Abstract
This chapter reviews hydrolytic degradation and biodegradation of poly(lactic acid) (PLA). Hydrolytic degradation, which induces morphological and compositional changes, is considered the most important step in biodegradation. The main factors influencing hydrolytic degradation (temperature, pH, sample morphology, and molecular weight) are considered and analyzed. An overview of biodegradation under composting conditions is also given. The chapter also analyses the possibilities of modulating degradation and biodegradation rates according to the expected lifetime of objects made of PLA. This can be considered frontier research in this field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- K BB :
-
Kinetic constant of the backbiting mechanism
- K αD :
-
Kinetic constant of terminal hydrolysis
- K βD :
-
Kinetic constant of backbone hydrolysis
- K RH :
-
Kinetic constant of random hydrolysis
- K W :
-
Kinetic constant of uncatalyzed hydrolysis
- %C mat :
-
Percentage organic carbon content of the sample
- C A :
-
Concentration of water
- C A * :
-
Concentration of water in reference conditions
- C A0 :
-
Initial concentration of water inside the sample
- C C :
-
Concentration of carboxylic end groups
- C E :
-
Concentration of ester groups
- C E0 :
-
Initial concentration of ester groups
- C H+ :
-
Concentration of positive ions
- C n :
-
Concentration of chains having n monomeric units
- C OH :
-
Concentration of negative ions
- C ol :
-
Concentration of oligomers
- D A :
-
Effective diffusivity of water inside the sample
- D ol :
-
Effective diffusivity of the oligomers inside the sample
- DP:
-
Average degree of polymerization
- E C :
-
Constant in Arrhenius equation describing the effect of temperature on water sorption
- E D :
-
Constant in Arrhenius equation describing the effect of temperature on water diffusivity
- E R :
-
Constant in Arrhenius equation describing the effect of temperature on hydrolysis
- gCO2 :
-
Grams of evolved carbon dioxide in the sample and the positive control
- gCO2,b :
-
Grams of evolved carbon dioxide in the blank
- g mat :
-
Mass of the sample in grams
- j M :
-
Mass flux of the oligomers leaving the sample surface as a result of hydrolysis
- K a :
-
Acid dissociation constant
- K R :
-
Kinetic constant of hydrolysis from experimental data
- K R :
-
Kinetic constant of hydrolysis
- K t :
-
Kinetic constant of thermal degradation
- M :
-
Molecular weight of the repeating unit
- Ma:
-
Mass of amorphous phase inside the sample
- Mc:
-
Mass of crystalline phase inside the sample
- M n :
-
Number-average molecular weight
- Mo:
-
Initial mass of the sample
- Mt:
-
Total mass of the sample
- M W :
-
Weight-average molecular weight
- r m :
-
Mass of polymer metabolized by the microorganisms per unit time and per unit sample surface
- R ol :
-
Number of oligomers produced per unit volume
- R s :
-
Scissions of polymeric chains per unit volume
- S :
-
Sample surface area
- T g :
-
Glass transition temperature
- T ref :
-
Reference temperature
- Xc:
-
Absolute crystallinity degree
- z :
-
Polydispersity
- δ :
-
Characteristic dimension of the sample in the thickness direction
- η :
-
Viscosity
- ρ :
-
Density of the sample
References
Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138
Li SM, Garreau H, Vert M (1990) Structure-property relationships in the case of the degradation of massive poly(alpha-hydroxy acids) in aqueous-media. 3. Influence of the morphology of poly(l-lactic acid). J Mater Sci Mater Med 1(4):198–206
Hakkarainen M, Albertsson AC, Karlsson S (1996) Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA. Polym Degrad Stab 52(3):283–291
Zhou Q, Xanthos M (2008) Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polym Degrad Stab 93(8):1450–1459
Pistner H, Gutwald R, Ordung R, Reuther J, Muhling J (1993) Poly(l-lactide) – a long-term degradation study in-vivo. 1. Biological results. Biomaterials 14(9):671–677
Pistner H, Bendix DR, Muhling J, Reuther JF (1993) Poly(l-lactide) – a long-term degradation study in vivo. 3. Analytical characterization. Biomaterials 14(4):291–298
Pistner H, Stallforth H, Gutwald R, Muhling J, Reuther J, Michel C (1994) Poly(l-lactide) – a long-term degradation study in-vivo. 2. Physicomechanical behavior of implants. Biomaterials 15(6):439–450
Migliaresi C, Fambri L, Cohn D (1994) A study on the in-vitro degradation of poly(lactic acid). J Biomat Sci Polym E 5(6):591–606
Pegoretti A, Fambri L, Migliaresi C (1997) In vitro degradation of poly(l-lactic acid) fibers produced by melt spinning. J Appl Polym Sci 64(2):213–223
Sodergard A, Selin JF, Nasman JH (1996) Hydrolytic degradation of peroxide modified poly(l-lactide). Polym Degrad Stab 51(3):351–359
Duek EAR, Zavaglia CAC, Belangero WD (1999) In vitro study of poly(lactic acid) pin degradation. Polymer 40(23):6465–6473
Paul MA, Delcourt C, Alexandre M, Degée P, Monteverde F, Dubois P (2005) Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polym Degrad Stab 87(3):535–542
Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nano composites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079
Tsuji H, Tezuka Y (2005) Alkaline and enzymatic degradation of l-lactide copolymers, 1 – Amorphous-made films of l-lactide copolymers with d-lactide, glycolide, and epsilon-caprolactone. Macromol Biosci 5(2):135–148
Gorrasi G, Pantani R (2013) Effect of polylactic acid grades and morphologies on hydrolytic degradation at composting temperature: assessment of structural modification and kinetic parameters. Polym Degrad Stab 98(5):1006–1014
Tsuji H (2005) Polylactides. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4005
Grizzi I, Garreau H, Li S, Vert M (1995) Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials 16(4):305–311
Tsuji H, Ikada Y (2000) Properties and morphology of poly(l-lactide) 4. Effects of structural parameters on long-term hydrolysis of poly(l-lactide) in phosphate-buffered solution. Polym Degrad Stab 67(1):179–189
Jimenez A, Peltzer M, Ruseckaite R (eds) (2015) Poly(lactic acid) science and technology: processing, properties, additives and applications. RSC Polymer Chemistry Series. Royal Society of Chemistry, London
Vert M, Schwarch G, Coudane J (1995) Present and future of PLA polymers. J Macromol Sci Pure A32(4):787–796
Vert M (2005) Polyglycolide and copolyesters with lactide. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4006
Mochizuki M (2005) Properties and application of aliphatic polyester products. In: Biopolymers Online. Wiley-VCH, Weinheim. doi:10.1002/3527600035.bpol4001
Itavaara M, Karjomaa S, Selin J (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46(6):879–885
Carrasco F, Pages P, Gamez-Perez J, Santana OO, Maspoch ML (2010) Processing of poly(lactic acid): characterization of chemical structure, thermal stability and mechanical properties. Polym Degrad Stab 95:116–125
Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly (l-lactide) during extrusion. J Appl Polym Sci 79(12):2128–2135
Yousfi M, Alix S, Lebeau M, Soulestin J, Lacrampe MF, Krawczak P (2014) Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: experimental procedures for a reliable polymer melt viscosity measurement. Polym Test 40(C):207–217
Le Marec PE, Ferry L, Quantin J-C, Bénézet J-C, Bonfils F, Guilbert S, Bergeret A (2014) Influence of melt processing conditions on poly(lactic acid) degradation: molar mass distribution and crystallization. Polym Degrad Stab 110 IS – (C):353–363
De Santis F, Pantani R (2015) Melt compounding of poly (lactic acid) and talc: assessment of material behavior during processing and resulting crystallization. J Polym Res 22(12):1–9
Haibach R (2007) Injection-molding degradation of biodegradable polylactide. In: Proceedings of annual technical conference – ANTEC. American Society of Mechanical Engineers (ASME), New York. pp 2043–2047
Pantani R, De Santis F, Sorrentino A, De Maio F, Titomanlio G (2010) Crystallization kinetics of virgin and processed poly(lactic acid). Polym Degrad Stab 95:1148–1159
Ozdemir E, Hacaloglu J (2016) Thermal degradation of polylactide and its electrospun fiber. Fibers Polym 17(1):66–73
Aoyagi Y, Yamashita K, Doi Y (2002) Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab 76(1):53–59
Sodergard A, Näsman JH (1994) Stabilization of poly (l-lactide) in the melt. Polym Degrad Stab 46(1):25–30
Oliveira M, Santos E, Araújo A, Fechine GJM, Machado AV, Botelho G (2016) The role of shear and stabilizer on PLA degradation. Polym Test 51:109–116
Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97(10):1898–1914
Andersson SR, Hakkarainen M, Inkinen S, Sodergard A, Albertsson AC (2010) Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11(4):1067–1073
Andersson SR, Hakkarainen M, Albertsson AC (2010) Tuning the polylactide hydrolysis rate by plasticizer architecture and hydrophilicity without introducing new migrants. Biomacromolecules 11(12):3617–3623
Anderson JM, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 64:72–82
Metters AT, Bowman CN, Anseth KS (2000) A statistical kinetic model for the bulk degradation of PLA-b-PEG-b-PLA hydrogel networks. J Phys Chem B 104(30):7043–7049
Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72:244–251
Vert M, Li S, Garreau H (1991) More about the degradation of La/Ga-derived matrices in aqueous-media. J Control Release 16(1-2):15–26
Piemonte V, Gironi F (2013) Lactic acid production by hydrolysis of poly(lactic acid) in aqueous solutions: an experimental and kinetic study. J Polym Environ 21(1):275–279
Craparo EF, Porsio B, Bondi ML, Giammona G, Cavallaro G (2015) Evaluation of biodegradability on polyaspartamide-polylactic acid based nanoparticles by chemical hydrolysis studies. Polym Degrad Stab 119:56–67
Speranza V, De Meo A, Pantani R (2014) Thermal and hydrolytic degradation kinetics of PLA in the molten state. Polym Degrad Stab 100(1):37–41
Xu H, Yang X, Xie L, Hakkarainen M (2016) Conformational footprint in hydrolysis-induced nanofibrillation and crystallization of poly(lactic acid). Biomacromolecules 17(3):985–995
Lyu S, Schley J, Loy B, Lind D, Hobot ÄC (2007) Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules 8:2301–2310
Mitchell MK, Hirt DE (2014) Degradation of PLA fibers at elevated temperature and humidity. Polym Eng Sci 55(7):1652–1660
Siparsky GL, Voorhees KJ, Dorgan JR, Schilling K (1997) Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA polyethylene glycol blends. J Environ Polym Degrad 5(3):125–136
Agrawal CM, Huang D, Schmitz JP, Athanasiou KA (1997) Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Eng 3(4):345–352
Reed AM, Gilding DK (1981) Biodegradable polymers for use in surgery: poly(glycolic)/poly(lactic acid) homo- and copolymers. 2. In vitro degradation. Polymer 22(4):494–498
Kolstad JJ, Vink ET, Wilde BD, Debeer L (2012) Assessment of anaerobic degradation of Ingeo polylactides under accelerated landfill conditions. Polym Degrad Stab 97(7):1131–1141
Kararli TT (1995) Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory-animals. Biopharm Drug Dispos 16(5):351–380
Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173(1):25–30
Day JNE, Ingold CK (1941) Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl esterification. Trans Faraday Soc 37:686–705
Solomons TWG, Fryhle CB (2011) Organic chemistry, 10th edn. Wiley, Hoboken
Partini M, Pantani R (2007) FTIR analysis of hydrolysis in aliphatic polyesters. Polym Degrad Stab 92:1491–1497
Schliecker G, Schmidt C, Fuchs S, Kissel T (2003) Characterization of a homologous series of d,l-lactic acid oligomers; a mechanistic study on the degradation kinetics in vitro. Biomaterials 24(21):3835–3844
Shih C (1995) Chain-end scission in acid-catalyzed hydrolysis of poly(d,l-lactide) in solution. J Control Release 34(1):9–15
De Jong S, Arias E, Rijkers D, Van Nostrum C, Kettenes-Van Den Bosch J, Hennink W (2001) New insights into the hydrolytic degradation of poly (lactic acid): participation of the alcohol terminus. Polymer 42:2795–2802
van Nostrum CF, Veldhuis TFJ, Bos GW, Hennink WE (2004) Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. Polymer 45(20):6779–6787
Jung JH, Ree M, Kim H (2006) Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal Today 115(1-4):283–287
Codari F, Lazzari S, Soos M, Storti G, Morbidelli M, Moscatelli D (2012) Kinetics of the hydrolytic degradation of poly(lactic acid). Polym Degrad Stab 97(11):2460–2466
Saha SK, Tsuji H (2006) Effects of molecular weight and small amounts of d-lactide units on hydrolytic degradation of poly(l-lactic acid)s. Polym Degrad Stab 91(8):1665–1673
Saha SK, Tsuji H (2006) Hydrolytic degradation of amorphous films of l-lactide copolymers with glycolide and d-lactide. Macromol Mater Eng 291(4):357–368
Tsuji H (2010) Hydrolytic degradation. In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken. pp 343–381. doi:10.1002/9780470649848.ch21
Fukushima K, Feijoo JL, Yang MC (2013) Comparison of abiotic and biotic degradation of PDLLA, PCL and partially miscible PDLLA/PCL blend. Eur Polym J 49(3):706–717
Tsuji H, Ikada Y (1998) Blends of aliphatic polyesters.2. Hydrolysis of solution-cast blends from poly(l-lactide) and poly(epsilon-caprolactone) in phosphate-buffered solution. J Appl Polym Sci 67(3):405–415
Tsuji H, Ishizaka T (2001) Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(epsilon-caprolactone) and poly(l-lactide). Int J Biol Macromol 29(2):83–89
Tsuji H, Miyauchi S (2001) Poly(l-lactide): VI Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424
Chye Joachim Loo S, Ooi CP, Hong Elyna Wee S, Chiang Freddy Boey Y (2005) Effect of isothermal annealing on the hydrolytic degradation rate of poly(lactide-co-glycolide) (PLGA). Biomaterials 26(16):2827–2833
Tsuji H, Mizuno A, Ikada Y (2000) Properties and morphology of poly(l-lactide). III. Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(l-lactide) film in phosphate-buffered solution. J Appl Polym Sci 77(7):1452–1464
Tsuji H, Del Carpio CA (2003) In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films. Biomacromolecules 4(1):7–11
Rashkov I, Manolova N, Li SM, Espartero JL, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29(1):50–56
Li SM, McCarthy S (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32(13):4454–4456
Androsch R, Schick C, Di Lorenzo ML (2016) Kinetics of nucleation and growth of crystals of poly(l-lactic acid). Adv Polym Sci. doi:10.1007/12_2016_13
Tsuji H (2002) Autocatalytic hydrolysis of amorphous-made polylactides: effects of l-lactide content, tacticity, and enantiomeric polymer blending. Polymer 43:1789–1796
Höglund A, Odelius K, Albertsson AC (2012) Crucial differences in the hydrolytic degradation between industrial polylactide and laboratory-scale poly (l-lactide). ACS Appl Mater Interfaces 4(5):2788–2793
Inkinen S, Hakkarainen M, Albertsson AC, Sodergard A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12(3):523–532
Hoglund A, Hakkarainen M, Albertsson AC (2010) Migration and hydrolysis of hydrophobic polylactide plasticizer. Biomacromolecules 11(1):277–283
Piemonte V, Sabatini S, Gironi F (2013) Chemical recycling of PLA: a great opportunity towards the sustainable development? J Polym Environ 21(3):640–647
Xu LB, Crawford K, Gorman CB (2011) Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 44(12):4777–4782
Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597
Teramoto N, Urata K, Ozawa K, Shibata M (2004) Biodegradation of aliphatic polyester composites reinforced by abaca fiber. Polym Degrad Stab 86(3):401–409
Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3(6):432–446
Hoglund A, Hakkarainen M, Edlund U, Albertsson AC (2010) Surface modification changes the degradation process and degradation product pattern of polylactide. Langmuir 26(1):378–383
Kallrot M, Edlund U, Albertsson AC (2007) Covalent grafting of poly(l-lactide) to tune the in vitro degradation rate. Biomacromolecules 8(8):2492–2496
Janorkar AV, Metters AT, Hirt DE (2004) Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 37(24):9151–9159
Shah NM, Pool MD, Metters AT (2006) Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels. Biomacromolecules 7(11):3171–3177
Stefani M, Coudane J, Vert M (2006) In vitro ageing and degradation of PEG – PLA diblock copolymer-based nanoparticles. Polym Degrad Stab 91(11):2554–2559
Cohn D, Salomon AF (2005) Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26(15):2297–2305
Tang M, Dong YX, Stevens MM, Williams CK (2010) Tailoring polylactide degradation: copolymerization of a carbohydrate lactone and S, S-lactide. Macromolecules 43(18):7556–7564
Xie L, Xu H, Wang ZP, Li XJ, Chen JB, Zhang ZJ, Yin HM, Zhong GJ, Lei J, Li ZM (2014) Toward faster degradation for natural fiber reinforced poly(lactic acid) biocomposites by enhancing the hydrolysis-induced surface erosion. J Polym Res 21(3):357
Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81(1):167–171
Odelius K, Hoglund A, Kumar S, Hakkarainen M, Ghosh AK, Bhatnagar N, Albertsson AC (2011) Porosity and pore size regulate the degradation product profile of polylactide. Biomacromolecules 12(4):1250–1258
Kurokawa K, Yamashita K, Doi Y, Abe H (2008) Structural effects of terminal groups on nonenzymatic and enzymatic degradations of end-capped poly(l-lactide). Biomacromolecules 9(3):1071–1078
Tsuji H, Miyauchi S (2001) Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer 42:4463–4467
Kikkawa Y, Suzuki T, Kanesato M, Doi Y, Abe H (2009) Effect of phase structure on enzymatic degradation in poly(l-lactide)/atactic poly(3-hydroxybutyrate) blends with different miscibility. Biomacromolecules 10(4):1013–1018
Qu M, Tu HL, Amarante M, Song YQ, Zhu SS (2014) Zinc oxide nanoparticles catalyze rapid hydrolysis of poly(lactic acid) at low temperatures. J Appl Polym Sci 131(11):40287
Andersson SR, Hakkarainen M, Inkinen S, Sodergard A, Albertsson AC (2012) Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 13(4):1212–1222
Tyson T, Finne-Wistrand A, Albertsson AC (2009) Degradable porous scaffolds from various l-lactide and trimethylene carbonate copolymers obtained by a simple and effective method. Biomacromolecules 10(1):149–154
Arias V, Höglund A, Odelius K, Albertsson AC (2014) Tuning the degradation profiles of poly(l-lactide)-based materials through miscibility. Biomacromolecules 15(1):391–402
Cameron DJA, Shaver MP (2012) Control of thermal properties and hydrolytic degradation in poly(lactic acid) polymer stars through control of isospecificity of polymer arms. J Polym Sci A Polym Chem 50(8):1477–1484
Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) The influence of a hydrolysis-inhibiting additive on the degradation and biodegradation of PLA and its nanocomposites. Polym Test 41:124–132
Benali S, Aouadi S, Dechief A-L, Murariu M, Dubois P (2015) Key factors for tuning hydrolytic degradation of polylactide/zinc oxide nanocomposites. Nanocomposites 1(1):51–61
Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31(8):2461–2467
Numata K, Finne-Wistrand A, Albertsson AC, Doi Y, Abe H (2008) Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates. Biomacromolecules 9(8):2180–2185
Samadi N, van Nostrum CF, Vermonden T, Amidi M, Hennink WE (2013) Mechanistic studies on the degradation and protein release characteristics of poly(lactic-co-glycolic-co-hydroxymethylglycolic acid) nanospheres. Biomacromolecules 14(4):1044–1053
Partini M, Argenio O, Coccorullo I, Pantani R (2009) Degradation kinetics and rheology of biodegradable polymers. J Thermal Anal Calorimetry 98:645–653
Zhu KJ, Hendren RW, Jensen K, Pitt CG (1991) Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 24:1736–1740
Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A (1981) Aliphatic polyesters. I. The degradation of poly (ϵ-caprolactone) in vivo. J Appl Polym Sci 26(11):3779–3787
Siparsky GL, Voorhees KJ, Miao FD (1998) Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: autocatalysis. J Environ Polym Degrad 6(1):31–41
Han X, Pan J, Buchanan F, Weir N, Farrar D (2010) Analysis of degradation data of poly(l-lactide-co-l,d-lactide) and poly(l-lactide) obtained at elevated and physiological temperatures using mathematical models. Acta Biomater 6(10):3882–3889
Gleadall A, Pan J, Kruft M-A, Kellomäki M (2014) Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomater 10(5):2223–2232
Wang Y, Pan J, Han X, Sinka C, Ding L (2008) A phenomenological model for the degradation of biodegradable polymers. Biomaterials 29(23):3393–3401
Siepmann J, Gopferich A (2001) Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Deliv Rev 48:229–247
Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98(5):1089–1096
Gorrasi G, Anastasio R, Bassi L, Pantani R (2013) Barrier properties of PLA to water vapor: effect of temperature and morphology. Macromol Res 21(10):1110–1117
Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49(11):3471–3482
Vert M, Li SM, Garreau H (1994) Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomat Sci Polym E 6(7):639–649
Gopferich A (1997) Polymer bulk erosion. Macromolecules 30:2598–2604
Li SM, McCarthy S (1999) Further investigations on the hydrolytic degradation of poly(dl-lactide). Biomaterials 20:35–44
Proikakis CS, Tarantili PA, Andreopoulos AG (2006) The role of polymer/drug interactions on the sustained release from poly(dl-lactic acid) tablets. Eur Polym J 42(12):3269–3276
Proikakis CS, Mamouzelos NJ, Tarantili PA, Andreopoulos AG (2006) Swelling and hydrolytic degradation of poly(d,l-lactic acid) in aqueous solutions. Polym Degrad Stab 91:614–619
Lazzari S, Codari F, Storti G, Morbidelli M, Moscatelli D (2014) Modeling the pH-dependent PLA oligomer degradation kinetics. Polym Degrad Stab 110:80–90
Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Munich
Mohd-Adnan A, Nishida H, Shirai Y (2008) Evaluation of kinetics parameters for poly(l-lactic acid) hydrolysis under high-pressure steam. Polym Degrad Stab 93:1053–1058
Jayasekara R, Harding I, Bowater I, Lonergan G (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251
Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57(6):793–804
Weber CJ (ed) (2000) Biobased packaging materials for the food industry: status and perspectives, a European concerted action. KVL, Frederiksberg
Biernbaum JA, Fogiel A (2004) Compost production and use. In: Proceedings upper Midwest organic farming conference. La Crosse, WI
Torres A, Li SM, Roussos S, Vert M (1996) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397
Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63(4):1637–1640
Gu JD (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeter Biodegr 52(2):69–91
Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98(10):2063–2071
Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742
Sukkhum S, Kitpreechavanich V (2011) New insight into biodegradation of poly(l-lactide), enzyme production and characterization. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. InTech, pp 587–604. doi:10.5772/19469
Sukkhum S, Tokuyama S, Kitpreechavanich V (2012) Poly(l-lactide)-degrading enzyme production by Actinomadura keratinilytica T16-1 in 3 L airlift bioreactor and its degradation ability for biological recycle. J Microbiol Biotechnol 22(1):92–99
Kale G, Auras R, Singh SP (2007) Comparison of the degradability of poly(lactide) packages in composting and ambient exposure conditions. Packaging Technol Sci 20(1):49–70
Kale G, Auras R, Singh SP, Narayan R (2007) Biodegradability of polylactide bottles in real and simulated composting conditions. Polym Test 26(8):1049–1061
Sikorska W, Richert J, Rydz J, Musioł M, Adamus G, Janeczek H, Kowalczuk M (2012) Degradability studies of poly(l-lactide) after multi-reprocessing experiments in extruder. Polym Degrad Stab 97(10):1891–1897
Nobile MR, Cerruti P, Malinconico M, Pantani R (2015) Processing and properties of biodegradable compounds based on aliphatic polyesters. J Appl Polym Sci 132(48):42481
Fukuda N, Tsuji H (2005) Physical properties and enzymatic hydrolysis of poly(l-lactide)–TiO2 composites. J Appl Polym Sci 96(1):190–199
Gorrasi G, Sorrentino A, Pantani R (2015) Modulation of biodegradation rate of poly(lactic acid) by silver nanoparticles. J Polym Environ 23(3):316–320
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Gorrasi, G., Pantani, R. (2017). Hydrolysis and Biodegradation of Poly(lactic acid). In: Di Lorenzo, M., Androsch, R. (eds) Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, vol 279. Springer, Cham. https://doi.org/10.1007/12_2016_12
Download citation
DOI: https://doi.org/10.1007/12_2016_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64229-1
Online ISBN: 978-3-319-64230-7
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)