Skip to main content

Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 277))

Abstract

We report on the banded polymer morphology of several semicrystalline commodity polymers such as high-density poly(ethylene), poly(trimethylene terephthalate), poly(vinylidene fluoride), and poly(3-hydroxybutyrate). The internal structural organization and 3D shape of the constitutive crystalline lamellae have been topics of interest in polymer physics for the last 50 years. However, conventional morphological characterization techniques (electron and/or optical microscopy) can be misleading in such analyses and have resulted in wrong interpretations of the twisted lamella growth mechanisms. We present nanofocus synchrotron X-ray scattering experiments and describe the analysis used to interpret the arrays of nanodiffractograms acquired along the spherulitic radii. It is shown that the crystal twist occurring during radial outward growth is regular and uniform. The 3D lamella shape is in most cases similar to the classic helicoid, whereas in other cases, such as the lamellae of poly(propylene adipate), it corresponds to a spiral structure. Access to comprehensive microstructural information about bulk samples makes it possible to better understand the twisted growth mechanisms and check the premises of the Keith and Padden model linking the direction of chain tilt and lamella twist hand. It is demonstrated that this model cannot explain the banding behavior in poly(trimethylene terephthalate) and therefore needs reconsideration. In-depth analysis of the microstructure allows more general conclusions to be drawn regarding correlation of chiralities pertinent to different spatial scales, ranging from that of the constitutive monomer to the supramolecular level of twisted lamellae.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bassett DC (2003) Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys 42:227–256

    Article  Google Scholar 

  2. Talbot WHF (1837) On the Optical Phenomena of Certain Crystals. Philos Trans R Soc London 127:25

    Google Scholar 

  3. Knoll PM, Kelker H (2010) Otto Lehmann: Researcher of the liquid crystals. Books on Demand GmbH, Norderstedt

    Google Scholar 

  4. ShtukenbergAG PYO, GunnE KB (2012) Spherulites. Chem Rev 112:1805–1838

    Article  Google Scholar 

  5. Keller A (1958) Morphology of crystalline polymers. In: Turnbull D, Doremus RH, Roberts BW (eds) Growth and perfection of crystals. Chichester, Wiley Interscience, pp 499–528

    Google Scholar 

  6. Keller A (1959) The morphology of crystalline polymers. Makromol Chem 34:1–28

    Article  CAS  Google Scholar 

  7. Fujiwara Y (1960) Superstructure of melt-crystallized polyethylene (1) screwlike orientation of the unit cell in polyethylene spherulites with periodic extinction rings. J Appl Polym Sci 4:10–15

    Article  CAS  Google Scholar 

  8. Seiler DA (1998) Modern fluoropolymers, 2nd edn. Wiley, Chichester

    Google Scholar 

  9. Lovinger AJ (1981) Developments in crystalline polymers. Applied Science, London

    Google Scholar 

  10. Gianotti G, Capizzi A, Zamboni V (1973) New aspects of polymorphism in poly(vinylidene fluoride). Relations between morphology and reaction kinetics. Chim Ind 55:501

    Google Scholar 

  11. Prest Jr WM, Luca DJ (1975) The morphology and thermal response of high-temperature- crystallized poly(vinylidene fluoride). J Appl Phys 46:4136–4143

    Google Scholar 

  12. Keith HD, Lovinger AJ (1979) Electron diffraction investigation of a high-temperature form of poly (vinylidene fluoride). Macromolecules 12:919–924

    Article  Google Scholar 

  13. Garcia-Ruiz JM, Melero E, Hyde S (2009) Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323:362–365

    Google Scholar 

  14. Bassett DC, Hodge AM (1978) On lamellar organization in certain polyethylene spherulites. Proc R Soc Lond A 359:121–132

    Google Scholar 

  15. Bassett DC, Hodge AM (1981) On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proc R Soc Lond A 377:61–71

    Google Scholar 

  16. Bassett DC, Hodge AM (1978) On lamellar organization in banded spherulites of polyethylene. Polymer 19:469–472

    Article  CAS  Google Scholar 

  17. Toda A, Arita T, Hikosaka M (2001) Three-dimensional morphology of PVDF single crystals forming banded spherulites. Polymer 42:2223–2233

    Article  CAS  Google Scholar 

  18. Toda A, Keller A (1993) Growth of polyethylene single crystals from the melt: morphology. Colloid Polym Sci 271:328–342

    Article  CAS  Google Scholar 

  19. Keith HD, Padden FJ (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25:28–42

    Article  CAS  Google Scholar 

  20. Keith HD (2001) Banding in spherulites: two recurring topics. Polymer 42:9987–9993

    Article  CAS  Google Scholar 

  21. Cheng SZD, Lotz B (2005) A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46:577–610

    Article  Google Scholar 

  22. Gazzano M, Focarete ML, Riekel C, Scandola M (2004) Structural study of poly(L-lactic acid) spherulites. Biomacromolecules 5:553–558

    Article  CAS  Google Scholar 

  23. Gazzano M, Focarete ML, Riekel C, Scandola M (2000) Bacterial poly(3-hydroxybutyrate): an optical microscopy and microfocus X-ray diffraction study. Biomacromolecules 1:604–608

    Google Scholar 

  24. Focarete ML, Gazzano M, Ripamonti A, Riekel C, Scandola M (2001) Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction. Macromol Chem Phys 202:1405–1409

    Article  Google Scholar 

  25. Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A (2010) Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly (butene-1). Polymer 51:1837–1844

    Article  CAS  Google Scholar 

  26. Rosenthal M, Bar G, Burghammer M, Ivanov DA (2011) On the nature of chirality imparted to achiral polymers by the crystallization process. Angew Chem Int Ed Engl 123:9043–9047

    Google Scholar 

  27. Rosenthal M, Anokhin DV, Luchnikov VA, Davies RJ, Riekel C, Burghammer M, Bar G, Ivanov DA (2010) Microstructure of banded polymer spherulites: studies with micro-focus X-ray diffraction. IOP Conf Ser:Mater Sci Eng 14:012014

    Google Scholar 

  28. Rosenthal M, Burghammer M, Portale G, Bar G, Samulski ET, Ivanov DA (2012) Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules 45:7454–7460

    Article  CAS  Google Scholar 

  29. Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA (2014) Switching chirality of hybrid left−right crystalline helicoids built of achiral polymer chains: when right to left becomes left to right. Macromolecules 47:8295–8304

    Google Scholar 

  30. Rosenthal M, Hernandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, Burghammer M, Ivanov DA (2013) Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure. Macromol Rapid Commun 34:1815–1819

    Article  CAS  Google Scholar 

  31. Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2004) Co-existing handednesses of lamella twisting in one spherulite observed with scanning microbeam wide-angle X-ray scattering. Polymer 45:8299–8302

    Google Scholar 

  32. .Luchnikov VA, Ivanov DA (2009) Micro-beam X-ray diffraction from twisted lamellar crystals: theory and computer simulation. J Appl Crystallogr 42:673–680

    Google Scholar 

  33. Luchnikov VA, Ivanov DA (2010) Theory of geometrical broadening of diffraction peaks from twisted lamellar crystals for interpretation of X-ray micro-beam and selected-area electron diffraction experiments. J Appl Crystallogr 43:578–586

    Google Scholar 

  34. Luchnikov VA, Anokhin DV, Bar G, Cheng SZD, Wang CL, Ivanov DA (2011) Theory of X-ray reflection broadening for textures with double-axis averaging: from semicrystalline polymers exhibiting twisted lamellar growth to discotic liquid crystals. J Appl Crystallogr 44:540–544

    Article  CAS  Google Scholar 

  35. Polanyi M (1921) The X-ray fiber diagram. Z Phys 7:149–180

    Google Scholar 

  36. Geil PH (1963) Polymer single crystals. Interscience (Wiley), New York

    Google Scholar 

  37. Magonov SN, Yerina NA, Ungar G, Reneker DH, Ivanov DA (2003) Chain unfolding in single crystals of ultra long alkane C390H782 and polyethylene: an atomic force microscopy study. Macromolecules 36:5637–5649

    Google Scholar 

  38. Hocquet S, Dosière M, Thierry A, Lotz B, Koch MHJ, Dubreuil N, Ivanov DA (2003) Morphology and melting of truncated single crystals of linear polyethylene. Macromolecules 36:8376–8384

    Google Scholar 

  39. Dubreuil N, Hocquet S, Dosière M, Ivanov DA (2004) Melting of isochronously decorated single crystal of linear polyethylene, as monitored with atomic force microscopy. Macromolecules 37:1–5

    Google Scholar 

  40. Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) An atomic force microscopy observation of PVDF banded spherulites. J Macromol Sci Part B 42:753–760

    Google Scholar 

  41. Gunn E, Sours R, Benedict JB, Kaminsky W, Kahr B (2006) Mesoscale chiroptics of rhythmic precipitates. J Am Chem Soc 128:14234–14235

    Google Scholar 

  42. Gedde UW (1995) Polymer physics. Chapman & Hall, London

    Google Scholar 

  43. Soccio M, Lotti N, Finelli L, Gazzano M, Munari A (2007) Aliphatic poly(propylene dicarboxylate)s: effect of chain length on thermal properties and crystallization kinetics. Polymer 48:3125–3136

    Article  CAS  Google Scholar 

  44. Keith HD, Padden FJ Jr (1959) The optical behavior of spherulites in crystalline polymers. Part I Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Polym Sci 39:101–122

    Article  CAS  Google Scholar 

  45. Chuah HH (2001) Crystallization kinetics of poly(trimethylene terephthalate). Polym Eng Sci 41:308–313

    Article  CAS  Google Scholar 

  46. Ward IM, Wilding MA, Brody H (1976) The mechanical properties and structure of poly(m-methylene terephthalate) fibers. J Polym Sci Polym Phys Ed 14:263–274

    Article  CAS  Google Scholar 

  47. Poulin-Dandurand S, Pérez S, Revol JF, Brisse F (1979)The crystal structure of poly(trimethylene terephthalate) by X-ray and electron diffraction. Polymer 20:419–426

    Google Scholar 

  48. Wang B, Li CY, Hanzlicek J, Cheng SZD, Geil PH, Grebowicz J, Ho RM (2001) Poly(trimethyleneteraphthalate) crystal structure and morphology in different length scales. Polymer 42:7171–7180

    Article  CAS  Google Scholar 

  49. Yang J, Sidoti G, Liu J, Geil PH, Li CY, Cheng SZD (2000) Morphology and crystal structure of CTFMP and bulk polymerized poly(trimethylene terephthalate). Polymer 42:7181–7195

    Article  Google Scholar 

  50. Hall IH (1984) Structure of crystalline polymers. Elsevier, London, p 39

    Google Scholar 

  51. Hong PD, Chung WT, Hsu CF (2002) Crystallization kinetics and morphology of poly (trimethylene terephthalate). Polymer 43:3335–33543

    Article  CAS  Google Scholar 

  52. Ho RM, Ke KZ, Chen M (2000) Crystal structure and banded spherulite of poly(trimethylene terephthalate). Macromolecules 33:7529–7537

    Article  CAS  Google Scholar 

  53. Chuang W-T, Hong P-D, Chuah HH (2004) Effects of crystallization behavior on morphological change in poly(trimethylene terephthalate) spherulites. Polymer 45:2413–2425

    Article  CAS  Google Scholar 

  54. Wu PL, Woo EM (2003) Correlation between melting behavior and ringed spherulites in poly(trimethylene terephthalate). J Polym Sci Part B: Polym Phys 41:80–93

    Article  CAS  Google Scholar 

  55. Sornette D (2006) Critical phenomena in natural science. Springer, New York

    Google Scholar 

  56. Auyang SY (1998) Foundations of complex system theories. Cambridge University Press, New York

    Book  Google Scholar 

  57. Wu PL, Woo EM (2002) Linear versus nonlinear determinations of equilibrium melting temperatures of poly(trimethylene terephthalate) and miscible blend with poly(ether imide) exhibiting multiple melting peaks. J Polym Sci Part B: Polym Phys 40:1571–1581

    Article  CAS  Google Scholar 

  58. Yun HJ, Kuboyama K, Chiba T, Ougizawa T (2006) Crystallization temperature dependence of interference color and morphology in poly(trimethylene terephthalate) spherulite. Polymer 47:4831–4838

    Google Scholar 

  59. Yun JH, Kuboyama K, Ougizawa T (2006) High birefringence of poly(trimethylene terephthalate) spherulite. Polymer 47:1715–1721

    Article  CAS  Google Scholar 

  60. Chen YF, Woo EM, Wu PL (2007) Alternating-layered spherulites in thin-film poly(trimethylene terephthalate) by stepwise crystallization schemes. Mater Lett 61:4911–4915

    Article  CAS  Google Scholar 

  61. Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) Branching and higher order structure in banded polyethylene spherulites. Macromolecules 41:2484–2493

    Article  CAS  Google Scholar 

  62. Toda A, Taguchi K, Kajioka H (2008) Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules 41:7505–7512

    Article  CAS  Google Scholar 

  63. Eshelby JD (1953) Screw dislocations in thin rods. J Appl Phys 24:176–179

    Article  Google Scholar 

  64. Duke RW, DuPre DB, Samulski ET (1977) Temperature dependence of orientational order in a polypeptide liquid crystal. J Chem Phys 66:2748–2749

    Google Scholar 

  65. Ivanov DA, Bar G, Dosière M, Koch MHJ (2008) A novel view on crystallization and melting of semirigid chain polymers: The case of poly(trimethylene terephthalate). Macromolecules 41:9224–9231

    Google Scholar 

  66. Ivanov DA, Hocquet S, Dosière M, Koch M (2004) Exploring the melting of a semirigid chain polymer with synchrotron time- and temperature-resolved small-angle X-ray scattering. Eur Phys J E 13:363–378

    Google Scholar 

  67. Ivanov DA, Legras R, Jonas AM (1999) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Interdependence between the evolution of amorphous and crystalline regions during isothermal cold-crystallization. Macromolecules 32:1582–1592

    Google Scholar 

  68. Ivanov DA, Jonas AM, Legras R (2000) The crystallization of poly(aryl-ether-ether-ketone) (PEEK). Reorganization processes during gradual reheating of cold-crystallized samples. Polymer 41:3719–3727

    Google Scholar 

  69. Ivanov D, Pop T, Yoon D, Jonas A (2002) Direct space detection of order-disorder interphases at crystalline-amorphous boundaries in a semicrystalline polymer. Macromolecules 35:9813–9818

    Google Scholar 

  70. Kumar SK, Yoon DY (1989) Lattice model for interphases in binary semicrystalline/amorphous polymer blends. Macromolecules 22:4098–4101

    Article  CAS  Google Scholar 

  71. Kumar SK, Yoon DY (1991) A lattice model for interphases in binary semicrystalline/amorphous polymer blends. 2. Effects of tight fold energy. Macromolecules 24:5414–5420

    Article  CAS  Google Scholar 

  72. Amalou Z (2006) Contribution à l'étude de la structure semi-cristalline des polymères à chaînes semi-rigides. Thesis. Université Libre de Bruxelles, Brussels, Belgium

    Google Scholar 

  73. Rosenthal M, Doblas D, Hernandez JJ, Odarchenko YaI, Burghammer M, Di Cola E, Spitzer D, Antipov AE, Aldoshin LS, Ivanov DA (2014) High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry. J Synchrotron Radiat 21:223–228

    Google Scholar 

  74. Riekel C, Di Cola E, Burghammer M, Reynolds M, Rosenthal M, Doblas D, Ivanov DA (2015) Thermal transformations of self-assembled gold glyconanoparticles probed by combined nanocalorimetry and X-ray nanobeam scattering. Langmuir 31:529–534

    Google Scholar 

  75. Melnikov AP, Rosenthal M, Rodygin AI, Doblas D, Anokhin DV, Burghammer M, Ivanov DA (2016) Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nano-focus X-ray scattering and nanocalorimetry. Eur Polym J 81:598–606. DOI: 10.1016/j.eurpolymj.2015.12.031

    Google Scholar 

  76. Rosenthal M, Melnikov AP, Rychkov AA, Doblas D, Anokhin DV, Burghammer M, and Ivanov DA (2016) Design of an in-situ setup combining nanocalorimetry and nano- or micro-focus X-ray scattering to address fast structure formation processes. In: Schick C, Mathot V (eds) Fast scanning calorimetry. Springer, Switzerland, pp 299–326

    Google Scholar 

  77. Melnikov AP, Rosenthal M, Burghammer M, Anokhin DV, Ivanov DA (2016) Study of melting processes in semicrystalline polymers using a combination of ultrafast chip calorimetry and nanofocus synchrotron X-ray diffraction. Nanotechnol Russ 11:305–311. doi:10.1134/S1995078016030113

    Google Scholar 

  78. Ivanov DA, Jonas AM (1998) Isothermal growth and reorganization upon heating of a single poly(aryl-ether-ether-ketone) (PEEK) spherulite, as imaged by atomic force microscopy. Macromolecules 31:4546–4550

    Google Scholar 

  79. Ivanov DA, Nysten B, Jonas AM (1999) Atomic force microscopy imaging of single polymer spherulites during crystallization: application to a semi-crystalline blend. Polymer 40:5899–5905

    Google Scholar 

  80. Ivanov DA, Amalou Z, Magonov SN (2001) Real-time evolution of the lamellar organization of poly(ethylene terephthalate) during crystallization from the melt: high-temperature atomic force microscopy study. Macromolecules 34:8944–8952

    Google Scholar 

  81. Basire C, Ivanov DA (2000) Evolution of the lamellar structure during crystallization of a semicrystalline-amorphous polymer blend: time-resolved hot-stage SPM study. Phys Rev Lett 85:5587–5590

    Google Scholar 

  82. Saracovan J, Keith HD, Manley RSJ, Brown GR (1999) Banding in spherulites of polymers having uncompensated main-chain chirality. Macromolecules 32:8918

    Article  CAS  Google Scholar 

  83. Ye HM, Xu J, Guo BH, Iwata T (2009) Left- or right-handed lamellar twists in poly[(R)-3-hydroxyvalerate] banded spherulite: dependence on growth axis. Macromolecules 42:694–701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Education and Science of the Russian Federation (contract № 14.604.21.0079 (RFMEFI60414X0079) of 30 June 2014. The authors acknowledge Manfred Burghammer from the ID13 beamline of the ESRF for excellent technical support and valuable discussions, and thank Bernard Lotz for donation of the Sclair sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri A. Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ivanov, D.A., Rosenthal, M. (2016). Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering. In: Auriemma, F., Alfonso, G., de Rosa, C. (eds) Polymer Crystallization II. Advances in Polymer Science, vol 277. Springer, Cham. https://doi.org/10.1007/12_2016_352

Download citation

Publish with us

Policies and ethics