Biological Archetypes for Self-Healing Materials

  • Matthew J. HarringtonEmail author
  • Olga Speck
  • Thomas Speck
  • Sarah Wagner
  • Richard Weinkamer
Part of the Advances in Polymer Science book series (POLYMER, volume 273)


Damage and fatigue are ever-present facts of life. Given enough time, even the most robust material, whether man-made or natural, succumbs to the deleterious effects of cracks, fissures, and defects during normal use. Traditionally, materials engineers have approached this problem by creating damage-tolerant structures, intensive quality control before use, vigilant inspection during use, and designing materials to function well below their theoretical limit. Living organisms, on the other hand, routinely produce materials that function close to their theoretical limit as a result of their remarkable ability to self-heal a range of non-catastrophic damage events. For this reason, many researchers in the last 15 years have turned to nature for inspiration for the design and development of self-healing composites and polymeric materials. However, these efforts have so far only scratched the surface of the richness of natural self-repair processes. In the present review, we provide an overview of some paradigmatic and well-studied examples of self-repair in living systems. The core of this overview takes the form of a number of case studies that provide a detailed description of the structure–function relationships defining the healing mechanism. Case studies include a number of examples dependent on cellular action in both animals (e.g., limb regeneration, antler growth, bone healing, and wound healing) and plants (e.g., latex-based healing, plant grafting, and wound closure in woody vines and succulent plants). Additionally, we examine several examples of acellular self-repair in biopolymeric materials (e.g., mussel byssus, caddisfly silks, and whelk egg capsules) that are already inspiring the development of a number of self-healing polymers.


Bio-inspiration Biomimetics Functional morphology Regeneration Remodeling Self-repair Self-sealing 



The authors thank A. Miserez and R. Stewart for providing images for figures, and C. Neinhuis for helpful input. Part of the work on mussel byssal thread healing was funded by the DFG priority program 1568 on “Design and Generic Principles of Self-Healing Materials” (HA6369/1-1 and HA6369/1-2). Financial support from the DFG for research within the Cluster of Excellence: “Image Knowledge Gestaltung: An Interdisciplinary Laboratory” is acknowledged. Several of the projects on self-repair mechanisms in plants were funded by the German Federal Ministry of Education and Research in the frameworks of the funding programme BIONA (project ‘Self-healing polymers “OSIRIS”’) and of the Ideenwettbewerb “Bionik – Innovationen aus der Natur” (FKZ0313778A, together with Empa Dübendorf). Two other projects on self-repair mechanisms in plants are part of the European Marie Curie Initial Training Network “Self-Healing Materials: from Concepts to Market” (SHeMat).


  1. 1.
    Hager MD et al (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRefGoogle Scholar
  2. 2.
    Bond I et al (2008) Self healing fibre-reinforced polymer composites: an overview. In: Zwaag S (ed) Self healing materials: an alternative approach to 20 centuries of materials science. Springer, Dordrecht, pp 115–138Google Scholar
  3. 3.
    Diesendruck CE et al (2015) Biomimetic self-healing. Angew Chem Int Ed. doi: 10.1002/anie.201500484 Google Scholar
  4. 4.
    Holten-Andersen N et al (2011) pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc Natl Acad Sci USA 108(7):2651–2655CrossRefGoogle Scholar
  5. 5.
    Norris CJ et al (2011) Self-healing fibre reinforced composites via a bioinspired vasculature. Adv Funct Mater 21(19):3624–3633CrossRefGoogle Scholar
  6. 6.
    Rampf M et al (2013) Investigation of a fast mechanical self-repair mechanism for inflatable structures. Int J Eng Sci 63:61–70CrossRefGoogle Scholar
  7. 7.
    Schuessele AC et al (2012) Self-healing rubbers based on NBR blends with hyperbranched polyethylenimines. Macromol Mater Eng 297(5):411–419CrossRefGoogle Scholar
  8. 8.
    Toohey KS et al (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585CrossRefGoogle Scholar
  9. 9.
    Clark RAF (1988) Overview and general considerations of wound repair. In: Clark RAF, Henson PM (eds) The molecular and cellular biology of wound repair. Springer, New YorkGoogle Scholar
  10. 10.
    Fratzl P, Weinkamer R (2007) Hierarchical structure and repair of bone: deformation, remodelling, healing. In: Self healing materials: an alternative approach to 20 centuries of materials science, vol 100. Springer, Dordrecht, pp 323–335CrossRefGoogle Scholar
  11. 11.
    Ashton NN, Stewart RJ (2015) Self-recovering caddisfly silk: energy dissipating, Ca2+-dependent, double dynamic network fibers. Soft Matter 11(9):1667–1676CrossRefGoogle Scholar
  12. 12.
    Harrington MJ et al (2009) Collagen insulated from tensile damage by domains that unfold reversibly: in situ X-ray investigation of mechanical yield and damage repair in the mussel byssus. J Struct Biol 167(1):47–54CrossRefGoogle Scholar
  13. 13.
    Miserez A et al (2009) Non-entropic and reversible long-range deformation of an encapsulating bioelastomer. Nat Mater 8(11):910–916CrossRefGoogle Scholar
  14. 14.
    Speck T et al (2013) Bio-inspired self-healing materials. In: Fratzl P, Dunlop JWC, Weinkamer R (eds) Materials design inspired by nature: function through inner architecture. Royal Society of Chemistry, Cambridge, pp 359–389CrossRefGoogle Scholar
  15. 15.
    Speck T, Muelhaupt R, Speck O (2013) Self-healing in plants as bio-inspiration for self-repairing polymers. In: Self-healing polymers: from principles to applications. Wiley, Weinheim, pp 61–89CrossRefGoogle Scholar
  16. 16.
    Speck O et al (2014) Selbstreparatur in Natur und Technik. Konstruktion 9:72–75Google Scholar
  17. 17.
    Bauer G, Speck T (2012) Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures. Ann Bot 109(4):807–811CrossRefGoogle Scholar
  18. 18.
    Speck O, Speck T (2015) Selbstreparatur in Natur und Technik – Versiegeln, heilen, reparieren. Biologie in unserer Zeit 45:44–51CrossRefGoogle Scholar
  19. 19.
    Dunlop JWC, Weinkamer R, Fratzl P (2011) Artful interfaces within biological materials. Mater Today 14(3):70–78CrossRefGoogle Scholar
  20. 20.
    Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52(8):1263–1334CrossRefGoogle Scholar
  21. 21.
    Gould SJ, Lewontin RC (1979) Spandrels of San Marco and the Panglossian paradigm – a critique of the adaptationist program. Proc R Soc Lond B Biol Sci 205(1161):581–598CrossRefGoogle Scholar
  22. 22.
    Alvarado AS (2000) Regeneration in the metazoans: why does it happen? Bioessays 22(6):578–590CrossRefGoogle Scholar
  23. 23.
    Nacu E, Tanaka EM (2011) Limb regeneration: a new development? Annu Rev Cell Dev Biol 27:409–440CrossRefGoogle Scholar
  24. 24.
    Brockes JP, Kumar A (2005) Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 310(5756):1919–1923CrossRefGoogle Scholar
  25. 25.
    Brockes JP (1997) Amphibian limb regeneration: rebuilding a complex structure. Science 276(5309):81–87CrossRefGoogle Scholar
  26. 26.
    Bryant SV, Endo T, Gardiner DM (2002) Vertebrate limb regeneration and the origin of limb stem cells. Int J Dev Biol 46(7):887–896Google Scholar
  27. 27.
    Butler EG (1955) Regeneration of the urodele forelimb following after reversal of its proximo-distal axis. J Morphol 96(4):265–281CrossRefGoogle Scholar
  28. 28.
    French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193(4257):969–981CrossRefGoogle Scholar
  29. 29.
    Maden M, Holder N (1984) Axial characteristics of nerve induced supernumerary limbs in the axolotl. Rouxs Arch Dev Biol 193(6):394–401CrossRefGoogle Scholar
  30. 30.
    Goss RJ (2012) Deer antlers: regeneration, function and evolution. Academic, New YorkGoogle Scholar
  31. 31.
    Kierdorf U, Kierdorf H (2011) Deer antlers - a model of mammalian appendage regeneration: an extensive review. Gerontology 57(1):53–65CrossRefGoogle Scholar
  32. 32.
    Price JS et al (2005) Deer antlers: a zoological curiosity or the key to understanding organ regeneration in mammals? J Anat 207(5):603–618CrossRefGoogle Scholar
  33. 33.
    Li CY, Suttie JM (2001) Deer antlerogenic periosteum: a piece of postnatally retained embryonic tissue? Anat Embryol 204(5):375–388CrossRefGoogle Scholar
  34. 34.
    Li CY, Harris AJ, Suttie JM (2001) Tissue interactions and antlerogenesis: new findings revealed by a xenograft approach. J Exp Zool 290(1):18–30CrossRefGoogle Scholar
  35. 35.
    Goss RJ (1995) Future-directions in antler research. Anat Rec 241(3):291–302CrossRefGoogle Scholar
  36. 36.
    Li CY, Suttie JM, Clark DE (2005) Histological examination of antler regeneration in red deer (Cervus elaphus). Anat Rec A Discov Mol Cell Evol Biol 282A(2):163–174CrossRefGoogle Scholar
  37. 37.
    Krauss S et al (2011) Tubular frameworks guiding orderly bone formation in the antler of the red deer (Cervus elaphus). J Struct Biol 175(3):457–464CrossRefGoogle Scholar
  38. 38.
    Bubenik AB, Pavlansk R (1965) Trophic responses to trauma in growing antlers. J Exp Zool 159(3):289–302CrossRefGoogle Scholar
  39. 39.
    Bubenik GA (1990) The role of the nervous system in the growth of antlers. In: Bubenik GA, Bubenik AB (eds) Horns, pronghorns, and antlers. Springer, New York, pp 339–358CrossRefGoogle Scholar
  40. 40.
    Lobo D, Solano M, Bubenik GA, Levin M (2014) A linear-encoding model explains the variability of the target morphology in regeneration. J R Soc Interface 11(92):20130918. doi: 10.1098/rsif.2013.0918
  41. 41.
    Currey JD et al (2009) The mechanical properties of red deer antler bone when used in fighting. J Exp Biol 212(24):3985–3993CrossRefGoogle Scholar
  42. 42.
    Launey ME et al (2010) Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomater 6(4):1505–1514CrossRefGoogle Scholar
  43. 43.
    Gupta HS et al (2013) Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone. J Mech Behav Biomed Mater 28:366–382CrossRefGoogle Scholar
  44. 44.
    Sfeir C et al (2005) Fracture repair. In: Bone regeneration and repair. Humana Press, Totowa, New Jersey, pp 21–44CrossRefGoogle Scholar
  45. 45.
    Betts DC, Muller R (2014) Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol (Lausanne) 5:211Google Scholar
  46. 46.
    Vetter A et al (2012) The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11(1–2):147–160CrossRefGoogle Scholar
  47. 47.
    Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884CrossRefGoogle Scholar
  48. 48.
    Liu Y et al (2010) Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. J Bone Miner Res 25(9):2029–2038CrossRefGoogle Scholar
  49. 49.
    Huiskes R et al (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706CrossRefGoogle Scholar
  50. 50.
    Ruimerman R et al (2005) A theoretical framework for strain-related trabecular bone maintenance and adaptation. J Biomech 38(4):931–941CrossRefGoogle Scholar
  51. 51.
    Dunlop JWC et al (2009) New suggestions for the mechanical control of bone remodeling. Calcif Tissue Int 85(1):45–54CrossRefGoogle Scholar
  52. 52.
    Schulte FA et al (2013) Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS One 8(4):e62172CrossRefGoogle Scholar
  53. 53.
    Razi H et al (2015) Aging leads to a dysregulation in mechanically driven bone formation and resorption. J Bone Miner Res. doi: 10.1002/jbmr.2528 Google Scholar
  54. 54.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238CrossRefGoogle Scholar
  55. 55.
    Evans RK et al (2008) Effects of a 4-month recruit training program on markers of bone metabolism. Med Sci Sports Exerc 40(11):S660–S670CrossRefGoogle Scholar
  56. 56.
    Fantner GE et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616CrossRefGoogle Scholar
  57. 57.
    Gupta HS et al (2007) Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV. J R Soc Interface 4(13):277–282CrossRefGoogle Scholar
  58. 58.
    Martin P (1997) Wound healing--aiming for perfect skin regeneration. Science 276(5309):75–81CrossRefGoogle Scholar
  59. 59.
    Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746CrossRefGoogle Scholar
  60. 60.
    Murawala P, Tanaka EM, Currie JD (2012) Regeneration: the ultimate example of wound healing. Semin Cell Dev Biol 23(9):954–962CrossRefGoogle Scholar
  61. 61.
    Gurtner GC et al (2008) Wound repair and regeneration. Nature 453(7193):314–321CrossRefGoogle Scholar
  62. 62.
    Aarabi S, Longaker MT, Gurtner GC (2007) Hypertrophic scar formation following burns and trauma: new approaches to treatment. PLoS Med 4(9), e234CrossRefGoogle Scholar
  63. 63.
    Harty M et al (2003) Regeneration or scarring: an immunologic perspective. Dev Dyn 226(2):268–279CrossRefGoogle Scholar
  64. 64.
    Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 126(4):1172–1180CrossRefGoogle Scholar
  65. 65.
    Clark LD, Clark RK, Heber-Katz E (1998) A new murine model for mammalian wound repair and regeneration. Clin Immunol Immunopathol 88(1):35–45CrossRefGoogle Scholar
  66. 66.
    Birnbaum KD, Alvarado AS (2008) Slicing across kingdoms: regeneration in plants and animals. Cell 132(4):697–710CrossRefGoogle Scholar
  67. 67.
    Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68CrossRefGoogle Scholar
  68. 68.
    Metcalfe CR (1967) Distribution of latex in plant kingdom. Econ Bot 21(2):115–127CrossRefGoogle Scholar
  69. 69.
    Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331CrossRefGoogle Scholar
  70. 70.
    Hunter JR (1994) Reconsidering the functions of latex. Trees Struct Funct 9(1):1–5CrossRefGoogle Scholar
  71. 71.
    Bauer G et al (2014) Comparative study on plant latex particles and latex coagulation in Ficus benjamina, Campanula glomerata and three Euphorbia species. PLoS One 9(11):e113336CrossRefGoogle Scholar
  72. 72.
    Bauer G, Nellesen A, Speck T (2010) Biological lattices in fast self-repair mechanisms in plants and the development of bio-inspired self-healing polymers. In: Brebbia C, Carpi A (eds) Design and nature V: comparing design in nature with science and engineering. WIT, Southampton, pp 453–459CrossRefGoogle Scholar
  73. 73.
    Bauer G, Freidrich C, Gillig C, Vollrath F, Speck T, Holland C (2014) Investigating the rheological properties of native plant latex. J R Soc Interface 11(90):20130847. doi: 10.1098/rsif.2013.0847
  74. 74.
    D’Auzac J, Prevot JC, Jacob JL (1995) What’s new about lutoids – a vacuolar system model from Hevea latex. Plant Physiol Biochem 33(6):765–777Google Scholar
  75. 75.
    Gidrol X et al (1994) Hevein, a lectin-like protein from Hevea brasiliensis (rubber tree) is involved in the coagulation of latex. J Biol Chem 269(12):9278–9283Google Scholar
  76. 76.
    Wititsuwannakul R et al (2008) Hevea latex lectin binding protein in C-serum as an anti-latex coagulating factor and its role in a proposed new model for latex coagulation. Phytochemistry 69(3):656–662CrossRefGoogle Scholar
  77. 77.
    Nellesen A et al (2011) Self-healing in plants as a model for self-repairing elastomer materials. Int Polym Sci Technol 38:T/1–T/4Google Scholar
  78. 78.
    Binder W (2013) Self-healing polymers. Wiley, WeinheimCrossRefGoogle Scholar
  79. 79.
    Jin H et al (2013) Self-healing epoxies and their composites. In: Self-healing polymers: from principles to applications. Wiley, Weinheim, pp 361–380CrossRefGoogle Scholar
  80. 80.
    Rowe NP et al (2006) Diversity of mechanical architectures in climbing plants: an ecological perspective. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics: a mechanical approach to the ecology of animals and plants. CRC, Boca Raton, pp 35–59CrossRefGoogle Scholar
  81. 81.
    Rowe NP, Speck T (2004) Hydraulics and mechanics of plants: novelty, innovation and evolution. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Academic, London, pp 301–329Google Scholar
  82. 82.
    Rowe NP, Speck T (2015) Stem biomechanics, strength of attachment, and developmental plasticity of vines and lianas. In: Schnitzer S et al (eds) The ecology of lianas. Wiley-Blackwell, Chichester, pp 323–341Google Scholar
  83. 83.
    Busch S et al (2010) Morphological aspects of self-repair of lesions caused by internal growth stresses in stems of Aristolochia macrophylla and Aristolochia ringens. Proc R Soc B Biol Sci 277(1691):2113–2120CrossRefGoogle Scholar
  84. 84.
    Speck T et al (2004) The potential of plant biomechanics in functional biology and systematics. In: Stuessey T, Hörandl F, Mayer V (eds) Deep morphology: toward a renaissance of morphology in plant systematics. Koeltz, Königstein, pp 241–271Google Scholar
  85. 85.
    Luchsinger RH, Pedretti M, Reinhard A (2004) Pressure induced stability: from pneumatic structures to Tensairity. J Bionic Eng 1:141–148Google Scholar
  86. 86.
    Speck T et al (2006) Self-healing processes in nature and engineering: self-repairing biomimetic membranes for pneumatic structures. In: Brebbia CA (ed) Design and nature III: comparing design in nature with science and engineering. WIT, Southampton, pp 105–114CrossRefGoogle Scholar
  87. 87.
    Rampf M et al (2011) Self-repairing membranes for inflatable structures inspired by a rapid wound sealing process of climbing plants. J Bionic Eng 8(3):242–250CrossRefGoogle Scholar
  88. 88.
    Rampf M et al (2012) Structural and mechanical properties of flexible polyurethane foams cured under pressure. J Cell Plast 48(1):53–69CrossRefGoogle Scholar
  89. 89.
    Konrad W et al (2013) An analytic model of the self-sealing mechanism of the succulent plant Delosperma cooperi. J Theor Biol 336:96–109CrossRefGoogle Scholar
  90. 90.
    Caliaro M et al (2013) Novel method for measuring tissue pressure in herbaceous plants. Int J Plant Sci 174(2):161–170CrossRefGoogle Scholar
  91. 91.
    Beddie AD (1941) Natural root grafts in New Zealand trees. Trans R Soc New Zealand 71(3):199–203Google Scholar
  92. 92.
    Dallimore W (1917) Natural grafting of branches and roots. Bull Misc Inf (Royal Botanical Gardens Kew) 1917:303–306CrossRefGoogle Scholar
  93. 93.
    Küster E (1899) Über Stammverwachsungen. Jahrbücher für Wissenschaftliche Botanik 33:487–512Google Scholar
  94. 94.
    Millner ME (1932) Natural grafting in Hedera helix. New Phytol 31(1):2–25CrossRefGoogle Scholar
  95. 95.
    Seidel CF (1879) Über Verwachsungen von Stämmen und Zweigen von Holzgewächsen und ihren Einfluss auf das Dickenwachsthum der betreffenden Theile. Isis Sitzber, Dresden, pp 161–168Google Scholar
  96. 96.
    Hartmann HT et al (2002) Hartmann and Kesters’s plant propagation: principles and practices. Prentice-Hall, New JerseyGoogle Scholar
  97. 97.
    Yeoman MM, Brown R (1976) Implication of formation of graft union for organization in intact plant. Ann Bot 40(170):1265–1276Google Scholar
  98. 98.
    Graham BF, Bormann FH (1966) Natural root grafts. Bot Rev 32(3):255–292CrossRefGoogle Scholar
  99. 99.
    La Rue CD (1934) Root grafting in trees. Am J Bot 21(3):121–126CrossRefGoogle Scholar
  100. 100.
    Mudge K et al (2009) A history of grafting. Hortic Rev 35:437–493Google Scholar
  101. 101.
    Moore R (1982) Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33(134):533–540CrossRefGoogle Scholar
  102. 102.
    Moore R (1983) Studies of vegetative compatibility-incompatibility in higher plants. IV. The development of tensile strength in a compatible and an incompatible graft. Am J Bot 70(2):226–231CrossRefGoogle Scholar
  103. 103.
    Moore R (1984) Graft formation in Solanum pennellii (Solanaceae). Plant Cell Rep 3(5):172–175CrossRefGoogle Scholar
  104. 104.
    Moore R, Walker DB (1983) Studies of vegetative compatibility-incompatibility in higher plants. VI. Grafting of Sedum and Solanum callus tissue in vitro. Protoplasma 115(2–3):114–121CrossRefGoogle Scholar
  105. 105.
    Pedersen BH (2005) Development of tensile strength in compatible and incompatible sweet cherry graftings. Can J Bot 83(2):202–210CrossRefGoogle Scholar
  106. 106.
    Pina A, Errea P (2005) A review of new advances in mechanism of graft compatibility-incompatibility. Sci Hortic 106(1):1–11CrossRefGoogle Scholar
  107. 107.
    Yin H et al (2012) Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63(11):4219–4232CrossRefGoogle Scholar
  108. 108.
    Esau K, Evert RF, Eichhorn SE (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, HobokenGoogle Scholar
  109. 109.
    Larson PR (1994) The vascular cambium: development and structure. Springer, BerlinCrossRefGoogle Scholar
  110. 110.
    Dormling I (1963) Anatomical and histological examination of the union of scion and stock in grafts of scots pine (Pinus silvestris L.) and Norway spruce (Picea abies (L.) Karit). Stud For Suec 13:1–136Google Scholar
  111. 111.
    McCulley ME (1983) In: Moore R (ed) Vegetative compatibility responses in plants. Baylor University Press, Waco, pp 71–88Google Scholar
  112. 112.
    Moore R (1983) In: Moore R (ed) Vegetative compatibility responses in plants. Baylor University Press, Waco, pp 89–105Google Scholar
  113. 113.
    Pina A, Errea P, Martens HJ (2012) Graft union formation and cell-to-cell communication via plasmodesmata in compatible and incompatible stem unions of Prunus spp. Sci Hortic 143:144–150CrossRefGoogle Scholar
  114. 114.
    Aloni B et al (2010) Hormonal signaling in rootstock-scion interactions. Sci Hortic 127(2):119–126CrossRefGoogle Scholar
  115. 115.
    Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol Plant Mol Biol 38:179–204CrossRefGoogle Scholar
  116. 116.
    Mattsson J, Ckurshumova W, Berleth T (2003) Auxin signaling in Arabidopsis leaf vascular development. Plant Physiol 131(3):1327–1339CrossRefGoogle Scholar
  117. 117.
    Fuentes I et al (2014) Horizontal genome transfer as an asexual path to the formation of new species. Nature 511(7508):232–235CrossRefGoogle Scholar
  118. 118.
    Molnar A et al (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328(5980):872–875CrossRefGoogle Scholar
  119. 119.
    Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324(5927):649–651CrossRefGoogle Scholar
  120. 120.
    Stegemann S et al (2012) Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA 109(7):2434–2438CrossRefGoogle Scholar
  121. 121.
    Denny MW, Gaylord B (2010) Marine ecomechanics. Ann Rev Mar Sci 2(1):89–114CrossRefGoogle Scholar
  122. 122.
    Carrington E, Gosline JM (2004) Mechanical design of mussel byssus: load cycle and strain rate dependence. Am Malacol Bull 18(1/2):135–142Google Scholar
  123. 123.
    Waite JH, Qin X-X, Coyne KJ (1998) The peculiar collagens of mussel byssus. Matrix Biol 17(2):93–106CrossRefGoogle Scholar
  124. 124.
    Krauss S et al (2013) Self-repair of a biological fiber guided by an ordered elastic framework. Biomacromolecules 14(5):1520–1528CrossRefGoogle Scholar
  125. 125.
    Arnold AA et al (2013) Solid-state NMR structure determination of whole anchoring threads from the blue mussel Mytilus edulis. Biomacromolecules 14(1):132–141CrossRefGoogle Scholar
  126. 126.
    Hagenau A et al (2011) Mussel collagen molecules with silk-like domains as load-bearing elements in distal byssal threads. J Struct Biol 175(3):339–347CrossRefGoogle Scholar
  127. 127.
    Schmidt S et al (2014) Metal-mediated molecular self-healing in histidine-rich mussel peptides. Biomacromolecules 15(5):1644–1652CrossRefGoogle Scholar
  128. 128.
    Schmitt CNZ, Politi Y, Reinecke A, Harrington MJ (2015) The role of sacrificial protein-metal bond exchange in mussel byssal thread self-healing. Biomacromolecules 16(9):2852–2861. doi: 10.1021/acs.biomac.5b00803
  129. 129.
    Harrington MJ, Waite JH (2007) Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads. J Exp Biol 210(24):4307–4318CrossRefGoogle Scholar
  130. 130.
    Vaccaro E, Waite JH (2001) Yield and post-yield behavior of mussel byssal thread: a self-healing biomolecular material. Biomacromolecules 2(3):906–911CrossRefGoogle Scholar
  131. 131.
    Harrington MJ et al (2010) Iron-clad fibers: a metal-based biological strategy for hard flexible coatings. Science 328(5975):216–220CrossRefGoogle Scholar
  132. 132.
    Schmitt CNZ, Winter A, Bertinetti L, Masic A, Strauch P, Harrington MJ (2015) Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J R Soc Interface 12(110):20150466. doi: 10.1098/rsif.2015.0466
  133. 133.
    Taylor SW et al (1996) Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis. Inorg Chem 35(26):7572–7577CrossRefGoogle Scholar
  134. 134.
    Holten-Andersen N et al (2007) Protective coatings on extensible biofibres. Nat Mater 6(9):669–672CrossRefGoogle Scholar
  135. 135.
    Ashton NN et al (2013) Self-tensioning aquatic caddisfly silk: Ca2+-dependent structure, strength, and load cycle hysteresis. Biomacromolecules 14(10):3668–3681CrossRefGoogle Scholar
  136. 136.
    Yonemura N et al (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68(6):641–653CrossRefGoogle Scholar
  137. 137.
    Wang C-S et al (2014) Peroxinectin catalyzed dityrosine crosslinking in the adhesive underwater silk of a casemaker caddisfly larvae, Hysperophylax occidentalis. Insect Biochem Mol Biol 54:69–79CrossRefGoogle Scholar
  138. 138.
    Addison JB et al (2013) Beta-sheet nanocrystalline domains formed from phosphorylated serine-rich motifs in caddisfly larval silk: a solid state NMR and XRD study. Biomacromolecules 14(4):1140–1148CrossRefGoogle Scholar
  139. 139.
    Addison JB et al (2014) Reversible assembly of beta-sheet nanocrystals within caddisfly silk. Biomacromolecules 15(4):1269–1275CrossRefGoogle Scholar
  140. 140.
    Rapoport HS, Shadwick RE (2002) Mechanical characterization of an unusual elastic biomaterial from the egg capsules of marine snails (Busycon spp.). Biomacromolecules 3(1):42–50CrossRefGoogle Scholar
  141. 141.
    Harrington MJ et al (2012) Pseudoelastic behaviour of a natural material is achieved via reversible changes in protein backbone conformation. J R Soc Interface 9(76):2911–2922CrossRefGoogle Scholar
  142. 142.
    Wasko SS et al (2014) Structural proteins from whelk egg capsule with long range elasticity associated with a solid-state phase transition. Biomacromolecules 15(1):30–42CrossRefGoogle Scholar
  143. 143.
    Fischer FD, Harrington MJ, Fratzl P (2013) Thermodynamic modeling of a phase transformation in protein filaments with mechanical function. New J Phys 15(6):065004Google Scholar
  144. 144.
    Degtyar E et al (2015) Recombinant engineering of reversible cross-links into a resilient biopolymer. Polymer 69:255–263CrossRefGoogle Scholar
  145. 145.
    Fu T et al (2015) Biomimetic self-assembly of recombinant marine snail egg capsule proteins into structural coiled-coil units. J Mater Chem B 3(13):2671–2684CrossRefGoogle Scholar
  146. 146.
    Fullenkamp DE et al (2013) Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 46(3):1167–1174CrossRefGoogle Scholar
  147. 147.
    Krogsgaard M et al (2013) Self-healing mussel-inspired multi-pH-responsive hydrogels. Biomacromolecules 14(2):297–301CrossRefGoogle Scholar
  148. 148.
    Li L, Smitthipong W, Zeng H (2015) Mussel-inspired hydrogels for biomedical and environmental applications. Polym Chem 6(3):353–358CrossRefGoogle Scholar
  149. 149.
    Enke M et al (2015) Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69:274–282CrossRefGoogle Scholar
  150. 150.
    Lee BP, Konst S (2014) Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry. Adv Mater 26(21):3415–3419CrossRefGoogle Scholar
  151. 151.
    Lane DD et al (2015) Toughened hydrogels inspired by aquatic caddisworm silk. Soft Matter. doi: 10.1039/C5SM01297J Google Scholar
  152. 152.
    van der Zwaag S et al (2009) Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character. Philos Trans R Soc A Math Phys Eng Sci 367(1894):1689–1704CrossRefGoogle Scholar
  153. 153.
    Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143CrossRefGoogle Scholar
  154. 154.
    Kollmannsberger P et al (2011) The physics of tissue patterning and extracellular matrix organisation: how cells join forces. Soft Matter 7(20):9549–9560CrossRefGoogle Scholar
  155. 155.
    White SR et al (2014) Restoration of large damage volumes in polymers. Science 344(6184):620–623CrossRefGoogle Scholar
  156. 156.
    Wojtecki RJ, Meador MA, Rowan SJ (2011) Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater 10(1):14–27CrossRefGoogle Scholar
  157. 157.
    Ying H, Zhang Y, Cheng J (2014) Dynamic urea bond for the design of reversible and self-healing polymers. Nat Commun 5:3218. doi:  10.1038/ncomms4218
  158. 158.
    Cordier P et al (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980CrossRefGoogle Scholar
  159. 159.
    Vetter A et al (2013) Healing of a mechano-responsive material. Europhys Lett 104(6):68005CrossRefGoogle Scholar
  160. 160.
    Brown CL, Craig SL (2015) Molecular engineering of mechanophore activity for stress-responsive polymeric materials. Chem Sci 6(4):2158–2165CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matthew J. Harrington
    • 1
    Email author
  • Olga Speck
    • 2
  • Thomas Speck
    • 2
  • Sarah Wagner
    • 3
  • Richard Weinkamer
    • 1
  1. 1.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  2. 2.Plant Biomechanics Group Freiburg, Botanic Garden, Faculty of BiologyUniversity of Freiburg and Freiburg Materials Research Center (FMF)FreiburgGermany
  3. 3.Institute for BotanyDresden University of TechnologyDresdenGermany

Personalised recommendations