.
    Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152CrossRefGoogle Scholar
  26. 26.
    Signori F et al (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94(1):74–82CrossRefGoogle Scholar
  27. 27.
    Song J et al (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond B Biol Sci 364(1526):2127–2139PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Vink ET et al (2007) Original research: the eco-profiles for current and near-future NatureWorks® polylactide (PLA) production. Ind Biotechnol 3(1):58–81CrossRefGoogle Scholar
  29. 29.
    Jamshidian M et al (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRefGoogle Scholar
  30. 30.
    Sin LT et al (2012) Polylactic acid: PLA biopolymer technology and applications. William Andrew, OxfordGoogle Scholar
  31. 31.
    Dusselier M et al (2015) Shape-selective zeolite catalysis for bioplastics production. Science 349(6243):78–80PubMedCrossRefGoogle Scholar
  32. 32.
    Achmad F et al (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151(1–3):342–350CrossRefGoogle Scholar
  33. 33.
    Gerrard J, Kandlikar M (2007) Is European end-of-life vehicle legislation living up to expectations? Assessing the impact of the ELV directive on ‘green’ innovation and vehicle recovery. J Clean Prod 15(1):17–27CrossRefGoogle Scholar
  34. 34.
    Madhavan Nampoothiri K et al (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501PubMedCrossRefGoogle Scholar
  35. 35.
    Nova Institute (2012) Growth in PLA bioplastics: a production capacity of over 800,000 tonnes expected by 2020. Bio-based News, 7 Aug 2012Google Scholar
  36. 36.
    Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  37. 37.
    Bhardwaj R, Mohanty AK (2007) Advances in the properties of polylactides based materials: a review. J Biobased Mater Bioenergy 1(2):191–209CrossRefGoogle Scholar
  38. 38.
    Canessa E et al (2013) Low-cost 3D printing for science, education and sustainable development. ICPT, Trieste.
  39. 39.
    Campbell T et al (2011) Could 3D printing change the world. Technologies, potential, and implications of additive manufacturing. Atlantic Council, WashingtonGoogle Scholar
  40. 40.
    Reeves P, Mendis D (2015) The current status and impact of 3D printing within the industrial sector: an analysis of six case studies. Intellectual Property Office, NewportGoogle Scholar
  41. 41.
    Staff S (2014) Revolutionary new electric car built and tested in one year with Objet1000 multi-material 3D production system. Stratasys. Accessed 14 Jan 2016
  42. 42.
    Bunkley N (2014) “World’s first” 3D printed car created and driven by Local Motors. Automotive News. Accessed 14 Jan 2016
  43. 43.
    Wypych G (2012) Handbook of plasticizers, 2nd edn. William Andrew, BostonGoogle Scholar
  44. 44.
    Ljungberg N, Wesslén B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6(3):1789–1796PubMedCrossRefGoogle Scholar
  45. 45.
    Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci B Polym Phys 49(15):1051–1083CrossRefGoogle Scholar
  46. 46.
    Ruellan A et al (2015) Plasticization of poly(lactide). In: Jiménez A, Peltzer M, Ruseckaite R (eds) Poly(lactic acid) science and technology: processing, properties, additives and applications. The Royal Society of Chemistry, London, pp. 124–170Google Scholar
  47. 47.
    Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39(7):1303–1310CrossRefGoogle Scholar
  48. 48.
    Murariu M et al (2008) Polylactide (PLA) designed with desired end-use properties: 1. PLA compositions with low molecular weight ester-like plasticizers and related performances. Polym Adv Technol 19(6):636–646CrossRefGoogle Scholar
  49. 49.
    Zhang H et al (2013) Thermal, mechanical, and rheological properties of polylactide/poly(1,2-propylene glycol adipate). Polym Eng Sci 53(1):112–118CrossRefGoogle Scholar
  50. 50.
    Ren Z et al (2006) Dynamic mechanical and thermal properties of plasticized poly(lactic acid). J Appl Polym Sci 101(3):1583–1590CrossRefGoogle Scholar
  51. 51.
    Wojciechowska P (2012) The effect of concentration and type of plasticizer on the mechanical properties of cellulose acetate butyrate organic-inorganic hybrids. In: Luqman M (ed) Recent advances in plasticizers. Intech, Rijeka, pp. 141–164Google Scholar
  52. 52.
    Suvorova AI et al (1993) Chemical structure of plasticizers, compatibility of components and phase equilibrium in plasticized cellulose diacetate. Makromol Chem Rapid 194(5):1315–1321CrossRefGoogle Scholar
  53. 53.
    Notta-Cuvier D et al (2015) Tailoring polylactide properties for automotive applications: effects of co-addition of halloysite nanotubes and selected plasticizer. Macromol Mater Eng. doi: 10.1002/mame.201500032
  54. 54.
    Kfoury G et al (2013) Recent advances in high performance poly (lactide): from “green” plasticization to super-tough materials via (reactive) compounding. Front Chem 1:1CrossRefGoogle Scholar
  55. 55.
    Sangeetha VH et al (2016) State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym Compos. doi: 10.1002/pc.23906 CrossRefGoogle Scholar
  56. 56.
    Odent J et al (2015) Highly toughened polylactide-based materials through melt-blending techniques. In: Biodegradable polyesters. Wiley-VCH, Weinheim, pp. 235–274Google Scholar
  57. 57.
    Anderson KS et al (2008) Toughening polylactide. Polym Rev 48(1):85–108CrossRefGoogle Scholar
  58. 58.
    Hongzhi L, Jinwen Z (2012) Toughening Modification of Poly(lactic acid) via melt blending. In: Biobased monomers, polymers, and material. ACS Symposium Series, vol 1105, pp 27–46Google Scholar
  59. 59.
    Detyothin S et al (2010) Poly(lactic acid) blends. In: Poly(lactic acid). Wiley, Hoboken, pp. 227–271CrossRefGoogle Scholar
  60. 60.
    Perkins WG (1999) Polymer toughness and impact resistance. Polym Eng Sci 39(12):2445–2460CrossRefGoogle Scholar
  61. 61.
    Liu Z-W et al (2014) Mechanical and thermal properties of thermoplastic polyurethane-toughened polylactide-based nanocomposites. Polym Compos 35(9):1744–1757CrossRefGoogle Scholar
  62. 62.
    NatureWorks (2007) Technology focus report: toughened PLA. NatureWorks, MinnetonkaGoogle Scholar
  63. 63.
    Taib RM et al (2012) Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier. J Appl Polym Sci 123(5):2715–2725CrossRefGoogle Scholar
  64. 64.
    Bouzouita A et al (2016) Design of highly tough poly(l-lactide)-based ternary blends for automotive applications. J Appl Polym Sci. doi: 10.1002/app.43402 CrossRefGoogle Scholar
  65. 65.
    Notta-Cuvier D et al (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36(0):1–9CrossRefGoogle Scholar
  66. 66.
    Zhang K et al (2014) Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl Mater Interface 6(15):12436–12448uGoogle Scholar
  67. 67.
    Zhang C et al (2013) Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater Des 45:198–205CrossRefGoogle Scholar
  68. 68.
    Pattamaprom C et al (2016) Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber. Iran Polym J 25(2):169–178CrossRefGoogle Scholar
  69. 69.
    Pongtanayut K et al (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34:888–897CrossRefGoogle Scholar
  70. 70.
    Desa M et al (2015) Mechanical and thermal properties of rubber toughened poly(lactic acid). In: Advanced materials research, vol 1125. Trans Tech Publications, pp 222–226Google Scholar
  71. 71.
    Sun Y, He C (2013) Biodegradable “core–shell” rubber nanoparticles and their toughening of poly(lactides). Macromolecules 46(24):9625–9633CrossRefGoogle Scholar
  72. 72.
    Odent J et al (2013) Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49(4):914–922CrossRefGoogle Scholar
  73. 73.
    Meyva Y, Kaynak C (2015) Toughening of polylactide by bio-based and petroleum-based thermoplastic elastomers. Int Polym Process 30(5):593–602CrossRefGoogle Scholar
  74. 74.
    Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly(ether) urethane elastomer. Macromol Biosci 7(7):921–928PubMedCrossRefGoogle Scholar
  75. 75.
    Todo M, Takayama T (2014) Fracture mechanisms of biodegradable PLA and PLA/PCL blends. In: Pignatello R (ed) Biomaterials – physics and chemistry. InTech, Rijeka, pp 375–394Google Scholar
  76. 76.
    Todo M, Takayama T (2007) Toughening of bioabsorbable polymer blend by microstructural modification. In: Watanabe M, Okuno O, Sasaki K, Takahashi N, Suzuki O, Takada H (eds) Proceedings of the 2nd international symposium for Interface oral health science, Sendai, Japan, 18–19 February, 2007. Springer Japan, Tokyo, pp. 95–104CrossRefGoogle Scholar
  77. 77.
    Turng L-S, Srithep Y (2014) Annealing conditions for injection molded poly (lactic acid). Society of Plastics Engineers (SPE). doi: 10.2417/spepro.005392.
  78. 78.
    Grijpma DW et al (2002) Improvement of the mechanical properties of poly(D,L-lactide) by orientation. Polym Int 51(10):845–851CrossRefGoogle Scholar
  79. 79.
    Carrasco F et al (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95(2):116–125CrossRefGoogle Scholar
  80. 80.
    Nascimento L et al (2010) Effect of the recycling and annealing on the mechanical and fracture properties of poly(lactic acid). J Polym Environ 18(4):654–660CrossRefGoogle Scholar
  81. 81.
    Gámez-Pérez J et al (2011) Fracture behavior of quenched poly (lactic acid). Express Polym Lett 5(1):82–91CrossRefGoogle Scholar
  82. 82.
    Yang G et al (2012) Toughening of poly (L-lactic acid) by annealing: the effect of crystal morphologies and modifications. J Macromol Sci B 51(1):184–196CrossRefGoogle Scholar
  83. 83.
    Perego G et al (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43CrossRefGoogle Scholar
  84. 84.
    Cocca M et al (2011) Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur Polym J 47(5):1073–1080CrossRefGoogle Scholar
  85. 85.
    Edenhofer B et al (2006) The flexible heat treatment of automotive components in a novel type of pusher furnace. La Metallurgia Italiana (2):39–45.
  86. 86.
    Funatani K (2004) Heat treatment of automotive components: current status and future trends. Trans Indian Inst Metals 57(4):381–396Google Scholar
  87. 87.
    Johnson RW et al (2004) The changing automotive environment: high-temperature electronics. IEEE Trans Electron Packag Manuf 27(3):164–176CrossRefGoogle Scholar
  88. 88.
    ASTM (2016) ASTM standard test method for deflection temperature of plastics under flexural load in the edgewise position. ASTM.
  89. 89.
    Huda MS et al (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102(5):4856–4869CrossRefGoogle Scholar
  90. 90.
    Shih Y-F, Huang C-C (2011) Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. J Polym Res 18(6):2335–2340CrossRefGoogle Scholar
  91. 91.
    Lee B-H et al (2009) Bio-composites of kenaf fibers in polylactide: role of improved interfacial adhesion in the carding process. Compos Sci Technol 69(15–16):2573–2579CrossRefGoogle Scholar
  92. 92.
    Shi QF et al (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123(5):2828–2836CrossRefGoogle Scholar
  93. 93.
    Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280CrossRefGoogle Scholar
  94. 94.
    Chanda M, Roy SK (2008) Industrial polymers, specialty polymers, and their applications, vol 74. CRC, Boca RatonGoogle Scholar
  95. 95.
    Coelho MC et al (2012) Nanotechnology in automotive industry: research strategy and trends for the future—small objects, big impacts. J Nanosci Nanotechnol 12(8):6621–6630PubMedCrossRefGoogle Scholar
  96. 96.
    Mai Y-W, Yu Z-Z (2006) Polymer nanocomposites. Woodhead, CambridgeCrossRefGoogle Scholar
  97. 97.
    Huang J-W et al (2009) Polylactide/nano and microscale silica composite films. I. Preparation and characterization. J Appl Polym Sci 112(3):1688–1694CrossRefGoogle Scholar
  98. 98.
    Frone AN et al (2011) Cellulose fiber-reinforced polylactic acid. Polym Compos 32(6):976–985CrossRefGoogle Scholar
  99. 99.
    Li ZQ et al (2010) Preparation and characterization of bacterial cellulose/polylactide nanocomposites. Polym-Plast Technol Eng 49(2):141–146CrossRefGoogle Scholar
  100. 100.
    Shameli K et al (2010) Silver/poly(lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. Int J Nanomedicine 5:573–579PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Xu X et al (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42(9):2081–2087CrossRefGoogle Scholar
  102. 102.
    González A et al (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97(3):248–256CrossRefGoogle Scholar
  103. 103.
    Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  104. 104.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63CrossRefGoogle Scholar
  105. 105.
    Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  106. 106.
    Kurauchi T et al (1991) Nylon 6-clay hybrid-synthesis, properties and application to automotive timing belt cover. SAE Technical Paper 910584. doi: 10.4271/910584
  107. 107.
    Paul M-A et al (2003) Exfoliated polylactide/clay nanocomposites by In-situ coordination–insertion polymerization. Macromol Rapid Commun 24(9):561–566CrossRefGoogle Scholar
  108. 108.
    Khankrua R et al (2013) Thermal and mechanical properties of biodegradable polyester/silica nanocomposites. Energy Procedia 34:705–713109CrossRefGoogle Scholar
  109. 109.
    Murariu M et al (2010) New trends in polylactide (PLA)-based materials: “green” PLA–calcium sulfate (nano)composites tailored with flame retardant properties. Polym Degrad Stab 95(3):374–381CrossRefGoogle Scholar
  110. 110.
    Sinha Ray S et al (2003) New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44(3):857–866CrossRefGoogle Scholar
  111. 111.
    Pilla S et al (2010) Microcellular processing of polylactide–hyperbranched polyester–nanoclay composites. J Mater Sci 45(10):2732–2746CrossRefGoogle Scholar
  112. 112.
    Ameli A et al (2014) Development of high void fraction polylactide composite foams using injection molding: mechanical and thermal insulation properties. Compos Sci Technol 90:88–95CrossRefGoogle Scholar
  113. 113.
    Pilla S et al (2007) Solid and microcellular polylactide-carbon nanotube nanocomposites. Int Polym Process 22(5):418–428CrossRefGoogle Scholar
  114. 114.
    Kramschuster A et al (2007) Injection molded solid and microcellular polylactide compounded with recycled paper shopping bag fibers. Int Polym Process 22(5):436–445CrossRefGoogle Scholar
  115. 115.
    Seo J-H et al (2012) Combined effects of chemical and microcellular foaming on foaming characteristics of PLA (poly lactic acid) in injection molding process. Polym-Plast Technol Eng 51(5):455–460CrossRefGoogle Scholar
  116. 116.
    Harris AM, Lee EC (2006) Injection molded polylactide (PLA) composites for automotive applications. SPE ACCE Paper Draft 62906Google Scholar
  117. 117.
    Najafi Chaloupli N (2015) Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications. Doctoral dissertation, École Polytechnique de MontréalGoogle Scholar
  118. 118.
    NatureWorks (2007) Technology focus report: blends of PLA with other thermoplastics. NatureWorks, MinnetonkaGoogle Scholar
  119. 119.
    Guo X et al (2015) Poly(lactic acid)/polyoxymethylene blends: morphology, crystallization, rheology, and thermal mechanical properties. Polymer 69:103–109CrossRefGoogle Scholar
  120. 120.
    Hashima K et al (2010) Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer 51(17):3934–3939CrossRefGoogle Scholar
  121. 121.
    Wang Y et al (2012) Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: influence of compatibilizer type. J Appl Polym Sci 125(S2):E402–E412CrossRefGoogle Scholar
  122. 122.
    Lin L et al (2015) Improving the impact property and heat-resistance of PLA/PC blends through coupling molecular chains at the interface. Polym Adv Technol 26(10):1247–1258CrossRefGoogle Scholar
  123. 123.
    Lin L et al (2015) Super toughened and high heat-resistant poly(lactic acid) (PLA)-based blends by enhancing interfacial bonding and PLA phase crystallization. Ind Eng Chem Res 54(21):5643–5655CrossRefGoogle Scholar
  124. 124.
    Srithep Y et al (2014) Processing and characterization of poly(lactic acid) blended with polycarbonate and chain extender. J Polym Eng 34:665–672Google Scholar
  125. 125.
    Liu J (2014) Heat resistant, flame retardant polylactic acid compounds. Patent WO2014113453 A1Google Scholar
  126. 126.
    Eguiburu JL et al (1998) Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate): a miscibility study. Polymer 39(26):6891–6897CrossRefGoogle Scholar
  127. 127.
    Li S-H, Woo EM (2008) Immiscibility–miscibility phase transitions in blends of poly(L-lactide) with poly(methyl methacrylate). Polym Int 57(11):1242–1251CrossRefGoogle Scholar
  128. 128.
    Samuel C et al (2013) PLLA/PMMA blends: a shear-induced miscibility with tunable morphologies and properties? Polymer 54(15):3931–3939CrossRefGoogle Scholar
  129. 129.
    Zhang G et al (2003) Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J Polym Sci B Polym Phys 41(1):23–30CrossRefGoogle Scholar
  130. 130.
    Tsuji H (2007) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 7(12):1299–1299CrossRefGoogle Scholar
  131. 131.
    Ikada Y et al (1987) Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 20(4):904–906CrossRefGoogle Scholar
  132. 132.
    Tsuji H et al (1991) Stereocomplex formation between enantiomeric poly(lactic acid)s. 4. Differential scanning calorimetric studies on precipitates from mixed solutions of poly(D-lactic acid) and poly(L-lactic acid). Macromolecules 24(20):5657–5662CrossRefGoogle Scholar
  133. 133.
    Torres L et al (2016) Effect of multi-branched PDLA additives on the mechanical and thermomechanical properties of blends with PLLA. J Appl Polym Sci 133(1). doi: 10.1002/app.42858
  134. 134.
    Zou J et al (2012) Effects of poly (D-lactide acid) on the properties of crystallization and thermal behavior of poly (L-lactide acid). Adv Info Sci Service Sci 4(10):382Google Scholar
  135. 135.
    Oyama HT, Abe S (2015) Stereocomplex poly(lactic acid) alloys with superb heat resistance and toughness. ACS Sustain Chem Eng 3(12):3245–3252CrossRefGoogle Scholar
  136. 136.
    Sun B et al (2016) Enhanced toughness and strength of poly (d-lactide) by stereocomplexation with 5-arm poly (l-lactide). J Appl Polym Sci 133(1). doi: 10.1002/app.42857
  137. 137.
    Nam B-U, Lee B-S (2012) Toughening of PLA stereocomplex by impact modifiers. J Korea Acad Industr Coop Soc 13(2):919–925CrossRefGoogle Scholar
  138. 138.
    Corbion Purac (2015) high heat PLA: unlocking bioplastic potential for durable applications. Accessed Jan 2016
  139. 139.
    Min BH (2003) A study on quality monitoring of injection-molded parts. J Mater Process Technol 136(1–3):1–6CrossRefGoogle Scholar
  140. 140.
    Spina R (2004) Injection moulding of automotive components: comparison between hot runner systems for a case study. J Mater Process Technol 155–156:1497–1504CrossRefGoogle Scholar
  141. 141.
    Lim LT et al (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852CrossRefGoogle Scholar
  142. 142.
    Mazumder SK (ed) (2002) Composites manufacturing, materials, product and process engineering. CRC Taylor & Francis, London. ISBN 0-8493-0585-3Google Scholar
  143. 143.
    Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255CrossRefGoogle Scholar
  144. 144.
    Li M et al (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50(12):2298–2305CrossRefGoogle Scholar
  145. 145.
    Urayama H et al (2003) Controlled crystal nucleation in the melt-crystallization of poly(l-lactide) and poly(l-lactide)/poly(d-lactide) stereocomplex. Polymer 44(19):5635–5641CrossRefGoogle Scholar
  146. 146.
    Petchwattana N et al (2014) Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly (lactic acid). Polym Bull 71(8):1947–1959CrossRefGoogle Scholar
  147. 147.
    Zhou J et al (2013) Synthesis and characterization of triblock copolymer PLA-b-PBT-b-PLA and its effect on the crystallization of PLA. RSC Adv 3(40):18464–18473CrossRefGoogle Scholar
  148. 148.
    Shi X et al (2015) Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly (lactic acid). Molecules 20(1):1579–1593PubMedCrossRefGoogle Scholar
  149. 149.
    Kolstad JJ (1996) Crystallization kinetics of poly(L-lactide-co-meso-lactide). J Appl Polym Sci 62(7):1079–1091CrossRefGoogle Scholar
  150. 150.
    Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci B Polym Phys 39(3):300–313CrossRefGoogle Scholar
  151. 151.
    NEC (2006) NEC & UNITIKA Realize bioplastic reinforced with Kenaf fiber for mobile phone use.
  152. 152.
    Fujitsu Limited, Fujitsu Laboratories Ltd.,Toray Industries, Inc. (2005) Fujitsu and Toray develop world’s first environmentally-friendly large-size plastic housing for notebook PCs [Press release]. Retrieved from
  153. 153.
    Harris AM, Lee EC (2010) Heat and humidity performance of injection molded PLA for durable applications. J Appl Polym Sci 115(3):1380–1389CrossRefGoogle Scholar
  154. 154.
    Finniss A (2014) Polylactic acid-based polymer blends for durable applications. West Virginia University, MorgantownGoogle Scholar
  155. 155.
    Harris AM, Lee EC (2013) Durability of polylactide-based polymer blends for injection-molded applications. J Appl Polym Sci 128(3):2136–2144Google Scholar
  156. 156.
    Jiménez A et al (2014) Poly (lactic acid) science and technology: processing, properties, additives and applications, vol 12. Royal Society of Chemistry, LondonCrossRefGoogle Scholar
  157. 157.
    Toyota Motor Corporation (2000) Utilising plant-derived materials in automotive interior parts. Accessed 19 Feb 2016
  158. 158.
    Toyota Motor Corporation (2008) Toyota to increase ‘ecological plastic’ in vehicle interiors. Accessed 21 Feb 2016
  159. 159.
    Thielen M (2010) Hyundai Blue-Will concept to feature PLA and PA 11. Bioplastics Magazine, Jan/Feb 2010Google Scholar
  160. 160.
    Teijin Ltd. (2007) Highly heat-resistant bioplastic. Accessed 22 Feb 2016
  161. 161.
    Motors M (2006) Mitsubishi Motors develops plant-based green plastic floor mat. Accessed 20 Feb 016
  162. 162.
    Corbion Purac (2013) PLA bioplastics: a driving force in automotive. Corbion Purac. Accessed 05 Jan 2016
  163. 163.
    Kitamura H (2007) Teijin Launches BIOFRONT heat-resistant bioplastic - 100% BIOFRONT car seat fabrics developed with MazdaGoogle Scholar
  164. 164.
    Ramaswamy S, Aslan B, Gries T, Urbanus M (2015) Biobased thermoplastic composites for automotive interiors. Bioplastics Magazine, Jan/Feb 2015Google Scholar
  165. 165.
    Aslan B et al (2012) Bio-composites: processing of thermoplastic biopolymers and industrial natural fibres from Staple fibre blends up to fabric for composite applications. J Textile Eng 19(85)Google Scholar
  166. 166.
    Ichhaporia PK (2008) Composites from natural fibers. Dissertation, North Carolina State University, RaleighGoogle Scholar
  167. 167.
    Ampro Verdù Solis A (2015) New biobased fibres for automotive interior applications. Bioplastics Magazine, Sept/Oct 2015Google Scholar
  168. 168.
    Wambua P et al (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63(9):1259–1264CrossRefGoogle Scholar
  169. 169.
    Koronis G et al (2013) Green composites: a review of adequate materials for automotive applications. Compos Part B 44(1):120–127CrossRefGoogle Scholar
  170. 170.
    Edana (2013) Nonwovens in automotive applications. Edana, Brussels.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP)University of Mons (UMONS)MonsBelgium
  2. 2.Industrial and Human Automatic Control and Mechanical Engineering Laboratory (LAMIH), UMR CNRS 8201University of Valenciennes and Hainaut-CambrésisValenciennes, Cedex 9France

Personalised recommendations