Nanocellulose and Proteins: Exploiting Their Interactions for Production, Immobilization, and Synthesis of Biocompatible Materials

  • Consuelo FritzEmail author
  • Benjamin Jeuck
  • Carlos Salas
  • Ronalds Gonzalez
  • Hasan Jameel
  • Orlando J. RojasEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


Nanocellulose has been used with promising results as reinforcement material in composites, many of which include hydrophobic polymers. However, the hydrophilic nature of nanocellulose can be better exploited in composites that incorporate high surface energy systems as well as in applications that can benefit from such properties. In fact, proteins can be ideal components in these cases. This paper reviews such aspects, which are based on the remarkable mechanical properties of nanocellulose. This material also exhibits low density, high aspect ratio, high surface area, and can be modified by substitution of its abundant hydroxyl groups. It also shows biocompatibility, low toxicity, and biodegradability. Convenient biotechnological methods for its production are of interest not only because of the possible reduction in processing energy but also because of positive environmental aspects. Thus, enzymatic treatments are favorable for effecting fiber deconstruction into nanocellulose. In addition to reviewing nanocellulose production by enzymatic routes, we discuss incorporation of enzyme activity to produce biodegradable systems for biomedical applications and food packaging. Related applications have distinctive features that take advantage of protein–cellulose interactions and the possibility of changing nanocellulose properties via enzymatic or protein treatments.


Bacterial cellulose (BC) Biocompatibility Cellulose nanocrystal (CNC) Cellulose nanofibril (CNF) Enzyme Immobilization Microcrystalline cellulose (MCC) Microfibrillated cellulose (MFC) Protein 


  1. 1.
    Spence K, Venditti R, Rojas O, Habibi Y, Pawlak J (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18:1097–1111CrossRefGoogle Scholar
  2. 2.
    Josefsson P, Henriksson G, Wågberg L (2008) The physical action of cellulases revealed by a quartz crystal microbalance study using ultrathin cellulose films and pure cellulases. Biomacromolecules 9:249–254CrossRefGoogle Scholar
  3. 3.
    Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441CrossRefGoogle Scholar
  4. 4.
    Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRefGoogle Scholar
  5. 5.
    Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129CrossRefGoogle Scholar
  6. 6.
    Filson PB, Dawson-Andoh B, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814CrossRefGoogle Scholar
  7. 7.
    Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym Microb Technol 52:20–25CrossRefGoogle Scholar
  8. 8.
    Hayashi N, Kondo T, Ishihara M (2005) Enzymatically produced nano-ordered short elements containing cellulose Iβ crystalline domains. Carbohydr Polym 61:191–197CrossRefGoogle Scholar
  9. 9.
    George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48:50–57Google Scholar
  10. 10.
    Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344CrossRefGoogle Scholar
  11. 11.
    Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158CrossRefGoogle Scholar
  12. 12.
    Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2011) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18:57–65CrossRefGoogle Scholar
  13. 13.
    Janardhnan S, Sain M (2006) Isolation of cellulose microfibrils – an enzymatic approach. Bioresources 1(2):176–188Google Scholar
  14. 14.
    Ong E, Gilkes NR, Warren RAJ, Miller RC, Kilburn DG (1989) Enzyme immobilization using the cellulose-binding domain of a Cellulomonas fimi exoglucanase. Nat Biotechnol 7:604–607CrossRefGoogle Scholar
  15. 15.
    Arola S, Tammelin T, Setälä H, Tullila A, Linder MB (2012) Immobilization–stabilization of proteins on nanofibrillated cellulose derivatives and their bioactive film formation. Biomacromolecules 13:594–603CrossRefGoogle Scholar
  16. 16.
    Orelma H, Filpponen I, Johansson L, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Carbonell RG, Rojas OJ (2013) Bioactive cellulose nanofibrils for specific human IgG binding. Biomacromolecules 14:4161–4168CrossRefGoogle Scholar
  18. 18.
    Mahmoud KA, Male KB, Hrapovic S, Luong JHT (2009) Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS Appl Mater Interfaces 1:1383–1386CrossRefGoogle Scholar
  19. 19.
    Incani V, Danumah C, Boluk Y (2013) Nanocomposites of nanocrystalline cellulose for enzyme immobilization. Cellulose 20:191–200CrossRefGoogle Scholar
  20. 20.
    Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications. Mater 2:353–373CrossRefGoogle Scholar
  21. 21.
    Anirudhan TS, Tharun AR, Rejeena SR (2011) Investigation on poly(methacrylic acid)-grafted cellulose/bentonite superabsorbent composite: synthesis, characterization, and adsorption characteristics of bovine serum albumin. Ind Eng Chem Res 50:1866–1874CrossRefGoogle Scholar
  22. 22.
    Anirudhan TS, Rejeena SR (2012) Adsorption and hydrolytic activity of trypsin on a carboxylate-functionalized cation exchanger prepared from nanocellulose. J Colloid Interface Sci 381:125–136CrossRefGoogle Scholar
  23. 23.
    Anirudhan TS, Rejeena SR (2013) Selective adsorption of hemoglobin using polymer-grafted-magnetite nanocellulose composite. Carbohydr Polym 93:518–527CrossRefGoogle Scholar
  24. 24.
    Kolakovic R, Peltonen L, Laukkanen A, Hellman M, Laaksonen P, Linder MB, Hirvonen J, Laaksonen T (2013) Evaluation of drugs interactions with nanofibrillar cellulose. Eur J Pharm Biopharm 85(3):1238–1244CrossRefGoogle Scholar
  25. 25.
    Salas C, Rojas OJ, Lucia LA, Hubbe MA, Genzer J (2012) Adsorption of glycinin and β-conglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes. Biomacromolecules 13:387–396CrossRefGoogle Scholar
  26. 26.
    Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, Lendlein A, Ballauff M, Haag R (2014) Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed 53:8004–8031CrossRefGoogle Scholar
  27. 27.
    Kuzmenko V, Sämfors S, Hägg D, Gatenholm P (2013) Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion. Mater Sci Eng C 33:4599–4607CrossRefGoogle Scholar
  28. 28.
    Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50:69–77CrossRefGoogle Scholar
  29. 29.
    Bhattacharya M, Malinen MM, Lauren P, Lou Y, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164:291–298CrossRefGoogle Scholar
  30. 30.
    Lou Y, Kanninen L, Kuisma T, Niklander J, Noon LA, Burks D, Urtti A, Yliperttula M (2014) The use of nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells. Stem Cells Dev 23:380–392CrossRefGoogle Scholar
  31. 31.
    Pretzel D, Linss S, Ahrem H, Endres M, Kaps C, Klemm D, Kinne R (2013) A novel in vitro bovine cartilage punch model for assessing the regeneration of focal cartilage defects with biocompatible bacterial nanocellulose. Arthritis Res Ther 15:R59CrossRefGoogle Scholar
  32. 32.
    Feldmann E, Sundberg J, Bobbili B, Schwarz S, Gatenholm P, Rotter N (2013) Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28:626–640CrossRefGoogle Scholar
  33. 33.
    Ahrem H, Pretzel D, Endres M, Conrad D, Courseau J, Müller H, Jaeger R, Kaps C, Klemm DO, Kinne RW (2014) Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater 10:1341–1353CrossRefGoogle Scholar
  34. 34.
    Malinen MM, Kanninen LK, Corlu A, Isoniemi HM, Lou Y, Yliperttula ML, Urtti AO (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35:5110–5121CrossRefGoogle Scholar
  35. 35.
    Müller A, Wesarg F, Hessler N, Müller FA, Kralisch D, Fischer D (2014) Loading of bacterial nanocellulose hydrogels with proteins using a high-speed technique. Carbohydr Polym 106:410–413CrossRefGoogle Scholar
  36. 36.
    Chang S, Chen L, Lin S, Chen H (2012) Nano-biomaterials application: morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking. Food Hydrocoll 27:137–144CrossRefGoogle Scholar
  37. 37.
    Arboleda JC, Hughes M, Lucia LA, Laine J, Ekman K, Rojas OJ (2013) Soy protein-nanocellulose composite aerogels. Cellulose 20:2417–2426CrossRefGoogle Scholar
  38. 38.
    Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Effect of modified cellulose nanocrystals on microstructural and mechanical properties of polyvinyl alcohol/ovalbumin biocomposite scaffolds. Mater Lett 129:61–64CrossRefGoogle Scholar
  39. 39.
    Wang Y, Chen L (2014) Cellulose nanowhiskers and fiber alignment greatly improve mechanical properties of electrospun prolamin protein fibers. ACS Appl Mater Interfaces 6:1709–1718CrossRefGoogle Scholar
  40. 40.
    Orelma H, Morales LO, Johansson L, Hoeger IC, Filpponen I, Castro C, Rojas OJ, Laine J (2014) Affibody conjugation onto bacterial cellulose tubes and bioseparation of human serum albumin. RSC Adv 4:51440–51450CrossRefGoogle Scholar
  41. 41.
    Lynch I, Salvati A, Dawson KA (2009) Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 4:546–547CrossRefGoogle Scholar
  42. 42.
    Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose-artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  43. 43.
    Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431CrossRefGoogle Scholar
  44. 44.
    Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149CrossRefGoogle Scholar
  45. 45.
    Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12CrossRefGoogle Scholar
  46. 46.
    Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76A:431–438CrossRefGoogle Scholar
  47. 47.
    Karaaslan MA, Gao G, Kadla JF (2013) Nanocrystalline cellulose/β-casein conjugated nanoparticles prepared by click chemistr. Cellulose 20:2655–2665CrossRefGoogle Scholar
  48. 48.
    Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC (1987) Use of extracellular matrix components for cell culture. Anal Biochem 166:1–13CrossRefGoogle Scholar
  49. 49.
    Yeh H-Y, Lin J-C (2008) Surface characterization and in vitro platelet compatibility study of surface sulfonated chitosan membrane with amino group protection–deprotection strategy. J Biomater Sci Polym Ed 19:291–310CrossRefGoogle Scholar
  50. 50.
    López-Pérez PM, da Silva RMP, Serra C, Pashkuleva I, Reis RL (2010) Surface phosphorylation of chitosan significantly improves osteoblast cell viability, attachment and proliferation. J Mater Chem 20:483–491CrossRefGoogle Scholar
  51. 51.
    Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31CrossRefGoogle Scholar
  52. 52.
    Jaušovec D, Vogrinčič R, Kokol V (2015) Introduction of aldehyde vs. Carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation. Carbohydr Polym 116:74–85CrossRefGoogle Scholar
  53. 53.
    Aracri E, Vidal T (2012) Enhancing the effectiveness of a laccase-TEMPO treatment has a biorefining effect on sisal cellulose fibres. Cellulose 19:867–877CrossRefGoogle Scholar
  54. 54.
    Li Z, Renneckar S, Barone JR (2010) Nanocomposites prepared by in situ enzymatic polymerization of phenol with TEMPO-oxidized nanocellulose. Cellulose 17:57–68CrossRefGoogle Scholar
  55. 55.
    Garcia-Ubasart J, Vidal T, Torres AL, Rojas OJ (2013) Laccase-mediated coupling of nonpolar chains for the hydrophobization of lignocellulose. Biomacromolecules 14:1637–1644CrossRefGoogle Scholar
  56. 56.
    Cusola O, Roncero MB, Vidal T, Rojas OJ (2014) A facile and green method to hydrophobize films of cellulose nanofibrils and silica by laccase-mediated coupling of nonpolar colloidal particles. ChemSusChem 7:2868–2878CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Consuelo Fritz
    • 1
    Email author
  • Benjamin Jeuck
    • 1
  • Carlos Salas
    • 1
  • Ronalds Gonzalez
    • 1
  • Hasan Jameel
    • 1
  • Orlando J. Rojas
    • 2
    • 3
    Email author
  1. 1.Department of Forest BiomaterialsNorth Carolina State UniversityRaleighUSA
  2. 2.Departments of Forest Biomaterials and Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Bio-based Colloids and Materials (BiCMat), Department of Forest Products Technology, School of Chemical TechnologyAalto UniversityEspooFinland

Personalised recommendations