Photonic and Semiconductor Materials Based on Cellulose Nanocrystals

  • Wadood Y. HamadEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


Cellulose nanocrystals (CNCs) are renewable, sustainable nanomaterials, typically produced by strong sulfuric acid hydrolysis of lignocellulosic biomass. CNCs can self-assemble in aqueous, and other, suspensions at a critical concentration, or under evaporation, into chiral nematic organization to exhibit anisotropic structural color. The degree of sulfation is critical for producing both stable colloidal suspensions and iridescent films by evaporation-induced self-assembly. CNCs also possess electromagnetic and piezoelectric properties, as well as active surface groups that render them suitable for tailored functionalization. This chapter presents a framework of how CNCs can be used to (i) template in/organic mesoporous photonic and electronic materials and structures, and (ii) develop sustainable, flexible electronics. Using a novel supramolecular co-templating approach, the first example of functional, mesoporous, photonic cellulose films, or nanopaper, has been produced. The CNC-templating approach is a scalable, effective tool for imparting long-range chirality in a number of distinct materials (polymer, silica, metal oxides, carbon) with promising applications in, for example, optoelectronics, biosensors, actuators, functional membranes, 3D printing, and tissue engineering.


Cellulose Mesoporous Nanocrystals Optoelectronics Photonics Sensors Supramolecular 


  1. 1.
    Hamad WY, Hu TQ (2010) Structure-process-yield interactions in nanocrystalline cellulose extraction. Can J Chem Eng 88(3):392–402Google Scholar
  2. 2.
    Kovacs T, Naish V, O’Conner B, Blaise C, Gagne F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology 4(3):255–270CrossRefGoogle Scholar
  3. 3.
    Bazhenov VA (1961) Piezoelectric properties of wood. Consultants Bureau, New YorkGoogle Scholar
  4. 4.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  5. 5.
    Frka-Petesic B, Jean B, Heux L (2014) First experimental evidence of a giant permanent electric-dipole moment in cellulose nanocrystals. Europhys Lett 107(2):28006. doi: 10.1209/0295-5075/107/28006 CrossRefGoogle Scholar
  6. 6.
    Li L-S, Alivisatos AP (2003) Origin and scaling of the permanent dipole moment in CdSe nanorods. Phys Rev Lett 90:097402CrossRefGoogle Scholar
  7. 7.
    Csoka L, Hoeger IC, Rojas OJ, Peszlen I, Pawlak JJ, Peralta PN (2012) Piezoelectric effect of cellulose nanocrystals thin films. ACS Macro Lett 1:867–870CrossRefGoogle Scholar
  8. 8.
    Habibi Y, Heim T, Douillard R (2008) AC electric field-assisted assembly and alignment of cellulose nanocrystals. J Polym Sci B Polym Phys 46:1430–1436CrossRefGoogle Scholar
  9. 9.
    Csoka L, Hoeger IC, Peralta P, Peszlen I, Rojas OJ (2011) Dielectrophoresis of cellulose nanocrystals and alignment in ultrathin films by electric field-assisted shear assembly. J Colloid Interface Sci 363:206–212CrossRefGoogle Scholar
  10. 10.
    Vignolini V, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in Pollia fruit. Proc Natl Acad Sci USA 109(39):15712–15715CrossRefGoogle Scholar
  11. 11.
    Burresi M, Cortese L, Patteli L, Kolle M, Vukusic P, Wiersma DS, Steiner U, Vignolini S (2014) Bright-white beetle scales optimise multiple scattering of light. Sci Rep 4:6075. doi: 10.1038/srep06075 Google Scholar
  12. 12.
    Wilts BD, Whitney HM, Glover BJ, Steiner U, Vignolini S (2014) Natural helicoidal structures: morphology, self-assembly and optical properties. Mater Today Proc 1S:177–185CrossRefGoogle Scholar
  13. 13.
    Lee DW (1991) Ultrastructural basis and function of iridescent blue colour of fruits in Elaeocarpus. Nature 394:260–262CrossRefGoogle Scholar
  14. 14.
    Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys 71:076401CrossRefGoogle Scholar
  15. 15.
    Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132CrossRefGoogle Scholar
  16. 16.
    Giese M, Blusch LK, Khan MK, Hamad WY, MacLachlan MJ (2014) Responsive mesoporous photonic cellulose films by supramolecular contemplating. Angew Chem Int Ed 53(34):8880–8884CrossRefGoogle Scholar
  17. 17.
    Lemke CH, Dong RY, Michal CA, Hamad WY (2012) New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR. Cellulose 19:1619–1629CrossRefGoogle Scholar
  18. 18.
    Chuang IS, Maciel GE (1992) 13C CP/MAS NMR study of the structural dependence of urea-formaldehyde resins on formaldehyde-to-urea molar ratios at different urea concentrations and pH values. Macromolecules 25:3204–3226CrossRefGoogle Scholar
  19. 19.
    de Vries HI (1951) Rotary power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226CrossRefGoogle Scholar
  20. 20.
    Kelly JA, Shukaliak AM, Cheung C, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed 52(34):8912–8916CrossRefGoogle Scholar
  21. 21.
    Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2013) Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. Sens Actuators B 176:692–697CrossRefGoogle Scholar
  22. 22.
    Khan MK, Giese M, Yu M, Hamad WY, MacLachlan MJ (2013) Flexible mesoporous photonic resins with tunable chiral nematic structures. Angew Chem Int Ed 52(34):8921–8924CrossRefGoogle Scholar
  23. 23.
    Schlesinger M, Giese M, Blusch LK, Hamad WY, MacLachlan MJ (2015) Chiral nematic cellulose–gold nanoparticle composites from mesoporous photonic cellulose. Chem Commun 51:530–533CrossRefGoogle Scholar
  24. 24.
    Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11(23):4686–4694CrossRefGoogle Scholar
  25. 25.
    Khan MK, Bsoul A, Walus K, Hamad WY, MacLachlan MJ (2015) Photonic patterns printed in chiral nematic mesoporous resins. Angew Chem Int Ed. doi: 10.1002/anie.201410411 Google Scholar
  26. 26.
    Giese M, De Witt JC, Shopsowitz KE, Manning AP, Dong RY, Michal CA, Hamad WY, MacLachlan MJ (2013) Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interfaces 5(15):6854–6859CrossRefGoogle Scholar
  27. 27.
    Giese M, Khan MK, Yu M, Hamad WY, MacLachlan MJ (2013) Imprinting of photonic patters with novel thermosetting amino-formaldehyde-cellulose composites. ACS Macro Lett 2(9):818–821CrossRefGoogle Scholar
  28. 28.
    Cheung CCY, Giese M, Kelly JA, Hamad WY, MacLachlan MJ (2013) Iridescent chiral nematic cellulose nanocrystals (CNCs)/polymer composites assembled in organic solvents. ACS Macro Lett 2(11):1016–1020CrossRefGoogle Scholar
  29. 29.
    Page DH, El-Hosseiny F, Winkler K (1971) Behaviour of single wood fibres under axial tensile strain. Nature 229:252CrossRefGoogle Scholar
  30. 30.
    Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. TAPPI J 60(4):114Google Scholar
  31. 31.
    Plaza N, Zelinka SL, Stone DS, Jakes JE (2013) Plant-based torsional actuator with memory. Smart Mater Struct 22, 072001 (7 pages)CrossRefGoogle Scholar
  32. 32.
    Dumanli AG, Kamita G, Landman J, van der Kooij H, Glover BJ, Baumberg JJ, Steiner U, Vignolini S (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650CrossRefGoogle Scholar
  33. 33.
    Dumanli AG, van der Kooij HM, Kamita G, Reisner E, Baumberg JJ, Steiner U, Vignolini S (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306CrossRefGoogle Scholar
  34. 34.
    Zhang YP, Chodavarapu VP, Kirk AG, Andrews MP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6, 063516. doi: 10.1117/1.JNP. 6.063516 CrossRefGoogle Scholar
  35. 35.
    Khan MK, Hamad WY, MacLachlan MJ (2014) Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties. Adv Mater 26(15):2323–2328CrossRefGoogle Scholar
  36. 36.
    Lee W-E, Jin Y-J, Park L-S, Kwak G (2012) Fluorescent actuator based on microporous conjugated polymer with intramolecular stack structure. Adv Mater 24:5604–5609CrossRefGoogle Scholar
  37. 37.
    Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effects of ionic strength on the isotropic – chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRefGoogle Scholar
  38. 38.
    Geng Y, Almeida PL, Fernandes SN, Cheng C, Palffy-Muhoray P, Godinho MH (2013) A cellulose liquid crystal motor: a steam engine of the second kind. Sci Rep 3:1–4Google Scholar
  39. 39.
    Islam MR, Li X, Smyth K, Serpe MJ (2013) Polymer-based muscle expansion and contraction. Angew Chem Int Ed 52:10330–10333CrossRefGoogle Scholar
  40. 40.
    Asher S, Holtz J, Weissman J, Pan G (1998) Mesoscopically periodic photonic-crystal materials for linear and nonlinear optics and chemical sensing. MRS Bull 23:44–50Google Scholar
  41. 41.
    von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554CrossRefGoogle Scholar
  42. 42.
    Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50:1492–1522CrossRefGoogle Scholar
  43. 43.
    Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composite reinforced by locking-in liquid-crystalline assembly of cellulose nanocrystallites. Biomacromolecules 13:1584–1591CrossRefGoogle Scholar
  44. 44.
    Kelly JA, Yu M, Hamad WY, MacLachlan MJ (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1(4):295–299CrossRefGoogle Scholar
  45. 45.
    Ben-Moshe M, Alexeev VL, Asher SA (2006) Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 78:5149–5157CrossRefGoogle Scholar
  46. 46.
    Tanaka T, Fillmore DJ (1979) Kinetics of swelling of gels. J Chem Phys 70:1214–1218CrossRefGoogle Scholar
  47. 47.
    Capadona JR, van den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofiber templates. Nat Nanotechnol 2(12):765–769CrossRefGoogle Scholar
  48. 48.
    Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374CrossRefGoogle Scholar
  49. 49.
    Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRefGoogle Scholar
  50. 50.
    Lin VS, Motesharei K, Dancil KP, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843CrossRefGoogle Scholar
  51. 51.
    Choi SY, Mamak M, von Freymann G, Chopra N, Ozin GA (2006) Mesoporous bragg stack color tunable sensors. Nano Lett 6:2456–2461CrossRefGoogle Scholar
  52. 52.
    Yamada Y, Nakamura T, Ishi M, Yano K (2006) Reversible control of light reflection of a colloidal crystal film fabricated from monodisperse mesoporous silica spheres. Langmuir 22:2444–2446CrossRefGoogle Scholar
  53. 53.
    Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hardand soft templating. Chem Soc Rev 42:3721–3739CrossRefGoogle Scholar
  54. 54.
    Lee YS (2008) Self-assembly and nanotechnology: a force balance approach. Wiley, HobokenCrossRefGoogle Scholar
  55. 55.
    Chandrasekhar S (1992) Liquid crystals, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  56. 56.
    Friberg SE, Yang CC, Goubran G, Partch RE (1991) Ammonia microemulsions and ammonolysis of silicon tetrachloride. Langmuir 7:1103–1106CrossRefGoogle Scholar
  57. 57.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  58. 58.
    Thomas A, Antonietti M (2003) Silica nanocasting of simple cellulose derivatives: towards chiral pore systems with long-range order and chiral optical coatings. Adv Funct Mater 13:763–766CrossRefGoogle Scholar
  59. 59.
    Wang W, Liu R, Liu W, Tan J, Liu W, Kang H, Huang Y (2010) Hierarchical mesoporous silica prepared from ethyl-cyanoethyl cellulose cholesteric liquid crystalline phase. J Mater Sci 45:5567–5573CrossRefGoogle Scholar
  60. 60.
    Qi H, Roy X, Shopsowitz KE, Hui JKH, MacLachlan MJ (2010) Liquid-crystal templating in ammonia: a facile route to micro- and mesoporous metal nitride/carbon composites. Angew Chem Int Ed 49:9740–9743CrossRefGoogle Scholar
  61. 61.
    Alonso B, Belamie E (2010) Chitin-silica nanocomposites by self-assembly. Angew Chem Int Ed 49:8201–8204CrossRefGoogle Scholar
  62. 62.
    Belamie E, Boltoeva MY, Yang K, Cacciaguerra T, Alonso B (2011) Tunable hierarchical porosity from self-assembled chitin-silica nanocomposites. J Mater Chem 21:16997–17006CrossRefGoogle Scholar
  63. 63.
    Nguyen TD, Shopsowitz KE, MacLachlan MJ (2013) Mesoporous silica and organosilica films templated by nanocrystalline chitin. Chem Eur J 19:15148–15154CrossRefGoogle Scholar
  64. 64.
    Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRefGoogle Scholar
  65. 65.
    Shin Y, Exarhos GJ (2007) Template synthesis of porous titania using cellulose nanocrystals. Mater Lett 61:2594–2597CrossRefGoogle Scholar
  66. 66.
    Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425CrossRefGoogle Scholar
  67. 67.
    Shopsowitz KE, Kelly JA, Hamad WY, MacLachlan MJ (2013) Biopolymer template glass with a twist: controlling the chirality, porosity and photonic properties of silica with cellulose nanocrystals. Adv Funct Mater 24(3):327–338CrossRefGoogle Scholar
  68. 68.
    Shopsowitz KE, Hamad WY, MacLachlan MJ (2012) Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc 134(2):867–870CrossRefGoogle Scholar
  69. 69.
    Kelly JA, Shopsowitz KE, Ahn J, Hamad WY, MacLachlan MJ (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28(50):17256–17262CrossRefGoogle Scholar
  70. 70.
    Kelly JA, Kyle Manchee CP, Cheng S, Ahn JM, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) Evaluation of form birefringence in chiral nematic mesoporous materials. J Mater Chem C 2:5093–5097CrossRefGoogle Scholar
  71. 71.
    Kelly JA, Giese M, Shopsowitz KE, Hamad WY, MacLachlan MJ (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47(4):1088–1096CrossRefGoogle Scholar
  72. 72.
    Asefa A, MacLachlan MJ, Coombs N, Ozin GA (1999) Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402:867–871Google Scholar
  73. 73.
    Mizoshita N, Ikai M, Tani T, Inagaki S (2009) Hole-transporting periodic mesostructured organosilica. J Am Chem Soc 131:14225–14227CrossRefGoogle Scholar
  74. 74.
    Haffer S, Tiemann M, Fröba M (2010) Periodic mesoporous organosilica (PMO) materials with uniform spherical core-shell structure. Chem Eur J 16:10447–10452CrossRefGoogle Scholar
  75. 75.
    Wang H, Roman M (2011) Formation and properties of chitosan-cellulose nanocrystal polyelectrolyte-macroion complexes for drug delivery applications. Biomacromolecules 12:1585–1593CrossRefGoogle Scholar
  76. 76.
    Lim MH, Stein A (1999) Comparative studies of grafting and direct syntheses of inorganic-organic hybrid mesoporous materials. Chem Mater 11:3285–3295CrossRefGoogle Scholar
  77. 77.
    Lu Y, Fan H, Doke N, Loy DA, Assink RA, LaVan DA, Brinker CJ (2000) Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality. J Am Chem Soc 122:5258–5261CrossRefGoogle Scholar
  78. 78.
    Inagaki S, Guan S, Ohsuna T, Terasaki O (2002) An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416:304–307CrossRefGoogle Scholar
  79. 79.
    Terpstra AS, Shopsowitz KE, Gregory CF, Manning AP, Michal CA, Hamad WY, Yang J, MacLachlan MJ (2013) Helium ion microscopy: a new tool for imaging novel mesoporous silica and organosilica materials. Chem Commun 49(16):1645–1647CrossRefGoogle Scholar
  80. 80.
    Robbie K, Broer DJ, Brett MJ (1999) Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399:764–766CrossRefGoogle Scholar
  81. 81.
    Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, Aizenberg J (2012) Wettingin color: calorimentric differentiation of organic liquids with high selectivity. ACS Nano 6:1427–1437CrossRefGoogle Scholar
  82. 82.
    Bragg WL, Pippard AB (1953) The form birefringence of macromolecules. Acta Crystallogr 6:865–867CrossRefGoogle Scholar
  83. 83.
    Anderson MA, Tinsley-Bown A, Allcock P, Perkins EA, Snow P, Hollings M, Smith RG, Reeves C, Squirrell DJ, Nicklin S, Cox TI (2003) Sensitivity of the optical properties of porous silica layers to the refractive index of liquid in the pores. Phys Status Solidi A 197:528–533CrossRefGoogle Scholar
  84. 84.
    Lu A, Scüth F (2006) Nanocasting: a versatile strategy for creating nanostructured porous materials. Adv Mater 18:1793–1805CrossRefGoogle Scholar
  85. 85.
    Lu AH, Zhao D, Wan Y (2009) Nanocasting: a versatile strategy for creating nanostructured porous materials. The Royal Society of Chemistry, CambridgeGoogle Scholar
  86. 86.
    Zhang R, Elzatahry AA, Al-Deyab SS, Zhao D (2012) Mesoporous titania: from synthesis to application. Nano Today 7:344–366CrossRefGoogle Scholar
  87. 87.
    Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic order. Angew Chem Int Ed 51(28):6886–6890CrossRefGoogle Scholar
  88. 88.
    Zeng S, Baillargeat D, Ho H-P, Yong K-T (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452CrossRefGoogle Scholar
  89. 89.
    Gautier C, Buergi T (2009) Chiral gold nanoparticles. ChemPhysChem 10:483–492CrossRefGoogle Scholar
  90. 90.
    Govorov AO, Gun’ko YK, Slocik JM, Gerard VA, Fan Z, Naik RR (2011) Chiral nanoparticle assemblies: circular dichroism, plasmonic interactions, and exciton effects. J Mater Chem 21:16806–16818CrossRefGoogle Scholar
  91. 91.
    Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133(11):3728–3731CrossRefGoogle Scholar
  92. 92.
    Mehr SHM, Giese M, Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Poly(p-phenylenevinylene) in chiral nematic mesoporous organosilica. Langmuir 29(40):12579–12584CrossRefGoogle Scholar
  93. 93.
    Akagi K, Piao G, Kaneko S, Sakamaki K, Shirakawa H, Kyotani M (1998) Helical polyacetylene synthesized with a chiral nematic reaction field. Science 282:1683–1686CrossRefGoogle Scholar
  94. 94.
    Ruda H, Matsuura N (2007) Nano-engineered tunable photonic crystals in the near-IR and visible electromagnetic spectrum. Springer, Boston, pp 997–1019Google Scholar
  95. 95.
    Chandrasekhar P (1999) Conducting polymers, fundamentals and applications: a practical approach. Kluwer Academic, Boston, pp 434–435CrossRefGoogle Scholar
  96. 96.
    Skotheim TG, Elsenbaumer RL, Reynolds JR (1998) Handbook of conducting polymers, 2nd edn. Marcel Dekker, New York, pp 883–1007Google Scholar
  97. 97.
    Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, K-Zadeh K, Hoek EMV, Wang KL, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11:954–959CrossRefGoogle Scholar
  98. 98.
    Lin J, Tang Q, Wu J, Sun H (2008) Synthesis, characterization and properties of polyaniline/expanded vermiculite intercalated nanocomposite. Sci Technol Adv Mater 9(2), 025010CrossRefGoogle Scholar
  99. 99.
    Zhu C, Zhai J, Wen D, Dong S (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306CrossRefGoogle Scholar
  100. 100.
    van der Berg O, Schroeter M, Capadona JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753CrossRefGoogle Scholar
  101. 101.
    Tkalya E, Ghislandi M, Thielemans W, van der Schoot P, de With G, Koning C (2013) Cellulose nanowhiskers templating in conductive polymer nanocomposites reduces electrical percolation threshold 5-fold. ACS Marco Lett 2:157–163CrossRefGoogle Scholar
  102. 102.
    Fan J, Shao W, Xu G, Cui XT, Luo X (2014) Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Adv 4:24328–24333CrossRefGoogle Scholar
  103. 103.
    Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8457CrossRefGoogle Scholar
  104. 104.
    Sakakibara K, Rosenau T (2012) Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung 66:9–19CrossRefGoogle Scholar
  105. 105.
    Wang H, Bian L, Zhou P, Jian T, Tang W (2013) Core-sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1:578–584CrossRefGoogle Scholar
  106. 106.
    Mattoso LHC, Medeiros ES, Baker DA, Avloni J, Wood DF, Orts W (2009) Electrically conductive nanocomposites made from cellulose nanofibrils and polyaniline. J Nanosci Nanotechnol 9:2917–2922CrossRefGoogle Scholar
  107. 107.
    Byoung-Ho L, Hyun-Joong K, Han-Seung Y (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRefGoogle Scholar
  108. 108.
    Nyström G, Mihranyan A, Razaq A, Lindström T, Neyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182CrossRefGoogle Scholar
  109. 109.
    Marins JA, Soares BG, Dahmouche K, Ribeiro SJL, Barud H, Bonemer D (2011) Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18:1285–1294CrossRefGoogle Scholar
  110. 110.
    Müller D, Mandelli JS, Marins JA, Soares BG, Porto LM, Rambo CR, Barra GMO (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRefGoogle Scholar
  111. 111.
    Liew SY, Shariki S, Vuorema A, Walsh DA, Marken F, Thielmans W (2012) Cellulose nanowhiskers in elechtrochamical applications. In: Liebner F et al (eds) Functional materials from renewable sources, ACS symposium series. American Chemical Society, Washington DC, pp 75–106. ISBN 9-78084122789-7CrossRefGoogle Scholar
  112. 112.
    Mihranyan A, Esmaeili M, Razaq A, Alexeichlik D, Lindtröm T (2012) Influence of the nanocellulose raw material characteristics on the electrochemical and mechanical properties of conductive paper electrodes. J Mater Sci 47:4463–4472CrossRefGoogle Scholar
  113. 113.
    Hamad WY, Atifi S (2015) Flexible, semiconducting nanocomposite materials based on nanocrystalline cellulose and polyaniline. CA Patent No. 2,831,147Google Scholar
  114. 114.
    Wang D-W, Li F, Zhao J, Ren W, Chen ZG, Tan J, Wu ZS, Gentle I, Lu GQ, Cheng HM (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high performance flexible electrod. ACS Nano 3(7):1745–1752CrossRefGoogle Scholar
  115. 115.
    Hamad WY, Atifi S, Stead N (2013) Cellulose nanocrystal (CNC) films and CNCs-based polymer films using electrochemical techniques. USPTO Application 61/819,905 filed on May 6, 2013Google Scholar
  116. 116.
    Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRefGoogle Scholar
  117. 117.
    Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  118. 118.
    Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angew Chem Int Ed 123(46):11183–11187CrossRefGoogle Scholar
  119. 119.
    Nguyen TD, Hamad WY, MacLachlan MJ (2014) CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater 24(6):777–783CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cellulosic Biomaterials Group, FPInnovations, Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations