Skip to main content

Hydrolysis and Biodegradation of Poly(lactic acid)

  • Chapter
  • First Online:
Synthesis, Structure and Properties of Poly(lactic acid)

Part of the book series: Advances in Polymer Science ((POLYMER,volume 279))

Abstract

This chapter reviews hydrolytic degradation and biodegradation of poly(lactic acid) (PLA). Hydrolytic degradation, which induces morphological and compositional changes, is considered the most important step in biodegradation. The main factors influencing hydrolytic degradation (temperature, pH, sample morphology, and molecular weight) are considered and analyzed. An overview of biodegradation under composting conditions is also given. The chapter also analyses the possibilities of modulating degradation and biodegradation rates according to the expected lifetime of objects made of PLA. This can be considered frontier research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

K BB :

Kinetic constant of the backbiting mechanism

K αD :

Kinetic constant of terminal hydrolysis

K βD :

Kinetic constant of backbone hydrolysis

K RH :

Kinetic constant of random hydrolysis

K W :

Kinetic constant of uncatalyzed hydrolysis

%C mat :

Percentage organic carbon content of the sample

C A :

Concentration of water

C A * :

Concentration of water in reference conditions

C A0 :

Initial concentration of water inside the sample

C C :

Concentration of carboxylic end groups

C E :

Concentration of ester groups

C E0 :

Initial concentration of ester groups

C H+ :

Concentration of positive ions

C n :

Concentration of chains having n monomeric units

C OH :

Concentration of negative ions

C ol :

Concentration of oligomers

D A :

Effective diffusivity of water inside the sample

D ol :

Effective diffusivity of the oligomers inside the sample

DP:

Average degree of polymerization

E C :

Constant in Arrhenius equation describing the effect of temperature on water sorption

E D :

Constant in Arrhenius equation describing the effect of temperature on water diffusivity

E R :

Constant in Arrhenius equation describing the effect of temperature on hydrolysis

gCO2 :

Grams of evolved carbon dioxide in the sample and the positive control

gCO2,b :

Grams of evolved carbon dioxide in the blank

g mat :

Mass of the sample in grams

j M :

Mass flux of the oligomers leaving the sample surface as a result of hydrolysis

K a :

Acid dissociation constant

K R :

Kinetic constant of hydrolysis from experimental data

K R :

Kinetic constant of hydrolysis

K t :

Kinetic constant of thermal degradation

M :

Molecular weight of the repeating unit

Ma:

Mass of amorphous phase inside the sample

Mc:

Mass of crystalline phase inside the sample

M n :

Number-average molecular weight

Mo:

Initial mass of the sample

Mt:

Total mass of the sample

M W :

Weight-average molecular weight

r m :

Mass of polymer metabolized by the microorganisms per unit time and per unit sample surface

R ol :

Number of oligomers produced per unit volume

R s :

Scissions of polymeric chains per unit volume

S :

Sample surface area

T g :

Glass transition temperature

T ref :

Reference temperature

Xc:

Absolute crystallinity degree

z :

Polydispersity

δ :

Characteristic dimension of the sample in the thickness direction

η :

Viscosity

ρ :

Density of the sample

References

  1. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Google Scholar 

  2. Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(alpha-hydroxy acids) in aqueous-media. 3. Influence of the morphology of poly(l-lactic acid). J Mater Sci Mater Med 1(4):198–206

    Article  CAS  Google Scholar 

  3. Hakkarainen M, Albertsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52(3):283–291

    Article  CAS  Google Scholar 

  4. Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93(8):1450–1459

    Article  CAS  Google Scholar 

  5. Pistner H, Gutwald R, Ordung R, Reuther J, Muhling J (1993) Poly(l-lactide) – a long-term degradation study in-vivo. 1. Biological results. Biomaterials 14(9):671–677

    Article  CAS  Google Scholar 

  6. Pistner H, Bendix DR, Muhling J, Reuther JF (1993) Poly(l-lactide) – a long-term degradation study in vivo. 3. Analytical characterization. Biomaterials 14(4):291–298

    Article  CAS  Google Scholar 

  7. Pistner H, Stallforth H, Gutwald R, Muhling J, Reuther J, Michel C (1994) Poly(l-lactide) – a long-term degradation study in-vivo. 2. Physicomechanical behavior of implants. Biomaterials 15(6):439–450

    Article  CAS  Google Scholar 

  8. Migliaresi C, Fambri L, Cohn D (1994) A study on the in-vitro degradation of poly(lactic acid). J Biomat Sci Polym E 5(6):591–606

    Article  CAS  Google Scholar 

  9. Pegoretti A, Fambri L, Migliaresi C (1997) In vitro degradation of poly(l-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 64(2):213–223

    Article  CAS  Google Scholar 

  10. Sodergard A, Selin JF, Nasman JH (1996) Hydrolytic degradation of peroxide modified poly(l-lactide). Polym Degrad Stab 51(3):351–359

    Article  CAS  Google Scholar 

  11. Duek EAR, Zavaglia CAC, Belangero WD (1999) In vitro study of poly(lactic acid) pin degradation. Polymer 40(23):6465–6473

    Article  CAS  Google Scholar 

  12. Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87(3):535–542

    Article  CAS  Google Scholar 

  13. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nano composites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  CAS  Google Scholar 

  14. Tsuji H, Tezuka Y (2005) Alkaline and enzymatic degradation of l-lactide copolymers, 1 – Amorphous-made films of l-lactide copolymers with d-lactide, glycolide, and epsilon-caprolactone. Macromol Biosci 5(2):135–148

    Article  CAS  Google Scholar 

  15. Gorrasi G, Pantani R (2013) Effect of polylactic acid grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98(5):1006–1014

    Article  CAS  Google Scholar 

  16. Tsuji H (2005) Polylactides. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4005

  17. Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16(4):305–311

    Article  CAS  Google Scholar 

  18. Tsuji H, Ikada Y (2000) Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polym Degrad Stab 67(1):179–189

    Article  CAS  Google Scholar 

  19. Jimenez A, Peltzer M, Ruseckaite R (eds) (2015) Poly(lactic acid) science and technology: processing, properties, additives and applications. RSC Polymer Chemistry Series. Royal Society of Chemistry, London

    Google Scholar 

  20. Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Pure A32(4):787–796

    Article  CAS  Google Scholar 

  21. Vert M (2005) Polyglycolide and copolyesters with lactide. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4006

  22. Mochizuki M (2005) Properties and application of aliphatic polyester products. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4001

  23. Itavaara M, Karjomaa S, Selin J (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885

    Article  CAS  Google Scholar 

  24. Carrasco F, Pages P, Gamez-Perez J, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95:116–125

    Article  CAS  Google Scholar 

  25. Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly (l-lactide) during extrusion. J Appl Polym Sci 79(12):2128–2135

    Article  CAS  Google Scholar 

  26. Yousfi M, Alix S, Lebeau M, Soulestin J, Lacrampe MF, Krawczak P (2014) Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: experimental procedures for a reliable polymer melt viscosity measurement. Polym Test 40(C):207–217

    Article  CAS  Google Scholar 

  27. Le Marec PE, Ferry L, Quantin J-C, Bénézet J-C, Bonfils F, Guilbert S, Bergeret A (2014) Influence of melt processing conditions on poly(lactic acid) degradation: molar mass distribution and crystallization. Polym Degrad Stab 110 IS – (C):353–363

    Google Scholar 

  28. De Santis F, Pantani R (2015) Melt compounding of poly (lactic acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res 22(12):1–9

    Article  CAS  Google Scholar 

  29. Haibach R (2007) Injection-molding degradation of biodegradable polylactide. In: Proceedings of annual technical conference – ANTEC. American Society of Mechanical Engineers (ASME), New York. pp 2043–2047

    Google Scholar 

  30. Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148–1159

    Article  CAS  Google Scholar 

  31. Ozdemir E, Hacaloglu J (2016) Thermal degradation of polylactide and its electrospun fiber. Fibers Polym 17(1):66–73

    Article  CAS  Google Scholar 

  32. Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab 76(1):53–59

    Article  CAS  Google Scholar 

  33. Sodergard A, Näsman JH (1994) Stabilization of poly (l-lactide) in the melt. Polym Degrad Stab 46(1):25–30

    Article  Google Scholar 

  34. Oliveira M, Santos E, Araújo A, Fechine GJM, Machado AV, Botelho G (2016) The role of shear and stabilizer on PLA degradation. Polym Test 51:109–116

    Article  CAS  Google Scholar 

  35. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914

    Article  CAS  Google Scholar 

  36. Andersson SR, Hakkarainen M, Inkinen S, Sodergard A, Albertsson AC (2010) Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11(4):1067–1073

    Article  CAS  Google Scholar 

  37. Andersson SR, Hakkarainen M, Albertsson AC (2010) Tuning the polylactide hydrolysis rate by plasticizer architecture and hydrophilicity without introducing new migrants. Biomacromolecules 11(12):3617–3623

    Article  CAS  Google Scholar 

  38. Anderson JM, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 64:72–82

    Article  Google Scholar 

  39. Metters AT, Bowman CN, Anseth KS (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B 104(30):7043–7049

    Article  CAS  Google Scholar 

  40. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251

    Article  CAS  Google Scholar 

  41. Vert M, Li S, Garreau H (1991) More about the degradation of La/Ga-derived matrices in aqueous-media. J Control Release 16(1-2):15–26

    Article  CAS  Google Scholar 

  42. Piemonte V, Gironi F (2013) Lactic acid production by hydrolysis of poly(lactic acid) in aqueous solutions: an experimental and kinetic study. J Polym Environ 21(1):275–279

    Article  CAS  Google Scholar 

  43. Craparo EF, Porsio B, Bondi ML, Giammona G, Cavallaro G (2015) Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polym Degrad Stab 119:56–67

    Article  CAS  Google Scholar 

  44. Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100(1):37–41

    Article  CAS  Google Scholar 

  45. Xu H, Yang X, Xie L, Hakkarainen M (2016) Conformational footprint in hydrolysis-induced nanofibrillation and crystallization of poly(lactic acid). Biomacromolecules 17(3):985–995

    Article  CAS  Google Scholar 

  46. Lyu S, Schley J, Loy B, Lind D, Hobot ÄC (2007) Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310

    Google Scholar 

  47. Mitchell MK, Hirt DE (2014) Degradation of PLA fibers at elevated temperature and humidity. Polym Eng Sci 55(7):1652–1660

    Article  CAS  Google Scholar 

  48. Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136

    CAS  Google Scholar 

  49. Agrawal CM, Huang D, Schmitz JP, Athanasiou KA (1997) Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Eng 3(4):345–352

    Article  CAS  Google Scholar 

  50. Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery: poly(glycolic)/poly(lactic acid) homo- and copolymers. 2. In vitro degradation. Polymer 22(4):494–498

    Article  CAS  Google Scholar 

  51. Kolstad JJ, Vink ET, Wilde BD, Debeer L (2012) Assessment of anaerobic degradation of Ingeo polylactides under accelerated landfill conditions. Polym Degrad Stab 97(7):1131–1141

    Article  CAS  Google Scholar 

  52. Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory-animals. Biopharm Drug Dispos 16(5):351–380

    Article  CAS  Google Scholar 

  53. Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173(1):25–30

    CAS  Google Scholar 

  54. Day JNE, Ingold CK (1941) Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl esterification. Trans Faraday Soc 37:686–705

    Article  CAS  Google Scholar 

  55. Solomons TWG, Fryhle CB (2011) Organic chemistry, 10th edn. Wiley, Hoboken

    Google Scholar 

  56. Partini M, Pantani R (2007) FTIR analysis of hydrolysis in aliphatic polyesters. Polym Degrad Stab 92:1491–1497

    Article  CAS  Google Scholar 

  57. Schliecker G, Schmidt C, Fuchs S, Kissel T (2003) Characterization of a homologous series of d,l-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 24(21):3835–3844

    Article  CAS  Google Scholar 

  58. Shih C (1995) Chain-end scission in acid-catalyzed hydrolysis of poly(d,l-lactide) in solution. J Control Release 34(1):9–15

    Article  CAS  Google Scholar 

  59. De Jong S, Arias E, Rijkers D, Van Nostrum C, Kettenes-Van Den Bosch J, Hennink W (2001) New insights into the hydrolytic degradation of poly (lactic acid): participation of the alcohol terminus. Polymer 42:2795–2802

    Article  Google Scholar 

  60. van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE (2004) Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. Polymer 45(20):6779–6787

    Article  CAS  Google Scholar 

  61. Jung JH, Ree M, Kim H (2006) Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal Today 115(1-4):283–287

    Article  CAS  Google Scholar 

  62. Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97(11):2460–2466

    Article  CAS  Google Scholar 

  63. Saha SK, Tsuji H (2006) Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polym Degrad Stab 91(8):1665–1673

    Article  CAS  Google Scholar 

  64. Saha SK, Tsuji H (2006) Hydrolytic degradation of amorphous films of l-lactide copolymers with glycolide and d-lactide. Macromol Mater Eng 291(4):357–368

    Article  CAS  Google Scholar 

  65. Tsuji H (2010) Hydrolytic degradation. In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken. pp 343–381. doi:10.1002/9780470649848.ch21

  66. Fukushima K, Feijoo JL, Yang MC (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49(3):706–717

    Article  CAS  Google Scholar 

  67. Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters.2. Hydrolysis of solution-cast blends from poly(l-lactide) and poly(epsilon-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67(3):405–415

    Article  CAS  Google Scholar 

  68. Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(l-lactide). Int J Biol Macromol 29(2):83–89

    Article  CAS  Google Scholar 

  69. Tsuji H, Miyauchi S (2001) Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424

    Article  CAS  Google Scholar 

  70. Chye Joachim Loo S, Ooi CP, Hong Elyna Wee S, Chiang Freddy Boey Y (2005) Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials 26(16):2827–2833

    Article  CAS  Google Scholar 

  71. Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(l-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77(7):1452–1464

    Article  CAS  Google Scholar 

  72. Tsuji H, Del Carpio CA (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films. Biomacromolecules 4(1):7–11

    Article  CAS  Google Scholar 

  73. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29(1):50–56

    Article  CAS  Google Scholar 

  74. Li SM, McCarthy S (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32(13):4454–4456

    Article  CAS  Google Scholar 

  75. Androsch R, Schick C, Di Lorenzo ML (2016) Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Adv Polym Sci. doi:10.1007/12_2016_13

    Google Scholar 

  76. Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796

    Article  CAS  Google Scholar 

  77. Höglund A, Odelius K, Albertsson AC (2012) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (l-lactide). ACS Appl Mater Interfaces 4(5):2788–2793

    Google Scholar 

  78. Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532

    Article  CAS  Google Scholar 

  79. Hoglund A, Hakkarainen M, Albertsson AC (2010) Migration and hydrolysis of hydrophobic polylactide plasticizer. Biomacromolecules 11(1):277–283

    Article  CAS  Google Scholar 

  80. Piemonte V, Sabatini S, Gironi F (2013) Chemical recycling of PLA: a great opportunity towards the sustainable development? J Polym Environ 21(3):640–647

    Article  CAS  Google Scholar 

  81. Xu LB, Crawford K, Gorman CB (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44(12):4777–4782

    Article  CAS  Google Scholar 

  82. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597

    Article  CAS  Google Scholar 

  83. Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86(3):401–409

    Article  CAS  Google Scholar 

  84. Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446

    Article  CAS  Google Scholar 

  85. Hoglund A, Hakkarainen M, Edlund U, Albertsson AC (2010) Surface modification changes the degradation process and degradation product pattern of polylactide. Langmuir 26(1):378–383

    Article  CAS  Google Scholar 

  86. Kallrot M, Edlund U, Albertsson AC (2007) Covalent grafting of poly(l-lactide) to tune the in vitro degradation rate. Biomacromolecules 8(8):2492–2496

    Article  CAS  Google Scholar 

  87. Janorkar AV, Metters AT, Hirt DE (2004) Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37(24):9151–9159

    Article  CAS  Google Scholar 

  88. Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules 7(11):3171–3177

    Article  CAS  Google Scholar 

  89. Stefani M, Coudane J, Vert M (2006) In vitro ageing and degradation of PEG – PLA diblock copolymer-based nanoparticles. Polym Degrad Stab 91(11):2554–2559

    Article  CAS  Google Scholar 

  90. Cohn D, Salomon AF (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26(15):2297–2305

    Article  CAS  Google Scholar 

  91. Tang M, Dong YX, Stevens MM, Williams CK (2010) Tailoring polylactide degradation: copolymerization of a carbohydrate lactone and S, S-lactide. Macromolecules 43(18):7556–7564

    Article  CAS  Google Scholar 

  92. Xie L, Xu H, Wang ZP, Li XJ, Chen JB, Zhang ZJ, Yin HM, Zhong GJ, Lei J, Li ZM (2014) Toward faster degradation for natural fiber reinforced poly(lactic acid) biocomposites by enhancing the hydrolysis-induced surface erosion. J Polym Res 21(3):357

    Article  CAS  Google Scholar 

  93. Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81(1):167–171

    Article  CAS  Google Scholar 

  94. Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, Albertsson AC (2011) Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 12(4):1250–1258

    Article  CAS  Google Scholar 

  95. Kurokawa K, Yamashita K, Doi Y, Abe H (2008) Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly(l-lactide). Biomacromolecules 9(3):1071–1078

    Article  CAS  Google Scholar 

  96. Tsuji H, Miyauchi S (2001) Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer 42:4463–4467

    Article  CAS  Google Scholar 

  97. Kikkawa Y, Suzuki T, Kanesato M, Doi Y, Abe H (2009) Effect of phase structure on enzymatic degradation in poly(l-lactide)/atactic poly(3-hydroxybutyrate) blends with different miscibility. Biomacromolecules 10(4):1013–1018

    Article  CAS  Google Scholar 

  98. Qu M, Tu HL, Amarante M, Song YQ, Zhu SS (2014) Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 131(11):40287

    Article  CAS  Google Scholar 

  99. Andersson SR, Hakkarainen M, Inkinen S, Sodergard A, Albertsson AC (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 13(4):1212–1222

    Article  CAS  Google Scholar 

  100. Tyson T, Finne-Wistrand A, Albertsson AC (2009) Degradable porous scaffolds from various l-lactide and trimethylene carbonate copolymers obtained by a simple and effective method. Biomacromolecules 10(1):149–154

    Article  CAS  Google Scholar 

  101. Arias V, Höglund A, Odelius K, Albertsson AC (2014) Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromolecules 15(1):391–402

    Article  CAS  Google Scholar 

  102. Cameron DJA, Shaver MP (2012) Control of thermal properties and hydrolytic degradation in poly(lactic acid) polymer stars through control of isospecificity of polymer arms. J Polym Sci A Polym Chem 50(8):1477–1484

    Article  CAS  Google Scholar 

  103. Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym Test 41:124–132

    Article  CAS  Google Scholar 

  104. Benali S, Aouadi S, Dechief A-L, Murariu M, Dubois P (2015) Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1(1):51–61

    Article  CAS  Google Scholar 

  105. Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31(8):2461–2467

    Article  CAS  Google Scholar 

  106. Numata K, Finne-Wistrand A, Albertsson AC, Doi Y, Abe H (2008) Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates. Biomacromolecules 9(8):2180–2185

    Article  CAS  Google Scholar 

  107. Samadi N, van Nostrum CF, Vermonden T, Amidi M, Hennink WE (2013) Mechanistic studies on the degradation and protein release characteristics of poly(lactic-co-glycolic-co-hydroxymethylglycolic acid) nanospheres. Biomacromolecules 14(4):1044–1053

    Article  CAS  Google Scholar 

  108. Partini M, Argenio O, Coccorullo I, Pantani R (2009) Degradation kinetics and rheology of biodegradable polymers. J Thermal Anal Calorimetry 98:645–653

    Article  CAS  Google Scholar 

  109. Zhu KJ, Hendren RW, Jensen K, Pitt CG (1991) Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 24:1736–1740

    Article  CAS  Google Scholar 

  110. Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A (1981) Aliphatic polyesters. I. The degradation of poly (ϵ-caprolactone) in vivo. J Appl Polym Sci 26(11):3779–3787

    Article  CAS  Google Scholar 

  111. Siparsky GL, Voorhees KJ, Miao FD (1998) Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad 6(1):31–41

    Article  CAS  Google Scholar 

  112. Han X, Pan J, Buchanan F, Weir N, Farrar D (2010) Analysis of degradation data of poly(l-lactide-co-l,d-lactide) and poly(l-lactide) obtained at elevated and physiological temperatures using mathematical models. Acta Biomater 6(10):3882–3889

    Article  CAS  Google Scholar 

  113. Gleadall A, Pan J, Kruft M-A, Kellomäki M (2014) Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater 10(5):2223–2232

    Article  CAS  Google Scholar 

  114. Wang Y, Pan J, Han X, Sinka C, Ding L (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29(23):3393–3401

    Article  CAS  Google Scholar 

  115. Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229–247

    Article  CAS  Google Scholar 

  116. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98(5):1089–1096

    Article  CAS  Google Scholar 

  117. Gorrasi G, Anastasio R, Bassi L, Pantani R (2013) Barrier properties of PLA to water vapor: effect of temperature and morphology. Macromol Res 21(10):1110–1117

    Article  CAS  Google Scholar 

  118. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482

    Article  CAS  Google Scholar 

  119. Vert M, Li SM, Garreau H (1994) Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomat Sci Polym E 6(7):639–649

    Article  CAS  Google Scholar 

  120. Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604

    Article  Google Scholar 

  121. Li SM, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly(dl-lactide). Biomaterials 20:35–44

    Article  CAS  Google Scholar 

  122. Proikakis CS, Tarantili PA, Andreopoulos AG (2006) The role of polymer/drug interactions on the sustained release from poly(dl-lactic acid) tablets. Eur Polym J 42(12):3269–3276

    Article  CAS  Google Scholar 

  123. Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG (2006) Swelling and hydrolytic degradation of poly(d,l-lactic acid) in aqueous solutions. Polym Degrad Stab 91:614–619

    Article  CAS  Google Scholar 

  124. Lazzari S, Codari F, Storti G, Morbidelli M, Moscatelli D (2014) Modeling the pH-dependent PLA oligomer degradation kinetics. Polym Degrad Stab 110:80–90

    Article  CAS  Google Scholar 

  125. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Munich

    Google Scholar 

  126. Mohd-Adnan A, Nishida H, Shirai Y (2008) Evaluation of kinetics parameters for poly(l-lactic acid) hydrolysis under high-pressure steam. Polym Degrad Stab 93:1053–1058

    Article  CAS  Google Scholar 

  127. Jayasekara R, Harding I, Bowater I, Lonergan G (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251

    Article  CAS  Google Scholar 

  128. Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57(6):793–804

    Article  CAS  Google Scholar 

  129. Weber CJ (ed) (2000) Biobased packaging materials for the food industry: status and perspectives, a European concerted action. KVL, Frederiksberg

    Google Scholar 

  130. Biernbaum JA, Fogiel A (2004) Compost production and use. In: Proceedings upper Midwest organic farming conference. La Crosse, WI

    Google Scholar 

  131. Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397

    CAS  Google Scholar 

  132. Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63(4):1637–1640

    CAS  Google Scholar 

  133. Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeter Biodegr 52(2):69–91

    Article  CAS  Google Scholar 

  134. Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98(10):2063–2071

    Article  CAS  Google Scholar 

  135. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  Google Scholar 

  136. Sukkhum S, Kitpreechavanich V (2011) New insight into biodegradation of poly(l-lactide), enzyme production and characterization. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. InTech, pp 587–604. doi:10.5772/19469

  137. Sukkhum S, Tokuyama S, Kitpreechavanich V (2012) Poly(l-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle. J Microbiol Biotechnol 22(1):92–99

    Article  CAS  Google Scholar 

  138. Kale G, Auras R, Singh SP (2007) Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technol Sci 20(1):49–70

    Article  CAS  Google Scholar 

  139. Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26(8):1049–1061

    Article  CAS  Google Scholar 

  140. Sikorska W, Richert J, Rydz J, Musioł M, Adamus G, Janeczek H, Kowalczuk M (2012) Degradability studies of poly(l-lactide) after multi-reprocessing experiments in extruder. Polym Degrad Stab 97(10):1891–1897

    Article  CAS  Google Scholar 

  141. Nobile MR, Cerruti P, Malinconico M, Pantani R (2015) Processing and properties of biodegradable compounds based on aliphatic polyesters. J Appl Polym Sci 132(48):42481

    Article  CAS  Google Scholar 

  142. Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(l-lactide)–TiO2 composites. J Appl Polym Sci 96(1):190–199

    Article  CAS  Google Scholar 

  143. Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23(3):316–320

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pantani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gorrasi, G., Pantani, R. (2017). Hydrolysis and Biodegradation of Poly(lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2016_12

Download citation

Publish with us

Policies and ethics