Self-Nucleation of Crystalline Phases Within Homopolymers, Polymer Blends, Copolymers, and Nanocomposites

  • R. M. Michell
  • A. Mugica
  • M. Zubitur
  • A. J. MüllerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 276)


Self-nucleation (SN) is a special nucleation process triggered by self-seeds or self-nuclei that are generated in a given polymeric material by specific thermal protocols or by inducing chain orientation in the molten or partially molten state. SN increases the nucleation density of polymers by several orders of magnitude, producing significant modifications to their morphology and overall crystallization kinetics. In fact, SN can be used as a tool for investigating the overall isothermal crystallization kinetics of slow-crystallizing materials by accelerating the primary nucleation stage in a previous SN step. Additionally, SN can facilitate the formation of one particular crystalline phase in polymorphic materials. The SN behavior of a given polymer is influenced by its molecular weight, molecular topology, and chemical structure, among other intrinsic and extrinsic characteristics. This review paper focuses on the applications of DSC-based SN techniques to study the nucleation, crystallization, and morphology of different types of polymers, blends, copolymers, and nanocomposites.


Crystallization rate Melt memory Self-nucleation 



The POLYMAT/UPV/EHU team would like to acknowledge funding from the following projects: “UPV/EHU Infrastructure: INF 14/38”; “MINECO/FEDER: SINF130I001726XV1/Ref.: UNPV13-4E-1726” and “MINECO MAT2014-53437-C2-2-P”.


  1. 1.
    Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J Polym Sci B Polym Lett 4:481–486CrossRefGoogle Scholar
  2. 2.
    Fillon B, Wittmann JC, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotatic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B 31:1383–1393CrossRefGoogle Scholar
  3. 3.
    Müller AJ, Balsamo V, Arnal ML (2005) Nucleation and crystallization in diblock and triblock copolymers. Adv Polym Sci 190:1–63CrossRefGoogle Scholar
  4. 4.
    Lorenzo AT, Arnal ML, Sánchez JJ, Müller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci Polym Phys 44:1738–1750CrossRefGoogle Scholar
  5. 5.
    Vanden Poel G, Mathot VBF (2007) High performance differential scanning calorimetry (HPer DSC): a powerful analytical tool for the study of the metastability of polymers. Thermochim Acta 461:107–121CrossRefGoogle Scholar
  6. 6.
    Müller AJ, Michell RM, Pérez RA, Lorenzo AT (2015) Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur Polym J 65:132–154CrossRefGoogle Scholar
  7. 7.
    Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30:559–603CrossRefGoogle Scholar
  8. 8.
    Arandia I, Mugica A, Zubitur M et al (2015) How composition determines the properties of isodimorphic poly(butylene succinate-ran-butylene azelate) random biobased copolymers: from single to double crystalline random copolymers. Macromolecules 48:43–57CrossRefGoogle Scholar
  9. 9.
    Allegra G (ed) (2005) Advances in polymer science series: interphases and mesophases in polymer crystallization, vol I–III. Springer, BerlinGoogle Scholar
  10. 10.
    Bassett DC, Turner B (1974) On the phenomenology of chain-extended crystallization in PE. Philos Mag 29:925–955CrossRefGoogle Scholar
  11. 11.
    Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Role of mobile phases in the crystallization of polyethylene. Part 1. Metastability and lateral growth. Macromolecules 24:6384–6391CrossRefGoogle Scholar
  12. 12.
    Okada T, Saito H, Inoue T (1992) Time-resolved light scattering studies on the early stage of crystallization in isotactic polypropylene. Macromolecules 25:1908–1911CrossRefGoogle Scholar
  13. 13.
    Imai M, Mori K, Mizukami T, Kaji K, Kanaya Y (1992) Structural formation of poly(ethylene terephthalate) during the induction period of crystallization: 2. Kinetic analysis based on the theories of phase separation. Polymer 33:4457–4462CrossRefGoogle Scholar
  14. 14.
    Ezquerra TA, López-Cabarcos E, Hsiao BS, Balta-Calleja FJ (1996) Precursors of crystallization via density fluctuations in stiff-chain polymers. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 54:989–992Google Scholar
  15. 15.
    Terrill NJ, Fairclough PA, Towns-Andrews E, Komanschek BU, Young RJ, Ryan AJ (1998) Density fluctuations: the nucleation event in isotactic polypropylene crystallization. Polymer 39:2381–2385CrossRefGoogle Scholar
  16. 16.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Spinodal-assisted crystallization in polymer melts. Phys Rev Lett 81:373–376CrossRefGoogle Scholar
  17. 17.
    Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Conformational change and orientation fluctuations of isotactic polystyrene prior to crystallization. Polym J 31:722–727CrossRefGoogle Scholar
  18. 18.
    Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: a major route followed in polymer crystallization. Eur Phys J E 3:165–183CrossRefGoogle Scholar
  19. 19.
    Lotz B (2000) What can polymer crystal structure tell about polymer crystallization processes. Eur Phys J E 3:185–194CrossRefGoogle Scholar
  20. 20.
    Cho K, Saheb DN, Choi J, Yang H (2002) Real time in situ X-ray diffraction studies on the melting memory effect in the crystallization of β-isotactic polypropylene. Polymer 43:1407–1416CrossRefGoogle Scholar
  21. 21.
    Lotz B (2005) Analysis and observation of polymer crystal structures at the individual stem level. Adv Polym Sci 180:17–44CrossRefGoogle Scholar
  22. 22.
    Li L, De Jeu WH (2005) Flow-induced mesophases in crystallizable polymers. Adv Polym Sci 181:75–120CrossRefGoogle Scholar
  23. 23.
    Allegra G, Meille SV (2005) Pre-crystalline, high-entropy aggregates: a role in polymer crystallization. Adv Polym Sci 191:87–135CrossRefGoogle Scholar
  24. 24.
    Kaji K, Nishida K, Kanaya T, Matsuba G, Konishi T, Imai M (2005) Spinodal crystallization of polymers: crystallization from the unstable melt. Adv Polym Sci 191:187–240CrossRefGoogle Scholar
  25. 25.
    Muthukumar M (2005) Modeling polymer crystallization. Adv Polym Sci 191:241–274CrossRefGoogle Scholar
  26. 26.
    Alfonso GC, Ziabicki A (1995) Memory effects in isothermal crystallization II. Isotactic polypropylene. Colloid Polym Sci 273:317–323CrossRefGoogle Scholar
  27. 27.
    Alfonso GC, Scardigli P (1997) Melt memory effects in polymer crystallization. Macromol Symp 118:323–328CrossRefGoogle Scholar
  28. 28.
    Balzano L, Rastogi S, Peters G (2011) Self-nucleation of polymers with flow: the case of bimodal polyethylene. Macromolecules 44:2926–2933CrossRefGoogle Scholar
  29. 29.
    Bastiaansen CWM, Meyer HEH, Lemstra PJ (1990) Memory effects in polyethylenes: influence of processing and crystallization history. Polymer 31:1435–1440CrossRefGoogle Scholar
  30. 30.
    Cavallo D, Zhang L, Portale G, Alfonso GC, Janani H, Alamo RG (2014) Unusual crystallization behavior of isotactic polypropylene and propene/1-alkene copolymers at large undercoolings. Polymer 55:3234–3241CrossRefGoogle Scholar
  31. 31.
    Cho K, Saheb DN, Yanga H, Kanga BI, Kim J, Lee SS (2003) Memory effect of locally ordered α-phase in the melting and phase transformation behavior of β-isotactic polypropylene. Polymer 44:4053–4059CrossRefGoogle Scholar
  32. 32.
    Di Lorenzo ML, Righet MC (2004) Morphological analysis of poly(butylene terephthalate) spherulites during fusion. Polym Bull 53:53–62CrossRefGoogle Scholar
  33. 33.
    Gurarslan A, Joijode AS, Tonelli AE (2012) Polymers coalesced from their cyclodextrin inclusion complexes: what can they tell us about the morphology of melt-crystallized polymers. J Polym Sci B Polym Phys 50:813–823CrossRefGoogle Scholar
  34. 34.
    Häfele A, Heck B, Kawai T, Kohn P, Strobl G (2005) Crystallization of a poly(ethylene-co-octene): I. A precursor structure and two competing mechanisms. Eur Phys J E 16:207–216CrossRefGoogle Scholar
  35. 35.
    Häfele A, Heck B, Hippler T, Kawai T, Kohn P, Strobl G (2005) Crystallization of poly(ethylene-co-octene): II. Melt memory effects on first order kinetics. Eur Phys J E 16:217–224CrossRefGoogle Scholar
  36. 36.
    Horst RH, Winter HH (2000) Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization. Macromolecules 33:7538–7543CrossRefGoogle Scholar
  37. 37.
    Gao H, Vadlamudi M, Alamo RG, Hu W (2013) Monte Carlo simulations of strong memory effect of crystallization in random copolymers. Macromolecules 46:6498–6506CrossRefGoogle Scholar
  38. 38.
    He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of poly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states. Polymer 49:5670–5675CrossRefGoogle Scholar
  39. 39.
    Jorda R, Wilkes GL (1988) Rapid recrystallization of freshly melted spherulites. Polym Bull 19:409–415CrossRefGoogle Scholar
  40. 40.
    Kawabata J, Matsuba G, Nishida K, Inoue R, Kanaya T (2011) Melt memory effects on recrystallization of polyamide 6 revealed by depolarized light scattering and small-angle X-ray scattering. J Appl Polym Sci 122:1913–1920CrossRefGoogle Scholar
  41. 41.
    Li X, Su F, Ji Y et al (2013) Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter 9:8579–8588CrossRefGoogle Scholar
  42. 42.
    Li X, Ma Z, Su F et al (2014) New understanding on the memory effect of crystallized iPP. Chin J Polym Sci 32:1224–1233CrossRefGoogle Scholar
  43. 43.
    Luo C, Sommer JU (2013) Disentanglement of linear polymer chains toward unentangled crystals. ACS Macro Lett 2:31–34CrossRefGoogle Scholar
  44. 44.
    Martins JA, Zhang W, Brito AM (2010) Origin of the melt memory effect in polymer crystallization. Polymer 51:4185–4194CrossRefGoogle Scholar
  45. 45.
    Massa MV, Lee MSM, Dalnoki-Veress K (2005) Crystal nucleation of polymers confined to droplets: memory effects. J Polym Sci B Polym Phys 43:3438–3443CrossRefGoogle Scholar
  46. 46.
    Maus A, Hempel E, Thurn-Albrecht T, Saalwächter K (2007) Memory effect in isothermal crystallization of syndiotactic polypropylene - role of melt structure and dynamics. Eur Phys J E 23:91–101CrossRefGoogle Scholar
  47. 47.
    Mendez G, Müller AJ (1997) Evidences of the crystalline memory and recrystallisation capacity of bisphenol-A polycarbonate. J Therm Anal 50:593–602CrossRefGoogle Scholar
  48. 48.
    Prox M, Pomnimit B, Yarga J, Ehrenstein GW (1990) Thermoanalytical investigations of self-reinforced polyethylene. J Therm Anal 36:1675–1684CrossRefGoogle Scholar
  49. 49.
    Rault J, Robelin E (1980) Memory effect in liquid polyolefine. Polym Bull 2:373–381CrossRefGoogle Scholar
  50. 50.
    Reid BO, Vadlamudi M, Mamun A et al (2013) Strong memory effect of crystallization above the equilibrium melting point of random copolymers. Macromolecules 46:6485–6497CrossRefGoogle Scholar
  51. 51.
    Stribeck N, Bösecke P, Bayer R, Camarillo AA (2005) Structure transfer between a polymer melt and the solid state. Investigation of the nanostructure evolution in oriented polyethylene by means of continuous X-ray scattering. Progr Colloid Polym Sci 130:127–139Google Scholar
  52. 52.
    Varga J, Menczel J, Solti A (1976) Memory effect of low-density polyethylene crystallized in a stepwise manner. J Therm Anal 10:433–440CrossRefGoogle Scholar
  53. 53.
    Varga J, Menczel J, Solti A (1979) The melting of high-pressure polyethylene subjected to stepwise heat treatment. J Therm Anal 17:333–342CrossRefGoogle Scholar
  54. 54.
    Varga J, Schulek-Tóth F, Ille A (1991) Effect of fusion conditions of β-polypropylene on the new crystallization. Colloid Polym Sci 269:655–666CrossRefGoogle Scholar
  55. 55.
    Varga J, Schulek-Tóth E (1996) Crystallization, melting and spherulitic structure of Β-nucleated random propylene copolymers. J Therm Anal 47:941–955CrossRefGoogle Scholar
  56. 56.
    Vasanthan N (2003) “Orientation induced memory effect” in polyamides and the relationship to hydrogen bonding. J Appl Polym Sci 90:772–775CrossRefGoogle Scholar
  57. 57.
    Wang M, Hu W, Ma Y, Ma Y (2005) Orientational relaxation together with polydispersity decides precursor formation in polymer melt crystallization. Macromolecules 38:2806–2812CrossRefGoogle Scholar
  58. 58.
    Xu J, Ma Y, Hu W, Rehahn M, Reiter G (2009) Cloning polymer single crystals through self-seeding. Nat Mater 8:348–353CrossRefGoogle Scholar
  59. 59.
    Yamato M, Kimura T (2006) Relationship between magnetic alignment and the crystallization condition of isotactic polystyrene. Sci Technol Adv Mater 7:337–341CrossRefGoogle Scholar
  60. 60.
    Zheng C, Zhang X, Dong X et al (2006) Variations of regular conformation structures in melt of syndiotactic polypropylene. Polymer 47:7813–7820CrossRefGoogle Scholar
  61. 61.
    Zhou T, Yang H, Ning N, Xiang Y, Du R, Fu Q (2010) Partial melting and recrystallization of isotactic polypropylene. Chin J Polym Sci 28:77–83CrossRefGoogle Scholar
  62. 62.
    Zhu H, Yang H, Zhao Y, Wang D (2011) The dynamic crystallization and multiple melting behavior of polypropylene in the in-reactor alloy: a differential scanning calorimetry study. J Appl Polym Sci 121:1372–1383CrossRefGoogle Scholar
  63. 63.
    Zhu X, Li Y, Yan D, Zhu P, Lu Q (2001) Influence of the order of polymer melt on the crystallization behavior: I. Double melting endotherms of isotactic polypropylene. Colloid Polym Sci 279:292–296CrossRefGoogle Scholar
  64. 64.
    Turska E, Gogolewski S (1975) Study on crystallization of nylon 6 (polycapramide). III. Effect of “crystalline memory” on crystallization kinetics. J Appl Polym Sci 19:637–644CrossRefGoogle Scholar
  65. 65.
    Di Filippo G, Gonzalez ME, Gasiba MT, Müller AJ (1987) Crystalline memory on polycarbonate. J Appl Polym Sci 34:1959–1966CrossRefGoogle Scholar
  66. 66.
    Mehl NA, Rebenfeld L (1992) Effect of melt history on the crystallization kinetics of poly(phenylene sulfide). Polym Eng Sci 32:1451–1457CrossRefGoogle Scholar
  67. 67.
    Fillon B, Lotz B, Thierry A, Wittman JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys 31:1395–1405CrossRefGoogle Scholar
  68. 68.
    Fillon B, Thierry A, Wittman JC, Lotz B (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci B Polym Phys 31:1407–1424CrossRefGoogle Scholar
  69. 69.
    Supaphol P, Spruiell JE (2000) Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. J Appl Polym Sci 75:337–346CrossRefGoogle Scholar
  70. 70.
    Gallez F, Legras R, Mercier JP (1976) Crystallization of bisphenol-A polycarbonate. I. Influence of trimellitic acid tridecyloctyl ester on the kinetics of crystallization. J Polym Sci Polym Phys Ed 14:1367–1377CrossRefGoogle Scholar
  71. 71.
    Khanna YP, Reimschuessel AC (1988) Memory effects in polymers. I. Orientational memory in the molten state; its relationship to polymer structure and influence on recrystallization rate and morphology. J Appl Polym Sci 35:2259–2268CrossRefGoogle Scholar
  72. 72.
    Khanna YP, Kumar R, Reimschuessel AC (1988) Memory effects in polymers. III. Processing history vs. crystallization rate of nylon 6-comments on the origin of memory effect. Polym Eng Sci 28:1607–1611CrossRefGoogle Scholar
  73. 73.
    Kim SP, Kim SC (1993) Crystallization kinetics of poly(ethylene terephthalate): memory effect of shear history. Polym Eng Sci 33:83–91CrossRefGoogle Scholar
  74. 74.
    Khanna YP, Kuhn WP, Macur JE et al (1995) Memory effects in polymers. V. Processing history versus thermally induced self-orientation of unoriented poly(chlorotrifluoroethylene) films. J Polym Sci B Polym Phys 33:1023–1030CrossRefGoogle Scholar
  75. 75.
    Schneider S, Drujon X, Lotz B, Wittmann JC (2001) Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase). Polymer 42:8787–8798CrossRefGoogle Scholar
  76. 76.
    Supaphol P, Srimoaon P, Sirivat A (2004) Effects of crystalline and orientational memory phenomena on the isothermal bulk crystallization and subsequent melting behavior of poly(trimethylene terephthalate). Polym Int 53:1118–1126CrossRefGoogle Scholar
  77. 77.
    Rieger J (2003) Polymer crystallization viewed in the general context of particle formation and crystallization. In: Sommer JU, Reiter G (eds) Polymer crystallization: observations, concepts and interpretations. Springer, Berlin, pp 7–16CrossRefGoogle Scholar
  78. 78.
    Azzurri F, Alfonso GC (2008) Insights into formation and relaxation of shear-induced nucleation precursors in isotactic polystyrene. Macromolecules 41:1377–1383CrossRefGoogle Scholar
  79. 79.
    Somani RH, Yang L, Hsiao BS (2002) Precursors of primary nucleation induced by flow in isotactic polypropylene. Physica A 304:145–157CrossRefGoogle Scholar
  80. 80.
    Azzurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38:1723–1728CrossRefGoogle Scholar
  81. 81.
    Cavallo D, Azzurri F, Balzano L, Funari SS, Alfonso GC (2010) Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules 43:9394–9400CrossRefGoogle Scholar
  82. 82.
    Gai JG, Cao Y (2013) Structure memory effects and rheological behaviors of polyethylenes in processing temperature window. J Appl Polym Sci 129:354–361CrossRefGoogle Scholar
  83. 83.
    Janeschitz-Kriegla H, Ratajski E (2005) Kinetics of polymer crystallization under processing conditions: transformation of dormant nuclei by the action of flow. Polymer 46:3856–3870CrossRefGoogle Scholar
  84. 84.
    Somani RH, Sics I, Hsiao BS (2006) Thermal stability of shear-induced precursor structures in isotactic polypropylene by rheo-X-ray techniques with couette flow geometry. J Polym Sci B Polym Phys 44:3553–3570CrossRefGoogle Scholar
  85. 85.
    Tao F, Bonnaud L, Auhl D, Struth B, Dubois P, Bailly C (2012) Influence of shear-induced crystallization on the electrical conductivity of high density polyethylene carbon nanotube nanocomposites. Polymer 53:5909–5916CrossRefGoogle Scholar
  86. 86.
    Zhang W, Martins JA (2006) Evaluation of the effect of melt memory on shear-induced crystallization of low-density polyethylene. Macromol Rapid Commun 27:1067–1072CrossRefGoogle Scholar
  87. 87.
    Arnal ML, Matos ME, Morales RA, Santana O, Müller AJ (1998) Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix. Macromol Chem Phys 199:2275–2288CrossRefGoogle Scholar
  88. 88.
    Arnal ML, Müller AJ, Maiti P, Hikosaka M (2000) Nucleation and crystallization of isotactic poly(propylene) droplets in an immiscible polystyrene matrix. Macromol Chem Phys 201:2493–2504CrossRefGoogle Scholar
  89. 89.
    Córdova ME, Lorenzo AT, Müller AJ, Gani L, Tence-Girault S, Leibler L (2011) The influence of blend morphology (co-continuous or sub-micrometer droplets dispersions) on the nucleation and crystallization kinetics of double cerystalline polyethylene/polyamide blends prepared by reactive extrusion. Macromol Chem Phys 212:1335–1350CrossRefGoogle Scholar
  90. 90.
    Gao Y, Liu H (2007) Crystallization behavior of dry-brush PEO-PS block copolymer and PEO homopolymer blend. J Appl Polym Sci 106:2718–2723CrossRefGoogle Scholar
  91. 91.
    Ibarretxe J, Groeninckx G, Bremer L, Mathot VBF (2009) Quantitative evaluation of fractionated and homogeneous nucleation of polydisperse distributions of water-dispersed maleic anhydride-grafted grafted polypropylene. Polymer 50:4584–4595CrossRefGoogle Scholar
  92. 92.
    Luo C, Han X, Gao Y, Liu H, Hu Y (2009) Crystallization behavior of “wet brush” and “dry brush” blends of PS-b-PEO-b-PS/h-PEO. J Appl Polym Sci 113:907–915CrossRefGoogle Scholar
  93. 93.
    Morales RA, Arnal ML, Müller AJ (1995) The evaluation of the state of dispersion in immiscible blends where the minor phase exhibits fractionated crystallization. Polym Bull 35:379–386CrossRefGoogle Scholar
  94. 94.
    Müller AJ, Arnal ML, López-Carrasquero F (2002) Nucleation and crystallization of PS-b-PEO-b-PCL triblock copolymers. Macromol Symp 183:199–204CrossRefGoogle Scholar
  95. 95.
    Müller AJ, Albuerne J, Esteves LM et al (2004) Confinement effects on the crystallization kinetics and self-nucleation of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Macromol Symp 215:369–382CrossRefGoogle Scholar
  96. 96.
    Müller AJ, Albuerne JML, Raquez JM et al (2005) Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(e-caprolactone) diblock copolymers. Faraday Discuss 128:231–252CrossRefGoogle Scholar
  97. 97.
    Arnal ML, López-Carrasquero F, Laredo E, Müller AJ (2004) Coincident or sequential crystallization of PCL and PEO blocks within polystyrene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) linear triblock copolymers. Eur Polym J 40:1461–1476CrossRefGoogle Scholar
  98. 98.
    Müller AJ, Balsamo V, Arnal ML, Jakob T, Schmalz H, Abetz V (2002) Homogeneous nucleation and fractionated crystallization in block copolymers. Macromolecules 35:3048–3058CrossRefGoogle Scholar
  99. 99.
    Manaure AC, Müller AJ (2000) Nucleation and crystallization of blends of poly(propylene) and ethylene/α-olefin copolymers. Macromol Chem Phys 201:958–972CrossRefGoogle Scholar
  100. 100.
    Molinuevo CH, Mendez GA, Müller AJ (1998) Nucleation and crystallization of PET droplets dispersed in an amorphous PC matrix. J Appl Polym Sci 70:1725–1735CrossRefGoogle Scholar
  101. 101.
    Castillo RV, Müller AJ (2009) Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers. Prog Polym Sci 34:519–560CrossRefGoogle Scholar
  102. 102.
    Müller AJ, Balsamo V, Arnal ML (2007) Crystallization in block copolymers with more than one crystallizable block. In: Reiter G, Strobl G (eds) Lecture notes in physics: progress in understanding of polymer crystallization, vol 714. Springer, Berlin, pp 229–259CrossRefGoogle Scholar
  103. 103.
    Müller AJ, Arnal ML, Lorenzo AT (2013) Crystallization in nano-confined polymeric systems. In: Piorkowska E, Rutledge G (eds) Handbook of polymer crystallization. Wiley, New York, pp 347–378CrossRefGoogle Scholar
  104. 104.
    Michell RM, Blaszczy-Lezak I, Mijangos C, Müller AJ (2013) Confinement effects on polymer crystallization: from droplets to alumina nanopores. Polymer 54:4059–4077CrossRefGoogle Scholar
  105. 105.
    Michell RM, Blaszczyk-Lezak I, Mijangos C, Müller AJ (2014) Confined crystallization of polymers within anodic aluminum oxide templates. J Polym Sci B Polym Phys 52:1179–1194CrossRefGoogle Scholar
  106. 106.
    Santana OO, Müller AJ (1994) Homogeneous nucleation of the dispersed crystallisable component of immiscible polymer blends. Polym Bull 32:471–477CrossRefGoogle Scholar
  107. 107.
    Manaure AC, Morales RA, Sánchez JJ, Müller AJ (1997) Rheological and calorimetric evidences of the fractionated crystallization of iPP dispersed in ethylene/α-olefin copolymers. J Appl Polym Sci 66:2481–2493CrossRefGoogle Scholar
  108. 108.
    Chen HL, Wu JC, Lin TL, Lin JS (2001) Crystallization kinetics in microphase-separated poly(ethylene oxide)-block-poly(1,4-butadiene). Macromolecules 34:6936–6944CrossRefGoogle Scholar
  109. 109.
    Balsamo V, Paolini Y, Ronca G, Müller AJ (2000) Crystallization of the polyethylene block in polystyrene-b-polyethylene-b-polycaprolactone triblock copolymers, 1. Self-nucleation behavior. Macromol Chem Phys 201:2711–2720CrossRefGoogle Scholar
  110. 110.
    Schmalz H, Muller AJ, Abetz V (2003) Crystallization in ABC triblock copolymers with two different crystalline end blocks: influence of confinement on self-nucleation behavior. Macromol Chem Phys 204:111–124CrossRefGoogle Scholar
  111. 111.
    Boschetti-de-Fierro A, Lorenzo AT, Müller AJ, Schmalz H, Abetz V (2008) Crystallization kinetics of PEO and PE in different triblock terpolymers: effect of microdomain geometry and confinement. Macromol Chem Phys 209:476–487CrossRefGoogle Scholar
  112. 112.
    Huang CL, Jiao L, Zeng JB, Zhang JJ, Yang KK, Wang YZ (2013) Fractional crystallization and homogeneous nucleation of confined PEG microdomains in PBS-PEG multiblock copolymers. J Phys Chem B 117:10665–10676CrossRefGoogle Scholar
  113. 113.
    Castillo RV, Müller AJ, Lin MC, Chen HL, Jeng US, Hillmyer MA (2008) Confined crystallization and morphology of melt segregated PLLA-b-PE and PLDA-b-PE diblock copolymers macromolecules. Macromolecules 41:6154–6164CrossRefGoogle Scholar
  114. 114.
    Lin MC, Chen HL, Lin WF, Huang PS, Tsai JC (2012) Crystallization of isotactic polypropylene under the spatial confinement templated by block copolymer microdomains. J Phys Chem B 116(40):12357–12371CrossRefGoogle Scholar
  115. 115.
    Müller AJ, Lorenzo AT, Arnal ML, Boschetti de Fierro A, Abetz V (2006) Self-nucleation behavior of the polyethylene block as function of the confinement degree in polyethylene-block-polystyrene diblock copolymers. Macromol Symp 240:114–122CrossRefGoogle Scholar
  116. 116.
    Lorenzo AT, Arnal ML, Müller AJ, Boschetti-de-Fierro A, Abetz V (2007) Nucleation and isothermal crystallization of the polyethylene block within diblock copolymers containing polystyrene and poly(ethylene-alt-propylene). Macromolecules 40:5023–5037CrossRefGoogle Scholar
  117. 117.
    Lorenzo AT, Müller AJ, Lin MC et al (2009) Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PCL2) 4-miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. Macromolecules 42:8353–8364CrossRefGoogle Scholar
  118. 118.
    Pan Y, Yu X, Shi T, An L (2010) Nucleation and crystallization of H-shaped (PS)2PEG(PS)2 block copolymers. Chin J Polym Sci 28:347–355CrossRefGoogle Scholar
  119. 119.
    Pérez RA, Córdova ME, López JV et al (2014) Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. React Funct Polym 80:71–82CrossRefGoogle Scholar
  120. 120.
    Chen H, Hsiao S, Lin T, Yamauchi K, Hasegawa H, Hashimoto T (2001) Microdomain-tailored crystallization kinetics of block copolymers. Macromolecules 34:671–674CrossRefGoogle Scholar
  121. 121.
    Hamley IW (1998) The physics of block copolymers. Oxford University Press, LondonGoogle Scholar
  122. 122.
    Wunderlich B (1976) Macromolecular physics. Crystal nucleation, growth, annealing, vol 2. Academic, New YorkGoogle Scholar
  123. 123.
    Supaphol P, Lin JS (2001) Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior. Polymer 42:9617–9626CrossRefGoogle Scholar
  124. 124.
    Mamun A, Unemoto S, Okui N, Ishihara N (2007) Microdomain-tailored crystallization kinetics of block copolymers. Macromolecules 40:6296–6303CrossRefGoogle Scholar
  125. 125.
    Zhang YS, Zhong LW, Yang S, Liang DH, Chen EQ (2012) Memory effect on solution crystallization of high molecular weight poly(ethylene oxide). Polymer 53:3621–3628CrossRefGoogle Scholar
  126. 126.
    Cheng SZD (2008) Phase transitions in polymers: the role of metastable states, 1st edn. Elsevier Science, AmsterdamGoogle Scholar
  127. 127.
    Mamun A, Chen X, Alamo RG (2014) Interplay between a strong memory effect of crystallization and liquid-liquid phase separation in melts of broadly distributed ethylene-1-alkene copolymers. Macromolecules 47:7958–7970CrossRefGoogle Scholar
  128. 128.
    Wang Y, Lu Y, Zhao J, Jiang Z, Men Y (2014) Direct formation of different crystalline forms in butene-1/ethylene copolymer via manipulating melt temperature. Macromolecules 47:8653–8662CrossRefGoogle Scholar
  129. 129.
    Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso GC (2013) On cross- and self-nucleation in seeded crystallization of isotactic poly(1-butene). Polymer 54:4637–4644CrossRefGoogle Scholar
  130. 130.
    Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso GC (2014) Self-nucleation of isotactic poly(1-butene) in the trigonal modification. Polymer 55:137–142CrossRefGoogle Scholar
  131. 131.
    Chocinski-Arnault L, Gaudefroy V, Gacougnolle JL, Rivière A (2002) Memory effect and crystalline structure in polyamide 11. J Macromol Sci B 41:777–785CrossRefGoogle Scholar
  132. 132.
    Dai PS, Cebe P, Capel M (2002) Thermal analysis and X-ray scattering study of metallocene isotactic polypropylene prepared by partial melting. J Polym Sci B Polym Phys 40:1644–1660CrossRefGoogle Scholar
  133. 133.
    Kang J, Zhang J, Chen Z et al (2014) Isothermal crystallization behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res 21:506CrossRefGoogle Scholar
  134. 134.
    Kang J, Chen Z, Chen J et al (2015) Crystallization and melting behaviors of the β-nucleated isotactic polypropylene with different melt structures - the role of molecular weight. Thermochim Acta 599:42–51CrossRefGoogle Scholar
  135. 135.
    Na B, Pan H, Lv R, Zhu J, Li C (2012) A facile route to ordered γ phase in poly(vinylidene fluoride) via melt annealing and re-crystallization. Mater Lett 85:37–39CrossRefGoogle Scholar
  136. 136.
    Pan H, Na B, Lv R, Li C, Zhu J, Yu Z (2012) Polar phase formation in poly(vinylidene fluoride) induced by melt annealing. J Polym Sci B Polym Phys 50:1433–1437CrossRefGoogle Scholar
  137. 137.
    Schenk H, Peschar R (2004) Understanding the structure of chocolate. Radiat Phys Chem 71:829–835CrossRefGoogle Scholar
  138. 138.
    Wu MC, Woo EM (2005) Effects of α-form or β-form nuclei on polymorphic crystalline morphology of poly(butylene adipate). Polym Int 54:1681–1688CrossRefGoogle Scholar
  139. 139.
    Gu Q, Wu L, Wu D, Shen D (2001) Effect of self-nucleation on the crystallization of segmented copolymer poly(ether ester). J Appl Polym Sci 81:498–504CrossRefGoogle Scholar
  140. 140.
    Kang J, Li J, Chen S et al (2013) Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci 129:2663–2670CrossRefGoogle Scholar
  141. 141.
    Kang J, Li J, Chen S et al (2013) Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci 130:25–38CrossRefGoogle Scholar
  142. 142.
    Lorenzo AT, Müller AJ (2008) Estimation of the nucleation and crystal growth contributions to overall crystallization energy barrier. J Polym Sci B Polym Phys 46:1478–1487CrossRefGoogle Scholar
  143. 143.
    Nanaki SG, Papageorgiou GZ, Bikiaris DN (2012) Crystallization of novel poly(ε-caprolactone)-block-poly(propylene adipate) copolymers. J Therm Anal Calorim 108:633–645CrossRefGoogle Scholar
  144. 144.
    Papageorgiou GZ, Achilias DS, Karayannidis GP (2010) Estimation of thermal transitions in poly(ethylene naphthalate): experiments and modeling using isoconversional methods. Polymer 51:2565–2575CrossRefGoogle Scholar
  145. 145.
    Papageorgiou GZ, Panayiotou C (2011) Crystallization and melting of biodegradable poly(propylene suberate). Thermochim Acta 523:187–199CrossRefGoogle Scholar
  146. 146.
    Papageorgiou ZG, Bikiaris DN, Achilias DS (2012) Spherulite growth rates of in situ prepared poly(propylene terephthalate)/SiO2 nanocomposites. J Therm Anal Calorim 114:431–440CrossRefGoogle Scholar
  147. 147.
    Papageorgiou GZ, Achilias DS, Bikiaris DN (2009) Crystallization kinetics and melting behaviour of the novel biodegradable polyesters poly(propylene azelate) and poly(propylene sebacate). Macromol Chem Phys 210:90–107CrossRefGoogle Scholar
  148. 148.
    Papageorgiou GZ, Bikiaris DN, Achilias DS, Karagiannidis N (2010) Synthesis, crystallization, and enzymatic degradation of the biodegradable polyester poly(ethylene azelate). Macromol Chem Phys 211:2585–2595CrossRefGoogle Scholar
  149. 149.
    Sisti L, Finelli L, Lotti N, Berti C, Munari A (2003) Memory effect in melting behaviour, crystallization kinetics and morphology of poly(propylene terephthalate). ePolymers 54:1–19Google Scholar
  150. 150.
    Xu Y, Wang Y, Xu T, Jingjing Z, Liu C, Shen C (2014) Crystallization kinetics and morphology of partially melted poly(lactic acid). Polym Test 37:179–185CrossRefGoogle Scholar
  151. 151.
    Zhu X, Li Y, Yan D, Fang Y (2001) Crystallization behavior of partially melting isotactic polypropylene. Polymer 42:9217–9222CrossRefGoogle Scholar
  152. 152.
    Zhao Y, Vaughan AS, Sutton SJ, Swingler SG (2001) On nucleation and the evolution of morphology in a propylene/ethylene copolymer. Polymer 42:6599–6608CrossRefGoogle Scholar
  153. 153.
    Albuerne J, Marquez L, Müller AJ et al (2003) Nucleation and crystallization in double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Macromolecules 36:1633–1644CrossRefGoogle Scholar
  154. 154.
    Cai J, Li T, Han Y, Zhuang Y, Zhang X (2006) Nonisothermal crystallization kinetics and morphology of self-seeded syndiotactic 1,2-polybutadiene. J Appl Polym Sci 100:1479–1491CrossRefGoogle Scholar
  155. 155.
    Zheng H, Wang B, Zheng G, Wang Z, Dai K, Liu C (2014) Study on crystallization kinetics of partially melting polyethylene aiming to improve mechanical properties. Ind Eng Chem Res 53:6211–6220CrossRefGoogle Scholar
  156. 156.
    Schulze R, Arras MML, Helbing C et al (2014) How the calorimetric properties of a crystalline copolymer correlate to its surface nanostructures. Macromolecules 47:1705–1714CrossRefGoogle Scholar
  157. 157.
    Kanga J, Penga H, Wanga B et al (2015) Investigation on the self-nucleation behavior of controlled-rheology polypropylene. J Macromol Sci B 54:127–142CrossRefGoogle Scholar
  158. 158.
    Tidick P, Fakirov S, Avramova N, Zachmann HG (1984) Effect of the melt annealing time on the crystallization of nylon-6 with various molecular weights. Colloid Polym Sci 262:445–449CrossRefGoogle Scholar
  159. 159.
    Fillon B, Lotz B, Thierry A, Wittmann JC (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B 31:1395–1405CrossRefGoogle Scholar
  160. 160.
    Abraham F, Schmidt HW (2010) 1,3,5-Benzenetrisamide based nucleating agents for poly(vinylidene fluoride). Polymer 51:913–921CrossRefGoogle Scholar
  161. 161.
    Anderson KS, Hillmyer MA (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035CrossRefGoogle Scholar
  162. 162.
    Bouza R, Marco C, Naffakh M, Barral L, Ellis G (2011) Effect of particle size and a processing aid on the crystallization and melting behavior of iPP/red pine wood flour composites. Compos Part A 42:935–949CrossRefGoogle Scholar
  163. 163.
    Dai J, Shen Y, Yang J, Huang T, Zhang N, Wang Y (2014) Crystallization and melting behaviors of polypropylene admixed by graphene and β-phase nucleating agent. Colloid Polym Sci 292:923–933CrossRefGoogle Scholar
  164. 164.
    Fanegas N, Gómez MA, Marco C, Jiménez I, Ellis G (2007) Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer 48:5324–5331CrossRefGoogle Scholar
  165. 165.
    Gahleitner M, Kheirandish GS, Wolfschwenger J (2011) Nucleation of polypropylene homo and copolymers. Int Polym Proc 26:2–20CrossRefGoogle Scholar
  166. 166.
    Laoutid F, Estrada E, Michell RM, Bonnaud L, Müller AJ, Dubois P (2013) The influence of nanosilica on the nucleation, crystallization and tensile properties of PP-PC and PP-PA blends. Polymer 54:3982–3993CrossRefGoogle Scholar
  167. 167.
    Libster D, Aserin A, Garti N (2007) Advanced nucleating agents for polypropylene. Polym Adv Technol 18:685–695CrossRefGoogle Scholar
  168. 168.
    Müller AJ, Arnal ML, Trujillo M, Lorenzo AT (2011) Super-nucleation in nanocomposites and confinement effects on the crystallizable components within block copolymers, Miktoarm star copolymers and nanocomposites. Eur Polym J 47:614–629CrossRefGoogle Scholar
  169. 169.
    Patil N, Invigorito C, Gahleitner M, Rastogi S (2013) Influence of a particulate nucleating agent on the quiescent and flow-induced crystallization of isotactic polypropylene. Polymer 54:5883–5891CrossRefGoogle Scholar
  170. 170.
    Pérez RA, López JV, Hoskins JN et al (2014) Macromolecules nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones). Macromolecules 47:3553–3566CrossRefGoogle Scholar
  171. 171.
    Priftis D, Sakellariou G, Hadjichristidis N, Penott E, Lorenzo AT, Müller AJ (2009) Surface modification of multiwalled carbon nanotubes with biocompatible polymers via ring opening and living anionic surface initiated polymerization. Kinetics and crystallization behavior. J Polym Sci A Polym Chem 47:4379–4390CrossRefGoogle Scholar
  172. 172.
    Pucciariello R, Villani V, Giammarino G (2011) Thermal behaviour of nanocomposites based on linear-low-density poly(ethylene) and carbon nanotubes prepared by high energy ball milling. J Polym Res 18:949–956CrossRefGoogle Scholar
  173. 173.
    Song P, Wei Z, Liang J, Chen G, Zhang W (2012) Crystallization behavior and nucleation analysis of poly(l-lactic acid) with a multiamide nucleating agent. Polym Eng Sci 52:1058–1068CrossRefGoogle Scholar
  174. 174.
    Trujillo M, Arnal ML, Müller AJ et al (2007) Thermal and morphological characterization of nanocomposites prepared by in-situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules 40:6268–6276CrossRefGoogle Scholar
  175. 175.
    Trujillo M, Arnal ML, Müller AJ et al (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 53:832–841CrossRefGoogle Scholar
  176. 176.
    Wu Y, Ling HS (2012) The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:7379–7388CrossRefGoogle Scholar
  177. 177.
    Xu S, Zhao X, Ye L (2013) Mechanical and crystalline properties of monomer casting Nylon-6/SiO2 composites prepared via in situ polymerization. Polym Eng Sci 53:1809–1822CrossRefGoogle Scholar
  178. 178.
    Xu Y, Wu L (2013) Synthesis of organic bisurea compounds and their roles as crystallization nucleating agents of poly(l-lactic acid). Eur Polym J 49:865–872CrossRefGoogle Scholar
  179. 179.
    Yang Z, Zhang Z, Tao Y, Mai K (2008) Effects of polyamide 6 on the crystallization and melting behavior of β-nucleated polypropylene. Eur Polym J 44:3754–3763CrossRefGoogle Scholar
  180. 180.
    Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J (2015) Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci 132:41355Google Scholar
  181. 181.
    Zhuravlev E, Wurma A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ε-caprolactone) - multiwalled carbon nanotube composites. Eur Polym J 52:1–11CrossRefGoogle Scholar
  182. 182.
    Sabino MA, Ronca G, Müller AJ (2000) Heterogeneous nucleation and self-nucleation of poly(p-dioxanone). J Mater Sci 35:5071–5084CrossRefGoogle Scholar
  183. 183.
    Wang K, Mai K, Han Z, Ze H (2001) Interaction of self-nucleation and the addition of a nucleating agent on the crystallization behavior of isotactic polypropylene. J Appl Polym Sci 81:78–84CrossRefGoogle Scholar
  184. 184.
    Trujillo M, Arnal ML, Müller AJ et al (2008) Thermal fractionation and isothermal crystallization of polyethylene nanocomposites prepared by in situ polymerization. Macromolecules 41:2087–2095CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • R. M. Michell
    • 1
  • A. Mugica
    • 2
  • M. Zubitur
    • 2
  • A. J. Müller
    • 1
    • 2
    • 3
    Email author
  1. 1.Grupo de Polímeros USB, Departamento de Ciencia de los MaterialesUniversidad Simón BolívarCaracasVenezuela
  2. 2.Faculty of Chemistry, POLYMAT and Polymer Science and Technology DepartmentUniversity of the Basque Country UPV/EHUDonostia/San SebastiánSpain
  3. 3.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations