Self-Healing Functional Polymeric Materials

  • Johannes Ahner
  • Stefan Bode
  • Mathias Micheel
  • Benjamin Dietzek
  • Martin D. HagerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 273)


Self-healing materials have been intensively investigated in recent decades, whereby the healing process was mostly based on the restoration of mechanical properties after mechanical damage. However, self-healing functional polymeric materials have now become the focus of research. In recent years, several approaches have been developed for self-healing of conductivity as well as the restoration of optical properties. In contrast to the healing of mechanical properties, such as stiffness and strength, the self-healing of functional materials focuses on the restoration of functionalities after damage caused by harmful environments (e.g., high temperatures or irradiation). The ultimate goal is the investigation or mimicking of a multifunctional self-healing system (e.g., biological material). In this review, the current state of the art in self-healing functional polymeric materials is summarized. In particular, we discuss self-healing conductive materials, healable optoelectronics, and functional coatings.


Conductivity Conjugated polymers Functional materials Self-healing materials 



The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for financial support within the framework of the priority program SPP1568 (Design and Generic Principles of Self-healing Materials; HA6306/3-1, DI1517/9-1).


  1. 1.
    Yang Y, Urban MW (2013) Self-healing polymeric materials. Chem Soc Rev 42(17):7446–7467CrossRefGoogle Scholar
  2. 2.
    Zhang MQ, Rong MZ (2013) Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym Chem 4(18):4878–4884CrossRefGoogle Scholar
  3. 3.
    Billiet S, Hillewaere XKD, Teixeira RFA, Du Prez FE (2013) Chemistry of crosslinking processes for self-healing polymers. Macromol Rapid Commun 34(4):290–309CrossRefGoogle Scholar
  4. 4.
    van der Zwaag S (2007) An introduction to material design principles: damage prevention versus damage management. In: van der Zwaag S (ed) Self healing materials, vol 100, Springer series in materials science. Springer, Dordrecht, pp 1–18CrossRefGoogle Scholar
  5. 5.
    Guimard NK, Oehlenschlaeger KK, Zhou JW, Hilf S, Schmidt FG, Barner-Kowollik C (2012) Current trends in the field of self-healing materials. Macromol Chem Phys 213(2):131–143CrossRefGoogle Scholar
  6. 6.
    Garcia SJ (2014) Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J 53:118–125CrossRefGoogle Scholar
  7. 7.
    Odom SA, Caruso MM, Finke AD, Prokup AM, Ritchey JA, Leonard JH, White SR, Sottos NR, Moore JS (2010) Restoration of conductivity with TTF-TCNQ charge-transfer salts. Adv Funct Mater 20(11):1721–1727CrossRefGoogle Scholar
  8. 8.
    Blaiszik BJ, Kramer SLB, Grady ME, McIlroy DA, Moore JS, Sottos NR, White SR (2012) Autonomic restoration of electrical conductivity. Adv Mater 24(3):398–401CrossRefGoogle Scholar
  9. 9.
    Amendola V, Meneghetti M (2009) Self-healing at the nanoscale. Nanoscale 1(1):74–88CrossRefGoogle Scholar
  10. 10.
    Zheng Q, Juette MF, Jockusch S, Wasserman MR, Zhou Z, Altman RB, Blanchard SC (2014) Ultra-stable organic fluorophores for single-molecule research. Chem Soc Rev 43(4):1044–1056CrossRefGoogle Scholar
  11. 11.
    Williams KA, Boydston AJ, Bielawski CW (2007) Towards electrically conductive, self-healing materials. J R Soc Interface 4(13):359–362CrossRefGoogle Scholar
  12. 12.
    Neilson BM, Tennyson AG, Bielawski CW (2012) Advances in bis(N-heterocyclic carbene) chemistry: new classes of structurally dynamic materials. J Phys Org Chem 25(7):531–543CrossRefGoogle Scholar
  13. 13.
    Norris BC, Bielawski CW (2010) Structurally dynamic materials based on bis(N-heterocyclic carbene)s and bis(isothiocyanate)s: toward reversible, conjugated polymers. Macromolecules 43(8):3591–3593CrossRefGoogle Scholar
  14. 14.
    Hager MD, Greil P, Leyens C, van der Zwaag S, Schubert US (2010) Self-healing materials. Adv Mater 22(47):5424–5430CrossRefGoogle Scholar
  15. 15.
    Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18(1):41–62CrossRefGoogle Scholar
  16. 16.
    White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409(6822):794–797CrossRefGoogle Scholar
  17. 17.
    Tennyson AG, Norris B, Bielawski CW (2010) Structurally dynamic conjugated polymers. Macromolecules 43(17):6923–6935CrossRefGoogle Scholar
  18. 18.
    Hucker M, Bond I, Bleay S, Haq S (2003) Experimental evaluation of unidirectional hollow glass fibre/epoxy composites under compressive loading. Compos A Appl Sci Manuf 34(10):927–932CrossRefGoogle Scholar
  19. 19.
    Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM (2008) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18(1):44–52CrossRefGoogle Scholar
  20. 20.
    Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39(5):1703–1710CrossRefGoogle Scholar
  21. 21.
    Rule JD, Sottos NR, White SR (2007) Effect of microcapsule size on the performance of self-healing polymers. Polymer 48(12):3520–3529CrossRefGoogle Scholar
  22. 22.
    Blaiszik BJ, Sottos NR, White SR (2008) Nanocapsules for self-healing materials. Compos Sci Technol 68(3–4):978–986CrossRefGoogle Scholar
  23. 23.
    Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20(10):3288–3297CrossRefGoogle Scholar
  24. 24.
    Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20(6):719–730CrossRefGoogle Scholar
  25. 25.
    Lanzara G, Yoon Y, Liu H, Peng S, Lee WI (2009) Carbon nanotube reservoirs for self-healing materials. Nanotechnology 20(33):335704CrossRefGoogle Scholar
  26. 26.
    Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6(8):581–585CrossRefGoogle Scholar
  27. 27.
    Williams HR, Trask RS, Knights AC, Williams ER, Bond IP (2008) Biomimetic reliability strategies for self-healing vascular networks in engineering materials. J R Soc Interface 5(24):735–747CrossRefGoogle Scholar
  28. 28.
    Hamilton AR, Sottos NR, White SR (2010) Self-healing of internal damage in synthetic vascular materials. Adv Mater 22(45):5159–5163CrossRefGoogle Scholar
  29. 29.
    Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451(7181):977–980CrossRefGoogle Scholar
  30. 30.
    Kersey FR, Loveless DM, Craig SL (2007) A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. J R Soc Interface 4(13):373–380CrossRefGoogle Scholar
  31. 31.
    Chujo Y, Sada K, Nomura R, Naka A, Saegusa T (1993) Photogelation and redox properties of anthracene disulfide-modified polyoxazolines. Macromolecules 26(21):5611–5614CrossRefGoogle Scholar
  32. 32.
    Chung CM, Roh YS, Cho SY, Kim JG (2004) Crack healing in polymeric materials via photochemical [2+2] cycloaddition. Chem Mater 16(21):3982–3984CrossRefGoogle Scholar
  33. 33.
    Banerjee S, Tripathy R, Cozzens D, Nagy T, Keki S, Zsuga M, Faust R (2015) Photoinduced smart, self-healing polymer sealant for photovoltaics. ACS Appl Mater Interfaces 7(3):2064–2072CrossRefGoogle Scholar
  34. 34.
    Kang HS, Kim HT, Park JK, Lee S (2014) Light-powered healing of a wearable electrical conductor. Adv Funct Mater 24(46):7273–7283CrossRefGoogle Scholar
  35. 35.
    Gruendling T, Kaupp M, Blinco JP, Barner-Kowollik C (2011) Photoinduced conjugation of dithioester- and trithiocarbonate-functional RAFT polymers with alkenes. Macromolecules 44(1):166–174CrossRefGoogle Scholar
  36. 36.
    Otsuka H, Nagano S, Kobashi Y, Maeda T, Takahara A (2010) A dynamic covalent polymer driven by disulfide metathesis under photoirradiation. Chem Commun 46(7):1150–1152CrossRefGoogle Scholar
  37. 37.
    Scott TF, Schneider AD, Cook WD, Bowman CN (2005) Photoinduced plasticity in cross-linked polymers. Science 308(5728):1615–1617CrossRefGoogle Scholar
  38. 38.
    Burnworth M, Tang LM, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C (2011) Optically healable supramolecular polymers. Nature 472(7343):334–338CrossRefGoogle Scholar
  39. 39.
    Coulibaly S, Roulin A, Balog S, Biyani MV, Foster EJ, Rowan SJ, Fiore GL, Weder C (2014) Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals. Macromolecules 47(1):152–160CrossRefGoogle Scholar
  40. 40.
    Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920):1458–1460CrossRefGoogle Scholar
  41. 41.
    Wang ZH, Yang Y, Burtovyy R, Luzinov I, Urban MW (2014) UV-induced self-repairing polydimethylsiloxane-polyurethane (PDMS-PUR) and polyethylene glycol-polyurethane (PEG-PUR) Cu-catalyzed networks. J Mater Chem A 2(37):15527–15534CrossRefGoogle Scholar
  42. 42.
    Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44(6):921–937CrossRefGoogle Scholar
  43. 43.
    Kowalski D, Ueda M, Ohtsuka T (2010) Self-healing ion-permselective conducting polymer coating. J Mater Chem 20(36):7630–7633CrossRefGoogle Scholar
  44. 44.
    Kwok N, Hahn HT (2007) Resistance heating for self-healing composites. J Compos Mater 41(13):1635–1654CrossRefGoogle Scholar
  45. 45.
    Lv LP, Zhao Y, Vilbrandt N, Gallei M, Vimalanandan A, Rohwerder M, Landfester K, Crespy D (2013) Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J Am Chem Soc 135(38):14198–14205CrossRefGoogle Scholar
  46. 46.
    Vimalanandan A, Lv LP, Tran TH, Landfester K, Crespy D, Rohwerder M (2013) Redox-responsive self-healing for corrosion protection. Adv Mater 25(48):6980–6984CrossRefGoogle Scholar
  47. 47.
    Vogt AP, Sumerlin BS (2009) Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization. Soft Matter 5(12):2347–2351CrossRefGoogle Scholar
  48. 48.
    Deng GH, Tang CM, Li FY, Jiang HF, Chen YM (2010) Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties. Macromolecules 43(3):1191–1194CrossRefGoogle Scholar
  49. 49.
    Jay JI, Langheinrich K, Hanson MC, Mahalingam A, Kiser PF (2011) Unequal stoichiometry between crosslinking moieties affects the properties of transient networks formed by dynamic covalent crosslinks. Soft Matter 7(12):5826–5835CrossRefGoogle Scholar
  50. 50.
    Ge Z, Hu J, Huang F, Liu S (2009) Responsive supramolecular gels constructed by crown ether based molecular recognition. Angew Chem Int Ed 48(10):1798–1802CrossRefGoogle Scholar
  51. 51.
    Craven JM (1969) US Patent 3.435.003Google Scholar
  52. 52.
    Chen XX, Dam MA, Ono K, Mal A, Shen HB, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295(5560):1698–1702CrossRefGoogle Scholar
  53. 53.
    Chen XX, Wudl F, Mal AK, Shen HB, Nutt SR (2003) New thermally remendable highly cross-linked polymeric materials. Macromolecules 36(6):1802–1807CrossRefGoogle Scholar
  54. 54.
    Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42(6):1906–1912CrossRefGoogle Scholar
  55. 55.
    Kötteritzsch J, Stumpf S, Höppener S, Vitz J, Hager MD, Schubert US (2013) One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions. Macromol Chem Phys 214(14):1636–1649CrossRefGoogle Scholar
  56. 56.
    Kötteritzsch J, Hager MD, Schubert US (2015) Tuning the self-healing behavior of one-component intrinsic polymers. Polymer 69:321–329CrossRefGoogle Scholar
  57. 57.
    Oehlenschlaeger KK, Mueller JO, Brandt J, Hilf S, Lederer A, Wilhelm M, Graf R, Coote ML, Schmidt FG, Barner-Kowollik C (2014) Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv Mater 26(21):3561–3566CrossRefGoogle Scholar
  58. 58.
    Inglis AJ, Nebhani L, Altintas O, Schmidt FG, Barner-Kowollik C (2010) Rapid bonding/debonding on demand: reversibly cross-linked functional polymers via Diels-Alder chemistry. Macromolecules 43(13):5515–5520CrossRefGoogle Scholar
  59. 59.
    Burattini S, Colquhoun HM, Fox JD, Friedmann D, Greenland BW, Harris PJF, Hayes W, Mackay ME, Rowan SJ (2009) A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. Chem Commun 44:6717–6719CrossRefGoogle Scholar
  60. 60.
    Burattini S, Colquhoun HM, Greenland BW, Hayes W (2009) A novel self-healing supramolecular polymer system. Faraday Discuss 143:251–264CrossRefGoogle Scholar
  61. 61.
    Burattini S, Greenland BW, Merino DH, Weng WG, Seppala J, Colquhoun HM, Hayes W, Mackay ME, Hamley IW, Rowan SJ (2010) A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions. J Am Chem Soc 132(34):12051–12058CrossRefGoogle Scholar
  62. 62.
    Lafont U, van Zeijl H, van der Zwaag S (2012) Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfide-based thermosets. ACS Appl Mater Interfaces 4(11):6280–6288CrossRefGoogle Scholar
  63. 63.
    Canadell J, Goossens H, Klumperman B (2011) Self-healing materials based on disulfide links. Macromolecules 44(8):2536–2541CrossRefGoogle Scholar
  64. 64.
    Kuhl N, Bode S, Bose RK, Vitz J, Seifert A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2015) Acylhydrazones as reversible covalent crosslinkers for self-healing polymers. Adv Funct Mater 25(22):3295–3301CrossRefGoogle Scholar
  65. 65.
    Sandmann B, Bode S, Hager M, Schubert U (2013) Metallopolymers as an emerging class of self-healing materials. In: Percec V (ed) Hierarchical macromolecular structures: 60 Years after the Staudinger Nobel Prize II, vol 262, Advances in polymer science. Springer International, Cham, pp 239–257CrossRefGoogle Scholar
  66. 66.
    Bode S, Bose RK, Matthes S, Ehrhardt M, Seifert A, Schacher FH, Paulus RM, Stumpf S, Sandmann B, Vitz J, Winter A, Hoeppener S, Garcia SJ, Spange S, van der Zwaag S, Hager MD, Schubert US (2013) Self-healing metallopolymers based on cadmium bis(terpyridine) complex containing polymer networks. Polym Chem 4(18):4966–4973CrossRefGoogle Scholar
  67. 67.
    Kupfer S, Zedler L, Guthmuller J, Bode S, Hager MD, Schubert US, Popp J, Grafe S, Dietzek B (2014) Self-healing mechanism of metallopolymers investigated by QM/MM simulations and Raman spectroscopy. Phys Chem Chem Phys 16(24):12422–12432CrossRefGoogle Scholar
  68. 68.
    Enke M, Bode S, Vitz J, Schacher FH, Harrington MJ, Hager MD, Schubert US (2015) Self-healing response in supramolecular polymers based on reversible zinc–histidine interactions. Polymer 69:274–282CrossRefGoogle Scholar
  69. 69.
    Bode S, Zedler L, Schacher FH, Dietzek B, Schmitt M, Popp J, Hager MD, Schubert US (2013) Self-healing polymer coatings based on crosslinked metallosupramolecular copolymers. Adv Mater 25(11):1634–1638CrossRefGoogle Scholar
  70. 70.
    Mozhdehi D, Ayala S, Cromwell OR, Guan ZB (2014) Self-healing multiphase polymers via dynamic metal-ligand interactions. J Am Chem Soc 136(46):16128–16131CrossRefGoogle Scholar
  71. 71.
    Kalista SJ, Ward TC (2007) Thermal characteristics of the self-healing response in poly (ethylene-co-methacrylic acid) copolymers. J R Soc Interface 4(13):405–411CrossRefGoogle Scholar
  72. 72.
    Kalista SJ (2007) Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct 14(5):391–397CrossRefGoogle Scholar
  73. 73.
    Kalista SJ, Pflug JR, Varley RJ (2013) Effect of ionic content on ballistic self-healing in EMAA copolymers and ionomers. Polym Chem 4(18):4910–4926CrossRefGoogle Scholar
  74. 74.
    Varley RJ, van der Zwaag S (2008) Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration. Acta Mater 56(19):5737–5750CrossRefGoogle Scholar
  75. 75.
    Varley RJ, van der Zwaag S (2008) Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions. Polym Test 27(1):11–19CrossRefGoogle Scholar
  76. 76.
    Varley RJ, van der Zwaag S (2010) Autonomous damage initiated healing in a thermo-responsive ionomer. Polym Int 59(8):1031–1038Google Scholar
  77. 77.
    Bose RK, Lafont U, Vega JM, Garcia SJ, van der Zwaag S (2013) Methods to monitor and quantify (self-) healing in polymers and polymer systems. In: Self-healing polymers. Wiley-VCH, Weinheim, pp 335–359CrossRefGoogle Scholar
  78. 78.
    Zedler L, Hager MD, Schubert US, Harrington MJ, Schmitt M, Popp J, Dietzek B (2014) Monitoring the chemistry of self-healing by vibrational spectroscopy - current state and perspectives. Mater Today 17(2):57–69CrossRefGoogle Scholar
  79. 79.
    Chen JH, Shi TW, Cai TC, Xu T, Sun LT, Wu XS, Yu DP (2013) Self healing of defected graphene. Appl Phys Lett 102(10):103107CrossRefGoogle Scholar
  80. 80.
    Tee BCK, Wang C, Allen R, Bao ZN (2012) An electrically and mechanically self-healing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat Nanotechnol 7(12):825–832CrossRefGoogle Scholar
  81. 81.
    Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao ZA (2013) Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat Chem 5(12):1043–1049CrossRefGoogle Scholar
  82. 82.
    Hou CY, Duan YR, Zhang QH, Wang HZ, Li YG (2012) Bio-applicable and electroactive near-infrared laser-triggered self-healing hydrogels based on graphene networks. J Mater Chem 22(30):14991–14996CrossRefGoogle Scholar
  83. 83.
    Peng RG, Yu Y, Chen S, Yang YK, Tang YH (2014) Conductive nanocomposite hydrogels with self-healing property. RSC Adv 4(66):35149–35155CrossRefGoogle Scholar
  84. 84.
    Hur J, Im K, Kim SW, Kim J, Chung DY, Kim TH, Jo KH, Hahn JH, Bao ZA, Hwang S, Park N (2014) Polypyrrole/agarose-based electronically conductive and reversibly restorable hydrogel. ACS Nano 8(10):10066–10076CrossRefGoogle Scholar
  85. 85.
    Li Y, Chen SS, Wu MC, Sun JQ (2012) Polyelectrolyte multilayers impart healability to highly electrically conductive films. Adv Mater 24(33):4578–4582CrossRefGoogle Scholar
  86. 86.
    Sun H, You X, Jiang YS, Guan GZ, Fang X, Deng J, Chen PN, Luo YF, Peng HS (2014) Self-healable electrically conducting wires for wearable microelectronics. Angew Chem Int Ed 53(36):9526–9531CrossRefGoogle Scholar
  87. 87.
    Zhang DL, Ju X, Li LH, Kang Y, Gong XL, Li BJ, Zhang S (2015) An efficient multiple healing conductive composite via host-guest inclusion. Chem Commun (Camb) 51(29):6377–6380CrossRefGoogle Scholar
  88. 88.
    Odom SA, Tyler TP, Caruso MM, Ritchey JA, Schulmerich MV, Robinson SJ, Bhargava R, Sottos NR, White SR, Hersam MC, Moore JS (2012) Autonomic restoration of electrical conductivity using polymer-stabilized carbon nanotube and graphene microcapsules. Appl Phys Lett 101(4):043106CrossRefGoogle Scholar
  89. 89.
    Kang S, Jones AR, Moore JS, White SR, Sottos NR (2014) Microencapsulated carbon black suspensions for restoration of electrical conductivity. Adv Funct Mater 24(20):2947–2956CrossRefGoogle Scholar
  90. 90.
    Blaiszik BJ, Jones AR, Sottos NR, White SR (2014) Microencapsulation of gallium-indium (Ga-In) liquid metal for self-healing applications. J Microencapsul 31(4):350–354CrossRefGoogle Scholar
  91. 91.
    Odom SA, Chayanupatkul S, Blaiszik BJ, Zhao O, Jackson AC, Braun PV, Sottos NR, White SR, Moore JS (2012) A self-healing conductive ink. Adv Mater 24(19):2578–2581CrossRefGoogle Scholar
  92. 92.
    So JH, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19(22):3632–3637CrossRefGoogle Scholar
  93. 93.
    Palleau E, Reece S, Desai SC, Smith ME, Dickey MD (2013) Self-healing stretchable wires for reconfigurable circuit wiring and 3D microfluidics. Adv Mater 25(11):1589–1592CrossRefGoogle Scholar
  94. 94.
    Bubel S, Menyo MS, Mates TE, Waite JH, Chabinyc ML (2015) Schmitt trigger using a self-healing ionic liquid gated transistor. Adv Mater 27(21):3331–3335CrossRefGoogle Scholar
  95. 95.
    Boydston AJ, Williams KA, Bielawski CW (2005) A modular approach to main-chain organometallic polymers. J Am Chem Soc 127(36):12496–12497CrossRefGoogle Scholar
  96. 96.
    Boydston AJ, Rice JD, Sanderson MD, Dykhno OL, Bielawski CW (2006) Synthesis and study of bidentate benzimidazolylidene - group 10 metal complexes and related main-chain organometallic polymers. Organometallics 25(26):6087–6098CrossRefGoogle Scholar
  97. 97.
    Khramov DM, Boydston AJ, Bielawski CW (2006) Synthesis and study of Janus bis(carbene)s and their transition-metal complexes. Angew Chem Int Ed 45(37):6186–6189CrossRefGoogle Scholar
  98. 98.
    Boydston AJ, Bielawski CW (2006) Bis(imidazolylidene)s as modular building blocks for monomeric and macromolecular organometallic materials. Dalton Trans 34:4073–4077CrossRefGoogle Scholar
  99. 99.
    Meyer CD, Joiner CS, Stoddart JF (2007) Template-directed synthesis employing reversible imine bond formation. Chem Soc Rev 36(11):1705–1723CrossRefGoogle Scholar
  100. 100.
    Fukuda K, Shimoda M, Sukegawa M, Nobori T, Lehn JM (2012) Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chem 14(10):2907–2911CrossRefGoogle Scholar
  101. 101.
    Ro S, Rowan SJ, Pease AR, Cram DJ, Stoddart JF (2000) Dynamic hemicarcerands and hemicarceplexes. Org Lett 2(16):2411–2414CrossRefGoogle Scholar
  102. 102.
    Bozdemir OA, Barin G, Belowich ME, Basuray AN, Beuerle F, Stoddart JF (2012) Dynamic covalent templated-synthesis of [c2] daisy chains. Chem Commun 48(84):10401–10403CrossRefGoogle Scholar
  103. 103.
    Belowich ME, Stoddart JF (2012) Dynamic imine chemistry. Chem Soc Rev 41(6):2003–2024CrossRefGoogle Scholar
  104. 104.
    Janeliunas D, van Rijn P, Boekhoven J, Minkenberg CB, van Esch JH, Eelkema R (2013) Aggregation-driven reversible formation of conjugated polymers in water. Angew Chem Int Ed 52(7):1998–2001CrossRefGoogle Scholar
  105. 105.
    Zhao DH, Moore JS (2003) Folding-driven reversible polymerization of oligo(m-phenylene ethynylene) imines: solvent and starter sequence studies. Macromolecules 36(8):2712–2720CrossRefGoogle Scholar
  106. 106.
    Kovaricek P, Lehn JM (2012) Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes. J Am Chem Soc 134(22):9446–9455CrossRefGoogle Scholar
  107. 107.
    Kim DY, Sinha-Ray S, Park JJ, Lee JG, Cha YH, Bae SH, Ahn JH, Jung YC, Kim SM, Yarin AL, Yoon SS (2014) Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv Funct Mater 24(31):4986–4995CrossRefGoogle Scholar
  108. 108.
    Um JE, Chung CH, Lee DC, Yoo PJ, Kim WJ (2014) Restoration of the genuine electronic properties of functionalized single-walled carbon nanotubes. RSC Adv 4(81):42930–42935CrossRefGoogle Scholar
  109. 109.
    Benight SJ, Wang C, Tok JBH, Bao ZA (2013) Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 38(12):1961–1977CrossRefGoogle Scholar
  110. 110.
    Liu JQ, Song GS, He CC, Wang HL (2013) Self-healing in tough graphene oxide composite hydrogels. Macromol Rapid Commun 34(12):1002–1007CrossRefGoogle Scholar
  111. 111.
    Kim JT, Kim BK, Kim EY, Kwon SH, Jeong HM (2013) Synthesis and properties of near IR induced self-healable polyurethane/graphene nanocomposites. Eur Polym J 49(12):3889–3896CrossRefGoogle Scholar
  112. 112.
    Roy S, Baral A, Banerjee A (2013) An amino-acid-based self-healing hydrogel: modulation of the self-healing properties by incorporating carbon-based nanomaterials. Chem Eur J 19(44):14950–14957CrossRefGoogle Scholar
  113. 113.
    Caruso MM, Schelkopf SR, Jackson AC, Landry AM, Braun PV, Moore JS (2009) Microcapsules containing suspensions of carbon nanotubes. J Mater Chem 19(34):6093–6096CrossRefGoogle Scholar
  114. 114.
    Pastine SJ, Okawa D, Zettl A, Frechet JMJ (2009) Chemicals on demand with phototriggerable microcapsules. J Am Chem Soc 131(38):13586–13587CrossRefGoogle Scholar
  115. 115.
    Mineart KP, Lin YL, Desai SC, Krishnan AS, Spontak RJ, Dickey MD (2013) Ultrastretchable, cyclable and recyclable 1- and 2-dimensional conductors based on physically cross-linked thermoplastic elastomer gels. Soft Matter 9(32):7695–7700CrossRefGoogle Scholar
  116. 116.
    Coillot D, Méar FO, Podor R, Montagne L (2010) Autonomic self-repairing glassy materials. Adv Funct Mater 20(24):4371–4374CrossRefGoogle Scholar
  117. 117.
    Coillot D, Méar FO, Podor R, Montagne L (2011) Influence of the active particles on the self-healing efficiency in glassy matrix. Adv Eng Mater 13(5):426–435CrossRefGoogle Scholar
  118. 118.
    Jackson AC, Bartelt JA, Braun PV (2011) Transparent self-healing polymers based on encapsulated plasticizers in a thermoplastic matrix. Adv Funct Mater 21(24):4705–4711CrossRefGoogle Scholar
  119. 119.
    Gerth M, Bohdan M, Fokkink R, Voets IK, van der Gucht J, Sprakel J (2014) Supramolecular assembly of self-healing nanocomposite hydrogels. Macromol Rapid Commun 35(24):2065–2070CrossRefGoogle Scholar
  120. 120.
    Vidyasagar A, Handore K, Sureshan KM (2011) Soft optical devices from self-healing gels formed by oil and sugar-based organogelators. Angew Chem Int Ed 50(35):8021–8024CrossRefGoogle Scholar
  121. 121.
    Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci (49–50):3–33. doi: 10.1016/j.progpolymsci.2015.04.002
  122. 122.
    Rodriguez ED, Luo XF, Mather PT (2011) Linear/network poly(epsilon-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl Mater Interfaces 3(2):152–161CrossRefGoogle Scholar
  123. 123.
    Lee MW, An S, Lee C, Liou M, Yarin AL, Yoon SS (2014) Self-healing transparent core-shell nanofiber coatings for anti-corrosive protection. J Mater Chem A 2(19):7045–7053CrossRefGoogle Scholar
  124. 124.
    Wang X, Liu F, Zheng XW, Sun JQ (2011) Water-enabled self-healing of polyelectrolyte multilayer coatings. Angew Chem Int Ed 50(48):11378–11381CrossRefGoogle Scholar
  125. 125.
    Lei XF, Chen Y, Zhang HP, Li XJ, Yao P, Zhang QY (2013) Space survivable polyimides with excellent optical transparency and self-healing properties derived from hyperbranched polysiloxane. ACS Appl Mater Interfaces 5(20):10207–10220CrossRefGoogle Scholar
  126. 126.
    Ham MH, Choi JH, Boghossian AA, Jeng ES, Graff RA, Heller DA, Chang AC, Mattis A, Bayburt TH, Grinkova YV, Zeiger AS, Van Vliet KJ, Hobbie EK, Sligar SG, Wraight CA, Strano MS (2010) Photoelectrochemical complexes for solar energy conversion that chemically and autonomously regenerate. Nat Chem 2(11):929–936CrossRefGoogle Scholar
  127. 127.
    Surendranath Y, Lutterman DA, Liu Y, Nocera DG (2012) Nucleation, growth, and repair of a cobalt-based oxygen evolving catalyst. J Am Chem Soc 134(14):6326–6336CrossRefGoogle Scholar
  128. 128.
    Lutterman DA, Surendranath Y, Nocera DG (2009) A self-healing oxygen-evolving catalyst. J Am Chem Soc 131(11):3838–3839CrossRefGoogle Scholar
  129. 129.
    Tromholt T, Manor A, Katz EA, Krebs FC (2011) Reversible degradation of inverted organic solar cells by concentrated sunlight. Nanotechnology 22(22):225401CrossRefGoogle Scholar
  130. 130.
    Verbakel F, Meskers SCJ, Janssen RAJ (2006) Electronic memory effects in diodes from a zinc oxide nanoparticle-polystyrene hybrid material. Appl Phys Lett 89(10):102103CrossRefGoogle Scholar
  131. 131.
    Verbakel F, Meskers SCJ, Janssen RAJ (2007) Electronic memory effects in diodes of zinc oxide nanoparticles in a matrix of polystyrene or poly(3-hexylthiophene). J Appl Phys 102(8):083701CrossRefGoogle Scholar
  132. 132.
    Amendola V, Dini D, Polizzi S, Sheng J, Kadish KM, Calvete MJF, Hanack M, Meneghetti M (2009) Self-healing of gold nanoparticles in the presence of zinc phthalocyanines and their very efficient nonlinear absorption performances. J Phys Chem C 113(20):8688–8695CrossRefGoogle Scholar
  133. 133.
    Saito M, Nishimura T, Sakiyama K, Inagaki S (2012) Self-healing of optical functions by molecular metabolism in a swollen elastomer. AIP Adv 2(4):042118CrossRefGoogle Scholar
  134. 134.
    Saito M, Sakiyama K (2013) Self-healable photochromic elastomer that transmits optical signals depending on the pulse frequency. J Opt 15(10):105404CrossRefGoogle Scholar
  135. 135.
    Chen S, Li X, Li Y, Sun J (2015) Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric. ACS Nano 9(4):4070–4076CrossRefGoogle Scholar
  136. 136.
    Xue CH, Zhang ZD, Zhang J, Jia ST (2014) Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO2 nanoparticles and polydimethylsiloxane. J Mater Chem A 2(36):15001–15007CrossRefGoogle Scholar
  137. 137.
    Wei Q, Schlaich C, Prevost S, Schulz A, Bottcher C, Gradzielski M, Qi ZH, Haag R, Schalley CA (2014) Supramolecular polymers as surface coatings: rapid fabrication of healable superhydrophobic and slippery surfaces. Adv Mater 26(43):7358–7364CrossRefGoogle Scholar
  138. 138.
    Liu YH, Liu YP, Hu HY, Liu ZL, Pei XW, Yu B, Yan PX, Zhou F (2015) Mechanically induced self-healing superhydrophobicity. J Phys Chem C 119(13):7109–7114CrossRefGoogle Scholar
  139. 139.
    Zhang Y, Rocco C, Karasu F, van der Ven LGJ, van Benthem RATM, Allonas X, Croutxé-Barghorn C, Esteves ACC, de With G (2015) UV-cured self-replenishing hydrophobic polymer films. Polymer 69:384–393CrossRefGoogle Scholar
  140. 140.
    Esteves ACC, Luo Y, van de Put MWP, Carcouët CCM, de With G (2014) Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv Funct Mater 24(7):986–992CrossRefGoogle Scholar
  141. 141.
    Wang Y, Liu XW, Zhang HF, Zhou ZP (2015) Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates. AIP Adv 5(4):041314CrossRefGoogle Scholar
  142. 142.
    Zhu DD, Lu XM, Lu QH (2014) Electrically conductive PEDOT coating with self-healing superhydrophobicity. Langmuir 30(16):4671–4677CrossRefGoogle Scholar
  143. 143.
    Liu QZ, Wang XL, Yu B, Zhou F, Xue QJ (2012) Self-healing surface hydrophobicity by consecutive release of hydrophobic molecules from mesoporous silica. Langmuir 28(13):5845–5849CrossRefGoogle Scholar
  144. 144.
    Wang HX, Zhou H, Gestos A, Fang J, Niu HT, Ding J, Lin T (2013) Robust, electro-conductive, self-healing superamphiphobic fabric prepared by one-step vapour-phase polymerisation of poly(3,4-ethylenedioxythiophene) in the presence of fluorinated decyl polyhedral oligomeric silsesquioxane and fluorinated alkyl silane. Soft Matter 9(1):277–282CrossRefGoogle Scholar
  145. 145.
    Wang H, Xue Y, Ding J, Feng L, Wang X, Lin T (2011) Durable, self-healing superhydrophobic and superoleophobic surfaces from fluorinated-decyl polyhedral oligomeric silsesquioxane and hydrolyzed fluorinated alkyl silane. Angew Chem Int Ed 50(48):11433–11436CrossRefGoogle Scholar
  146. 146.
    Wang HD, Zhou H, Gestos A, Fang J, Lin T (2013) Robust, superamphiphobic fabric with multiple self-healing ability against both physical and chemical damages. ACS Appl Mater Interfaces 5(20):10221–10226CrossRefGoogle Scholar
  147. 147.
    Zhou H, Wang HX, Niu HT, Gestos A, Lin T (2013) Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv Funct Mater 23(13):1664–1670CrossRefGoogle Scholar
  148. 148.
    Wang H, Zhu BW, Jiang WC, Yang Y, Leow WR, Wang H, Chen XD (2014) A mechanically and electrically self-healing supercapacitor. Adv Mater 26(22):3638–3643CrossRefGoogle Scholar
  149. 149.
    Huang WG, Besar K, Zhang Y, Yang SY, Wiedman G, Liu Y, Guo WM, Song J, Hemker K, Hristova K, Kymissis IJ, Katz HE (2015) A high-capacitance salt-free dielectric for self-healable, printable, and flexible organic field effect transistors and chemical sensor. Adv Funct Mater 25(24):3745–3755CrossRefGoogle Scholar
  150. 150.
    James NK, Lafont U, van der Zwaag S, Groen WA (2014) Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites. Smart Mater Struct 23(5):055001CrossRefGoogle Scholar
  151. 151.
    Gu J, Yan Y, Krizan JW, Gibson QD, Detweiler ZM, Cava RJ, Bocarsly AB (2014) p-Type CuRhO2 as a self-healing photoelectrode for water reduction under visible light. J Am Chem Soc 136(3):830–833CrossRefGoogle Scholar
  152. 152.
    Lafont U, Moreno-Belle C, van Zeijl H, van der Zwaag S (2013) Self-healing thermally conductive adhesives. J Intell Mater Syst Struct 25(1):67–74CrossRefGoogle Scholar
  153. 153.
    Ramuz M, Tee BC-K, Tok JB-H, Bao Z (2012) Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv Mater 24(24):3223–3227CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Johannes Ahner
    • 1
    • 2
  • Stefan Bode
    • 1
    • 2
  • Mathias Micheel
    • 3
    • 4
  • Benjamin Dietzek
    • 2
    • 3
    • 4
  • Martin D. Hager
    • 1
    • 2
    Email author
  1. 1.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  2. 2.Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaJenaGermany
  3. 3.Institute of Physical Chemistry and Abbe Center of PhotonicsFriedrich-Schiller-University JenaJenaGermany
  4. 4.Leibniz Institute of Photonic Technology (IPHT) e.V.JenaGermany

Personalised recommendations