Crystallization of Cyclic Polymers

  • Ricardo A. Pérez-Camargo
  • Agurtzane Mugica
  • Manuela Zubitur
  • Alejandro J. MüllerEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 276)


The effect of chain topology (ring versus linear polymer chains) on polymer crystallization is reviewed. Recent advances in ring closure and ring expansion synthetic techniques have made available a range of well-characterized samples with higher levels of purity than available decades ago. Cyclic molecules are fascinating because the structural difference between them and linear chains is relatively small, yet their behavior can be completely different from that of their linear analogs of identical chain length. The effect of having no chain ends can dramatically change the polymer coil conformation and diffusion rate, as well as the chain entanglement density in the melt. These changes are reflected in different nucleation and crystallization kinetics for cyclic and linear polymeric chains. However, the results published so far seem to be dependent on the type of polymer employed. Therefore, a careful look at the literature and evidence reported for each group of materials has been assembled and compared. The possible reasons for some of the contradictions in the evidence are also discussed.


Crystallization Cyclic and linear polymers Diffusion Entropic factors Equilibrium melting temperature 



The POLYMAT/UPV/EHU team would like to acknowledge funding from the following projects: “UPV/EHU Infrastructure: INF 14/38”; “Mineco/FEDER: SINF 130I001726XV1/Ref: UNPV13-4E-1726” and “Mineco MAT2014-53437-C2-P”. R.A.P.-C gratefully acknowledges the award of a PhD fellowship by POLYMAT Basque Center for Macromolecular Design and Engineering.


  1. 1.
    Jacob F, Wollman EL (1958) Genetic and physical determinations of chromosomal segments in Escherichia coli. Symp Soc Exp Biol 12:75–92Google Scholar
  2. 2.
    Dulbecco R, Vogt M (1963) Evidence for a ring structure of polynoma virus DNA. Proc Natl Acad Sci USA 50(2):236–243CrossRefGoogle Scholar
  3. 3.
    Vologodskii A (1998) Exploiting circular DNA. Proc Natl Acad Sci USA 95(8):4092–4093CrossRefGoogle Scholar
  4. 4.
    Harmon FG, Brockman JP, Kowalczykowski SC (2003) RecQ helicase stimulates both DNA catenation and changes in DNA topology by topoisomerase III. J Biol Chem 278:42668–42678CrossRefGoogle Scholar
  5. 5.
    Harmon FG, DiGate RJ, Kowalczykowski SC (1999) RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control DNA recombination. Mol Cell 3(5):611–620CrossRefGoogle Scholar
  6. 6.
    Saska I, Colgrave ML, Jones A, Anderson MA, Craik DJ (2008) Quantitative analysis of backbone-cyclised peptides in plants. J Chromatogr B Biomed Sci Appl 872(1–2):107–114Google Scholar
  7. 7.
    Craik DJ (2009) Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci 14(6):328–335CrossRefGoogle Scholar
  8. 8.
    Beckham HW (2011) Ring polymers: effective isolation and unique properties. In: Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architecture: synthesis and characterization, and self-assembly. Wiley, HobokenGoogle Scholar
  9. 9.
    Semlyen J (2002) Cyclic polymers, 2nd edn. Kluwer, DordrechtCrossRefGoogle Scholar
  10. 10.
    Hoskins JN, Grayson SM (2011) Cyclic polyesters: synthetic approaches and potential applications. Polym Chem 2:289–299CrossRefGoogle Scholar
  11. 11.
    Schappacher M, Deffieux A (1995) Controlled synthesis of bicyclic “eight-shaped” poly(chloroethlyl vinyl ether)s. Macromolecules 28(8):2629–2636CrossRefGoogle Scholar
  12. 12.
    Beinat S, Schappacher M, Deffieux A (1996) Linear and semicyclic amphiphilic diblock copolymers. 1. Synthesis and structural characterization of cyclic diblock copolymers of poly(hydroxyethyl vinyl ether) and linear polystyrene and their linear homologues. Macromolecules 29(21):6737–6743CrossRefGoogle Scholar
  13. 13.
    Kubo M, Hayashi T, Kobayashi H, Itoh T (1998) Syntheses of tadpole- and eight-shaped polystyrenes using cyclic polystyrene as a building block. Macromolecules 31(4):1053–1057CrossRefGoogle Scholar
  14. 14.
    Oike H, Washizuka M, Tezuka Y (2001) Designing an “a ring-with-branches” polymer topology by electrostatic self-assembly and covalent fixation with interiorly functionalized telechelics having cyclic ammonium groups. Macromol Rapid Commun 22(14):1128–1134CrossRefGoogle Scholar
  15. 15.
    Oike H, Hamada M, Eguchi S, Danda Y, Tezuka Y (2001) Novel synthesis of single- and double-cyclic polystyrenes by electrostatic self-assembly and covalent fixation with telechelics having cyclic ammonium salt groups. Macromolecules 34(9):2776–2782CrossRefGoogle Scholar
  16. 16.
    Tezuka Y, Komiya R, Washisuka M (2003) Designing 8-shaped polymer topology by metathesis condensation with cyclic poly(THF) precursors having allyl groups. Macromolecules 36(1):12–17CrossRefGoogle Scholar
  17. 17.
    Jia Z, Fu Q, Huang J (2006) Synthesis of amphiphilic macrocyclic graft copolymer consisting of poly(ethylene oxide) ring and multi-polystyrene lateral chains. Macromolecules 39(16):5190–5193CrossRefGoogle Scholar
  18. 18.
    Li H, Jéröme R, Lecomte P (2006) Synthesis of tadpole-shaped copolyesters based on living macrocyclic poly(ε-caprolactone). Polymer 47(26):8406–8413CrossRefGoogle Scholar
  19. 19.
    Li H, Riva R, Jéröme R, Lecomte P (2007) Combination of ring-opening polymerization and “click” chemistry for the synthesis of an amphiphilic tadpole-shaped poly(ε-Caprolactone) grafted by PEO. Macromolecules 40(4):824–831CrossRefGoogle Scholar
  20. 20.
    Li H, Jéröme R, Lecomte P (2008) Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO. Macromolecules 41(3):650–654CrossRefGoogle Scholar
  21. 21.
    Pang X, Jing R, Huang J (2008) Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-poly(ε-caprolactone) lateral chains. Polymer 49(4):893–900CrossRefGoogle Scholar
  22. 22.
    Shi G-Y, Pan C-Y (2008) Synthesis of well-defined figure-of-eight-shaped polymers by a combination of ATRP and click chemistry. Macromol Rapid Commun 29(20):1672–1678CrossRefGoogle Scholar
  23. 23.
    Shi GY, Yang LP, Pan CY (2008) Synthesis and characterization of well-defined polystyrene and poly(ε-caprolactone) hetero eight-shaped copolymers. J Polym Sci Part A Polym Chem 46(19):6496–6508CrossRefGoogle Scholar
  24. 24.
    Dong Y-Q, Tong Y-Y, Dong B-T, Du F-S, Li Z-C (2009) Preparation of tadpole-shaped amphiphilic cyclic PS-b-linear PEO via ATRP and click chemistry. Macromolecules 42(8):2940–2948CrossRefGoogle Scholar
  25. 25.
    Londsdale DE, Monteiro MJ (2010) Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. Chem Commun 46:7945–7947CrossRefGoogle Scholar
  26. 26.
    Fan X, Wang G, Huang J (2011) Synthesis of macrocyclic molecular brushes with amphiphilic block copolymers as side chains. J Polym Sci Part A Polym Chem 49(6):1361–1367CrossRefGoogle Scholar
  27. 27.
    Laurent BA, Grayson SM (2011) Synthesis of cyclic dendronized polymers via divergent “graft-from” and convergent click “graft-to” routes: preparation of modular toroidal macromolecules. J Am Chem Soc 133(34):13421–13429CrossRefGoogle Scholar
  28. 28.
    Wang G, Fan X, Hu B, Zhang Y, Huang J (2011) Synthesis of eight-shaped poly(ethylene oxide) by the combination of glaser coupling with ring-opening polymerization. Macromol Rapid Commun 32(20):1658–1663CrossRefGoogle Scholar
  29. 29.
    Fan X, Huang B, Wang GW, Huang J (2012) Synthesis of amphiphilic heteroeight-shaped polymer cyclic-[poly(ethylene oxide)-b-polystyrene]2 via “click” chemistry. Macromolecules 45(9):3779–3786CrossRefGoogle Scholar
  30. 30.
    Kricheldorf HR (2010) Cyclic polymers: synthetic strategies and physical properties. J Polym Sci Part A Polym Chem 48(2):251–284CrossRefGoogle Scholar
  31. 31.
    Bielawski CW, Benitez D, Grubbs RH (2002) An “endless” route to cyclic polymers. Science 297(5589):2041–2044CrossRefGoogle Scholar
  32. 32.
    Mckenna GB, Hostetter BJ, Hadjichristidis N, Fetters LJ, Plazek DJ (1989) A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements. Macromolecules 22(4):1834–1852CrossRefGoogle Scholar
  33. 33.
    Kapnistos M, Lang M, Vlassopoulos D, Pyckhout-Hintzen W, Richter D, Cho D, Chang T, Rubinstein M (2008) Unexpected power-law stress relaxation of entanglement ring polymers. Nat Mater 7:997–1002CrossRefGoogle Scholar
  34. 34.
    Nam S, Leisen J, Breedveld V, Beckham HW (2008) Dynamics of unentangled cyclic and linear poly(oxyethylene) melts. Polymer 49(25):5467–5473CrossRefGoogle Scholar
  35. 35.
    Lee KS, Wegner G, Hsu SL (1987) Vibrational spectroscopic studies of linear and cyclic alkanes: CnH2n+2, CnH2n with 24≤n≤288: chain folding, chain packing and conformations. Polymer 28(6):889–896CrossRefGoogle Scholar
  36. 36.
    Yang Z, Yu GE, Cooke J, Ali-Adid Z, Viras K, Matsuura H, Ryan AJ, Booth C (1996) Preparation and crystallinity of a large unsubstituted crown ether, cyclic heptacosa (oxyethylene)(cyclo-E27, 81-crown-27), studied by Raman spectroscopy, X-ray scattering and differential scanning calorimetry. J Chem Soc Faraday Trans 92:3173–3182CrossRefGoogle Scholar
  37. 37.
    Cooke J, Viras K, Yu GE, Sun T, Yonemitsu T, Ryan AJ, Price C, Booth C (1998) Large cyclic poly(oxyethylene)s: chain folding in the crystalline state studied by Raman spectroscopy, x-ray scattering, and differential scanning calorimetry. Macromolecules 31(9):3030–3039CrossRefGoogle Scholar
  38. 38.
    Yu GE, Sun T, Yan ZG, Price C, Booth C, Cook J, Ryan AJ, Viras K (1997) Low-molar-mass cyclic poly(oxyethylene)s studied by Raman spectroscopy, X-ray scattering and differential scanning calorimetry. Polymer 38(1):35–42CrossRefGoogle Scholar
  39. 39.
    Nam S (2006) Dynamics of cyclic and linear poly(oxyethylene), and threading conformation in their blends. Ph.D. dissertation, Georgia Institute of TechnologyGoogle Scholar
  40. 40.
    Tezuka Y, Ohtsuka T, Adachi K, Komiya R, Ohno N, Okui N (2008) A defect-free ring polymers: size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromol Rapid Commun 29(14):1237–1241CrossRefGoogle Scholar
  41. 41.
    Córdova ME, Lorenzo AT, Müller AJ, Hoskins JN, Grayson SM (2011) A comparative study on the crystallization behavior of analogous linear and cyclic poly(ε-caprolactones). Macromolecules 44(7):1742–1746CrossRefGoogle Scholar
  42. 42.
    Schäler K, Ostas E, Schröter K, Thurn-Albrecht T, Binder WH, Saalwächter K (2011) Influence of chain topology on polymer dynamics and crystallization. Investigation of linear and cyclic poly(ε-caprolactone)s by 1H solid-state NMR methods. Macromolecules 44(8):2743–2754CrossRefGoogle Scholar
  43. 43.
    Shin EJ, Jeong W, Brown HA, Koo BJ, Hedrick JL, Waymouth RM (2011) Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules 44(8):2773–2779CrossRefGoogle Scholar
  44. 44.
    Kitahara T, Yamazaki S, Kimura K (2011) Effects of topological constraint and knot entanglement on the crystal growth of polymers proved by growth rate of spherulite of cyclic polyethylene. Kobunshi Ronbunshu 68(10):694–701CrossRefGoogle Scholar
  45. 45.
    Takeshita H, Poovarodom M, Kiya K, Arai F, Takenaka K, Miya M, Shiomi T (2012) Crystallization behavior and chain folding manner of cyclic, star and linear poly(tetrahydrofuran)s. Polymer 53(23):5375–5384CrossRefGoogle Scholar
  46. 46.
    Shin EJ, Jones AE, Waymouth RM (2012) Stereocomplexation in cyclic and linear polylactide blends. Macromolecules 45(1):595–598CrossRefGoogle Scholar
  47. 47.
    Su H-H, Chen H-L, Díaz A, Casas MT, Puiggalí J, Hoskins JN, Grayson SM, Pérez RA, Müller AJ (2013) New insights on the crystallization and melting of cyclic PCL chains on the basis of a modified Thomson–Gibbs equation. Polymer 54(2):846–859CrossRefGoogle Scholar
  48. 48.
    Pérez RA, Córdova ME, López JV, Hoskins JN, Zhang B, Grayson SM, Müller AJ (2014) Nucleation, crystallization, self-nucleation and thermal fractionation of cyclic and linear poly(ε-caprolactone)s. React Funct Polym 80:71–82CrossRefGoogle Scholar
  49. 49.
    Pérez RA, López JV, Hoskins JN, Zhang B, Grayson SM, Casas MT, Puiggalí J, Müller AJ (2014) Nucleation and antinucleation effects of functionalized carbon nanotubes on cyclic and linear poly(ε-caprolactones). Macromolecules 47(11):3553–3566CrossRefGoogle Scholar
  50. 50.
    Wang J, Li Z, Pérez RA, Müller AJ, Zhang B, Grayson SM, Hu W (2015) Comparing crystallization rates between linear and cyclic poly(ε-caprolactone) via fast-scan chip-calorimeter measurements. Polymer 63:34–40CrossRefGoogle Scholar
  51. 51.
    Sugai N, Asai S, Tezuka Y, Yamamoto T (2015) Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym Chem 6:3591–3600. doi: 10.1039/C5PY00158G CrossRefGoogle Scholar
  52. 52.
    Takeshita H, Shiomi T (2013) Crystallization of cyclic and branched polymers. In: Tezuka Y (ed) Topological polymer chemistry: progress of cyclic polymers in synthesis, properties and functions. World Scientific, SingaporeGoogle Scholar
  53. 53.
    Jia Z, Monteiro MJ (2012) Cyclic polymers: methods and strategies. J Polym Sci Part A Polym Chem 50(11):2085–2097CrossRefGoogle Scholar
  54. 54.
    Brown HA, Waymouth RM (2013) Zwitterionic ring-opening polymerization for the synthesis of high molecular weight cyclic polymers. Acc Chem Res 46(11):2585–2596CrossRefGoogle Scholar
  55. 55.
    Elupula R, Laurent BA, Grayson SM (2011) Cyclic polymers. In: Schlüter AD, Hawker CJ, Sawamoto J (eds) Synthesis of polymers: new structures and methods. Wiley, GermanyGoogle Scholar
  56. 56.
    Tezuka Y (2012) Topological polymer chemistry for designing multicyclic macromolecular architectures. Polym J 44(12):1159–1169CrossRefGoogle Scholar
  57. 57.
    Dubois P, Barakat I, Jéröme R, Teyssie P (1993) Macromolecular engineering of polyactones and polyactides. 12. Study of the depolymerization reactions of poly(epsilon-caprolactone) with functional aluminum alkoxide end groups. Macromolecules 26(17):4407–4412CrossRefGoogle Scholar
  58. 58.
    Li Y, Hoskins JN, Sreerama SG, Grayson SM (2010) MALDI–TOF mass spectral characterization of polymers containing an azide group: evidence of metastable ions. Macromolecules 43(14):6225–6228CrossRefGoogle Scholar
  59. 59.
    Iwata T, Doi Y (2002) Morphology and enzymatic degradation of poly(ε-caprolactone) single crystals: does a polymer single crystal consist of micro-crystals? Polym Int 51(10):852–858CrossRefGoogle Scholar
  60. 60.
    Chatani Y, Okita Y, Takadoro H, Yamashita Y (1970) Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J 1(5):555–562CrossRefGoogle Scholar
  61. 61.
    Hu H, Dorset DL (1990) Crystal structure of poly(ε-caprolactone). Macromolecules 23(21):4604–4607CrossRefGoogle Scholar
  62. 62.
    Bittiger H, Marchessault RH, Niegish WD (1970) Crystal structure of poly-ε-caprolactone. Acta Crystallogr B 26(12):1923–1927CrossRefGoogle Scholar
  63. 63.
    Gestí S, Almontassir A, Casas MT, Puiggalí J (2004) Molecular packing and crystalline morphologies of biodegradable poly(alkylene dicarboxylate)s derived from 1,6-hexanediol. Polymer 45(26):8845–8861CrossRefGoogle Scholar
  64. 64.
    Gestí S, Almontassir A, Casas MT, Puiggalí J (2006) Crystalline structure of poly(hexamethylene adipate). Study on the morphology and the enzymatic degradation of single crystals. Biomacromolecules 7(3):799–808CrossRefGoogle Scholar
  65. 65.
    Gestí S, Casas MT, Puiggalí J (2007) Crystalline structure of poly(hexamethylene succinate) and single crystal degradation studies. Polymer 48(17):5088–5097CrossRefGoogle Scholar
  66. 66.
    Gestí S, Casas MT, Puiggalí J (2008) Single crystal morphology and structural data of a series of polyesters derived from 1,8-octanediol. Eur Polym J 52(7):2295–2307CrossRefGoogle Scholar
  67. 67.
    Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l–lactide-co-d-lactide)s. Macromolecules 34(14):4857–4864CrossRefGoogle Scholar
  68. 68.
    Huang J, Lisowski MS, Runt J, Hall ES, Kean RT, Buehler N, Lin JS (1998) Crystallization and microstructure of Poly(l-lactide-co-meso-lactide) copolymers. Macromolecules 31(8):2593–2599CrossRefGoogle Scholar
  69. 69.
    Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5(7):569–597CrossRefGoogle Scholar
  70. 70.
    Obukhov SP, Rubinstein M, Duke T (1994) Dynamics of a ring polymer in a gel. Phys Rev Lett 73:1263–1266CrossRefGoogle Scholar
  71. 71.
    Arrighi V, Gagliardi S, Dagger AC, Semlyen JA, Higgins JS, Shenton MJ (2004) Conformation of cyclics and linear chains polymer in bulk by SANS. Macromolecules 37(21):8057–8065CrossRefGoogle Scholar
  72. 72.
    Hur K, Winkler RG, Yoon DY (2006) Comparison of ring and linear polyethylene from molecular dynamics simulations. Macromolecules 39(12):3975–3977CrossRefGoogle Scholar
  73. 73.
    Suzuki J, Takano A, Matsushita Y (2008) Topological effect in ring polymers investigated with Monte Carlo simulation. J Chem Phys 129:034903CrossRefGoogle Scholar
  74. 74.
    Bassett DC (2003) Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys 42(2):227–256CrossRefGoogle Scholar
  75. 75.
    Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites. J Macromol Sci Part B Phys 42(3–4):753–760CrossRefGoogle Scholar
  76. 76.
    Keith HD, Padden FJ (1984) Twisting orientation and the role of transient states in polymer crystallization. Polymer 25(1):28–42CrossRefGoogle Scholar
  77. 77.
    Lotz B, Cheng SZD (2005) A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer 46(3):577–610CrossRefGoogle Scholar
  78. 78.
    Okui N, Ohno N, Unemoto S, Tezuka Y (2009) Topological effect on polymer crystallization of linear and ring polymers. Bussei Kenkyu 92(1):51–55Google Scholar
  79. 79.
    Roovers J (1985) The melt properties of ring polystyrenes. Macromolecules 18(6):1359–1361CrossRefGoogle Scholar
  80. 80.
    Mckenna GB, Hadziioannou G, Lutz P, Hild G, Strazielle C, Straupe C, Rempp P, Kovacs AJ (1987) Dilute solution characterization of cyclic polystyrene molecules and their zero-shear viscosity in the melt. Macromolecules 20(3):498–512CrossRefGoogle Scholar
  81. 81.
    Orrah DJ, Semlyen JA, Ross-Murphy SB (1988) Studies of cyclic and linear poly(dimethylsiloxanes): 27. Bulk viscosities above the critical molar mass for entanglement. Polymer 29(8):1452–1454CrossRefGoogle Scholar
  82. 82.
    Izuka A, Winter HH, Hashimoto T (1992) Molecular weight dependence of viscoelasticity of polycaprolactone critical gels. Macromolecules 25(9):2422–2428CrossRefGoogle Scholar
  83. 83.
    McLeish T (2002) Polymers without beginning or end. Science 297:2005–2006CrossRefGoogle Scholar
  84. 84.
    Kawaguchi D, Masuoka K, Takano A, Tanaka K, Nagamura T, Torikai N, Dalgliesh RM, Langridge S, Matshushita Y (2006) Comparison of interdiffusion behavior between cyclic and linear polystyrenes with high molecular weights. Macromolecules 39(16):5180–5182CrossRefGoogle Scholar
  85. 85.
    Lee KS, Wegner G (1985) Linear and cyclic alkanes (CnH2n+2, CnH2n) with n>100. Synthesis and evidence for chain-folding. Maklomol Chem Rapid Commun 6(3):203–208CrossRefGoogle Scholar
  86. 86.
    Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem Rev 109(11):6275–6540CrossRefGoogle Scholar
  87. 87.
    Roovers J (1988) Viscoelastic properties of polybutadiene rings. Macromolecules 21(5):1517–1521CrossRefGoogle Scholar
  88. 88.
    Nam S, Leisen J, Breedveld V, Beckham HW (2009) Melt dynamics of blended poly(oxyethylene) chains and rings. Macromolecules 42(8):3121–3128CrossRefGoogle Scholar
  89. 89.
    Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen I. Teil Kolloid ZZ Polym 124(2):83–114Google Scholar
  90. 90.
    Strobl G (2007) The physics of polymers: concepts for understanding their structures and behavior, 3rd edn. Springer, BerlinGoogle Scholar
  91. 91.
    Cates ME, Deutsch JM (1986) Conjectures on the statistics of ring polymers. J Phys Paris 47(12):2121–2128CrossRefGoogle Scholar
  92. 92.
    Iyer BVS, Lele AK, Juvekar VA (2006) Flexible ring polymers in an obstacle environment: molecular theory of linear viscoelasticity. Phys Rev E 74(2):021805CrossRefGoogle Scholar
  93. 93.
    Chen H-L, Li L-J, Yang W-CO, Hwang JC, Wong W-Y (1997) Spherulitic crystallization behavior of poly(ε-caprolactone) with a wide range of molecular weight. Macromolecules 30(6):1718–1722CrossRefGoogle Scholar
  94. 94.
    Heck B, Hugel T, Iijima M, Sadiku E, Strobl G (1999) Steps in the transition of an entangled polymer melt to the partially crystalline state. New J Phys 1:17.1–17.29Google Scholar
  95. 95.
    Gedde UW (1999) Polymer physics, 1st edn. Kluwer, DordrechtCrossRefGoogle Scholar
  96. 96.
    Phillips PJ, Rensch GJ, Taylor KD (1987) Crystallization studies of poly(ε-caprolactone). I. Morphology and kinetics. J Polym Sci B Polym Phys 25(8):1725–1740CrossRefGoogle Scholar
  97. 97.
    Goulet L, Prud’homme RE (1990) Crystallization kinetics and melting of caprolactone random copolymers. J Polym Sci B Polym Phys 28(12):2329–2352CrossRefGoogle Scholar
  98. 98.
    Guo Q, Groeninckx G (2001) Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer 42(21):8647–8655CrossRefGoogle Scholar
  99. 99.
    Kuo SW, Chan SC, Chang FC (2004) Crystallization kinetics and morphology of binary phenolic/poly(ε-caprolactone) blends. J Polym Sci B Polym Phys 42(1):117–128CrossRefGoogle Scholar
  100. 100.
    Müller AJ, Albuerne J, Marquez L, Raquez JM, Degée P, Dubois P, Hobbs J, Hamley IW (2005) Self-nucleation and crystallization kinetics of double crystalline poly(p-dioxanone)-b-poly(ε-caprolactone) diblock copolymers. Faraday Discuss 128:231–252CrossRefGoogle Scholar
  101. 101.
    Nie K, Zheng S, Lu F, Zhu Q (2005) Inorganic–organic hybrids involving poly(ε-caprolactone) and silica network: hydrogen-bonding interactions and isothermal crystallization kinetics. J Polym Sci B Polym Phys 43(18):2594–2603CrossRefGoogle Scholar
  102. 102.
    Liu Y, Yang X, Zhang W, Zheng S (2006) Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 47(19):6814–6825CrossRefGoogle Scholar
  103. 103.
    Lorenzo AT, Müller AJ, Lin MC, Chen HL, Jeng US, Prfitis D, Pitsikalis M, Hadjichristidis N (2009) Influence of macromolecular architecture on the crystallization of (PCL2)-b-(PS2) 4-miktoarm star block copolymers in comparison to linear PCL-b-PS diblock copolymer analogues. Macromolecules 42(21):8353–8364CrossRefGoogle Scholar
  104. 104.
    Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H (2010) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohydr Polym 79(3):513–519CrossRefGoogle Scholar
  105. 105.
    Wang K, Cai L, Jesse S, Wang S (2012) Poly(ε-caprolactone)-banded spherulites and interaction with MC3T3-E1 Cells. Langmuir 28(9):4382–4395CrossRefGoogle Scholar
  106. 106.
    Chang H, Zhang J, Li L, Wang Z, Yang C, Takahashi I, Ozaki Y, Yan S (2010) A study on the epitaxial ordering process of the polycaprolactone on the highly oriented polyethylene substrate. Macromolecules 43(1):362–366CrossRefGoogle Scholar
  107. 107.
    Blundell DJ, Keller A, Kovacs AJ (1966) A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J Polym Sci B Polym Lett 4(7):481–486CrossRefGoogle Scholar
  108. 108.
    Fillon B, Wittmann J, Lotz B, Thierry A (1993) Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci B Polym Phys 31(10):1383–1393CrossRefGoogle Scholar
  109. 109.
    Müller AJ, Arnal ML (2005) Thermal fractionation of polymers. Prog Polym Sci 30(5):559–603CrossRefGoogle Scholar
  110. 110.
    Müller AJ, Michell RM, Pérez RA, Lorenzo AT (2015) Successive self-nucleation and annealing (SSA): correct design of thermal protocol and applications. Eur Polym J 65:132–154CrossRefGoogle Scholar
  111. 111.
    Lorenzo AT, Arnal ML, Sánchez JJ, Müller AJ (2006) Effect of annealing time on the self-nucleation behavior of semicrystalline polymers. J Polym Sci B Polym Phys 44(12):1738–1759CrossRefGoogle Scholar
  112. 112.
    Fillon B, Thierry A, Wittmann J, Lotz B (1993) Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β–α conversion and β–α growth transitions. J Polym Sci B Polym Phys 31(10):1407–1424CrossRefGoogle Scholar
  113. 113.
    Fillon B, Lotz B, Thierry A, Wittman J (1993) Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci B Polym Phys 31(10):1395–1405CrossRefGoogle Scholar
  114. 114.
    Turska E, Gogolewski S (1975) Study on crystallization of nylon 6 (polycapramide). III. Effect of “crystalline memory” on crystallization kinetics. J Appl Polym Sci 19(3):637–644CrossRefGoogle Scholar
  115. 115.
    Gallez F, Legras R, Mercier JP (1976) Crystallization of bisphenol-A polycarbonate. I. Influence of trimellitic acid tridecyloctyl ester on the kinetics of crystallization. J Polym Sci Polym Phys Ed 14(8):1367–1377CrossRefGoogle Scholar
  116. 116.
    Di Filippo G, Gonzalez ME, Gasiba MT, Müller AJ (1987) Crystalline memory on polycarbonate. J Appl Polym Sci 34(5):1959–1966Google Scholar
  117. 117.
    Khanna YP, Reimschuessel AC (1988) Memory effects in polymers. I. Orientational memory in the molten state; its relationship to polymer structure and influence on recrystallization rate and morphology. J Appl Polym Sci 35(8):2259–2268CrossRefGoogle Scholar
  118. 118.
    Khanna YP, Kumar R, Reimschuessel AC (1988) Memory effects in polymers. III. Processing history vs crystallization rate of nylon 6–comments on the origin of memory effect. Polym Eng Sci 28(24):1607–1611CrossRefGoogle Scholar
  119. 119.
    Mehl NA, Rebenfeld L (1992) Effect of melt history on the crystallization kinetics of poly(phenylene sulfide). Polym Eng Sci 32(19):1451–1457CrossRefGoogle Scholar
  120. 120.
    Kim SP, Kim SC (1993) Crystallization kinetics of poly(ethylene terephtalate): memory effect of shear history. Polym Eng Sci 33(2):83–91CrossRefGoogle Scholar
  121. 121.
    Khanna YP, Kuhn WP, Macur JE, Messa AF, Murthy NS, Reimshuessel AC, Schneider RL, Sibila JP, Signorelli AJ, Taylor TJ (1995) Memory effects in polymers. V. Processing history versus thermally induced self-orientation of unoriented poly(chlorotrifluoroethylene) films. J Polym Sci B Polym Phys 33(7):1023–1030CrossRefGoogle Scholar
  122. 122.
    Alfonso GC, Scardigli P (1997) Melt memory effects in polymer crystallization. Macromol Symp 118(1):323–328CrossRefGoogle Scholar
  123. 123.
    Mendez G, Müller AJ (1997) Evidences of the crystalline memory and recrystallization capacity of bisphenol–A polycarbonate. J Therm Anal 50(4):593–602CrossRefGoogle Scholar
  124. 124.
    Supaphol P, Spruiell JE (2000) Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. J Appl Polym Sci 75(3):337–346CrossRefGoogle Scholar
  125. 125.
    Schneider S, Drujon X, Lotz B, Wittmann JC (2001) Self-nucleation and enhanced nucleation of polyvinylidene fluoride (α-phase). Polymer 42(21):8787–8798CrossRefGoogle Scholar
  126. 126.
    Vasanthan N (2003) “Orientation induced memory effect” in polyamides and the relationship to hydrogen bonding. J Appl Polym Sci 90(3):772–775CrossRefGoogle Scholar
  127. 127.
    Supaphol P, Srimoaon P, Sirivat A (2004) Effects of crystalline memory and orientational memory phenomena on the isothermal bulk crystallization and subsequent melting behavior of poly(trimethylene terephthalate). Polym Int 53(8):1118–1126CrossRefGoogle Scholar
  128. 128.
    Massa MV, Lee MSM, Dalnoki-Veress K (2005) Crystal nucleation of polymers confined to droplets: memory effects. J Polym Sci B Polym Phys 43(23):3438–3443CrossRefGoogle Scholar
  129. 129.
    Ziabicki A, Alfonso GC (1994) Memory effects in isothermal crystallization. I. Theory. Colloid Polym Sci 272(9):1027–1042CrossRefGoogle Scholar
  130. 130.
    Isayev AI, Chan TW, Shimojo K, Gmerek M (1995) Injection molding of semicrystalline polymers. I. Material characterization. J Appl Polym Sci 55(5):807–819CrossRefGoogle Scholar
  131. 131.
    Liedauer S, Eder G, Janeshitz-Kriegl H (1995) On the limitations of shear induced crystallization in polypropylene melts. Int Polym Process 10(3):243–250CrossRefGoogle Scholar
  132. 132.
    Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Baltá-Calleja FJ, Ezquerra TA (2000) Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study. Macromolecules 33(25):9385–9394CrossRefGoogle Scholar
  133. 133.
    Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow induced crystallization of i-PP: in situ wide-angle X-ray diffraction study. Macromolecules 34(17):5902–5909CrossRefGoogle Scholar
  134. 134.
    Nogales A, Hsiao BS, Somani RH, Srinivas S, Tsou AH, Baltá-Calleja FJ, Ezquerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42(12):5247–5256CrossRefGoogle Scholar
  135. 135.
    Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42(4):355–364CrossRefGoogle Scholar
  136. 136.
    Azurri F, Alfonso GC (2005) Lifetime of shear-induced crystal nucleation precursors. Macromolecules 38(5):1723–1728CrossRefGoogle Scholar
  137. 137.
    Wunderlich B (1976) Crystal nucleation, growth, annealing, vol 2, Macromolecular physics. Academic, New YorkGoogle Scholar
  138. 138.
    Alfonso GC, Ziabicki A (1995) Memory effects in isothermal crystallization II. Isotactic polypropylene. Colloid Polym Sci 273(4):317–323CrossRefGoogle Scholar
  139. 139.
    Zhu X, Li Y, Yan D, Zhu P, Lu Q (2001) Influenced of the order polymer melt on the crystallization behavior: I. Double melting endotherms of isotactic polypropylene. Colloid Polym Sci 279(3):292–296CrossRefGoogle Scholar
  140. 140.
    Supaphol P, Lin JS (2001) Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior. Polymer 42(23):9617–9626CrossRefGoogle Scholar
  141. 141.
    Mamum A, Unemoto S, Okui N, Ishihara N (2007) Self-seeding effect on primary nucleation of isotactic polystyrene. Macromolecules 40(17):6296–6303CrossRefGoogle Scholar
  142. 142.
    Martins JA, Zhang W, Brito AM (2010) Origin of the melt memory effect in polymer crystallization. Polymer 51(18):4185–4194CrossRefGoogle Scholar
  143. 143.
    Kawabata J, Matsuba G, Nishida K, Inoe R, Kanaya T (2011) Melt memory effects on recrystallization of polyamide 6 revealed by depolarized light scattering and small-angle X-ray scattering. J Appl Polym Sci 122(3):1913–1920CrossRefGoogle Scholar
  144. 144.
    Zhang YS, Zhong LW, Yang S, Liang DH, Chen EQ (2012) Memory effect on solution crystallization of high molecular weight poly(ethylene oxide). Polymer 53(16):3621–3628CrossRefGoogle Scholar
  145. 145.
    Cheng SZD (2008) Phase transitions in polymers: the role of metastable states, 1st edn. Elsevier, AmsterdamGoogle Scholar
  146. 146.
    Subramanian G, Shanbhag S (2008) Self-diffusion in binary blends of cyclic and linear polymers. Macromolecules 41(19):7239–7242CrossRefGoogle Scholar
  147. 147.
    Vasquez R, Shanbhag S (2011) Percolation of trace amounts of linear polymers in melt of cyclic polymers. Macromol Theory Simul 20(3):205–211CrossRefGoogle Scholar
  148. 148.
    Chapman CD, Shanbhag S, Smith DE, Robertson-Anderson RM (2012) Complex effects of molecular topology on diffusion in entangled biopolymer blends. Soft Matter 8:9177–9182CrossRefGoogle Scholar
  149. 149.
    Halverson JD, Grest GS, Grosberg AY, Kremer K (2012) Rheology of ring polymer melts: from linear contaminants to ring-linear blends. Phys Rev Lett 108:038301CrossRefGoogle Scholar
  150. 150.
    Henke SF, Shanbhag S (2014) Self-diffusion in asymmetric ring-linear blends. React Funct Polym 80:57–60CrossRefGoogle Scholar
  151. 151.
    Tsalikis G, Koukoulas T, Mavrantzas VG (2014) Dynamic, conformational and topological properties of ring-linear poly(ethylene oxide) blends from molecular dynamics simulations. React Funct Polym 80:61–70CrossRefGoogle Scholar
  152. 152.
    Gooβen S, Brás AR, Pyckhout-Hintzen W, Wischnewski A, Richter D, Rubinstein M, Roovers J, Lutz PJ, Jeong Y, Chang T, Vlassopoulos D (2015) Influence of the solvent quality on ring polymer dimensions. Macromolecules 48(5):1598–1605CrossRefGoogle Scholar
  153. 153.
    Müller AJ, Hernández ZH, Arnal ML, Sánchez JJ (1997) Successive self-nucleation/annealing (SSA): a novel technique to study molecular segregation during crystallization. Polym Bull 39(4):465–472CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ricardo A. Pérez-Camargo
    • 1
    • 2
  • Agurtzane Mugica
    • 1
  • Manuela Zubitur
    • 3
  • Alejandro J. Müller
    • 1
    • 2
    • 4
    Email author
  1. 1.POLYMAT and Polymer Science and Technology Department, Faculty of ChemistryUniversity of the Basque Country UPV/EHUDonostia/San SebastiánSpain
  2. 2.Grupo de Polímeros USB, Departamento de Ciencia de los MaterialesUniversidad Simón BolívarCaracasVenezuela
  3. 3.Chemical Engineering DepartmentPolytechnic College, University of the Basque Country UPV/EHUDonostia/San SebastiánSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations