Liquid Crystals of Cellulosics: Fascinating Ordered Structures for the Design of Functional Material Systems

  • Yoshiyuki NishioEmail author
  • Junichi Sato
  • Kazuki Sugimura
Part of the Advances in Polymer Science book series (POLYMER, volume 271)


This article surveys progress in both fundamental and applied research related to cellulosic liquid crystals, mainly of chiral nematic order. These liquid crystals are divided into two different classes, namely cellulosic macromolecules and cellulose nanocrystals (CNCs), depending on the mesogenic constituent. We start with a review of the fundamental and chiroptical characteristics of molecular liquid crystals of representative cellulose derivatives and then discuss recent efforts on the design and construction of functional material systems (such as stimuli-sensitive optical media and novel hybrids with minerals). These systems make use of the liquid crystalline molecular assembly of cellulosics. The survey of the other class of cellulosic liquid crystals deals with colloidal suspensions of CNCs obtained by acid hydrolysis of native cellulose fibers. Following the review of fundamental aspects related to the isotropic–anisotropic phase separation behavior of CNC suspensions, attention is directed to current applications of free-standing colored films, polymer composites reinforced with CNCs as mesofiller, and inorganic hybridizations using CNC chiral nematics as template. Some comments and the outlook for future explorations are also offered.


Cellulose Chirality Composites Derivatives Functional materials Hybrids Liquid crystal Nanocrystal Phase behavior Polysaccharides 



Ethyl cyanoethyl cellulose


Cellulose 3-(trifluoromethyl)phenycarbamate


Cellulose 3-chlorophenylcarbamate


Cellulose 4-chlorophenylcarbamate


Pentafluoropropionyl ethyl cellulose


Acetic acid


Acetyl ethyl cellulose


Anhydroglucose unit


Acetoxypropyl cellulose


Amylose tris(n-butylcarbamate)


Amylose tris(ethylcarbamate)


Amylose tris(n-hexylcarbamate)


Aamylose triphenylcarbamate


Atom transfer radical polymerization


Bacterial cellulose


Butyryl ethyl cellulose


Circular dichroism


Chitin nanocrystal


Cellulose nanocrystal (or nanocrystallite)


Cellulose phenylcarbamate


Cellulose triphenylcarbamate (or tricarbanilate)


Chitosan phenylcarbamate


Dichloroacetic acid


Diethylene glycol monoethyl ether


Diethylene glycol monomethyl ether


Dynamic mechanical analysis






Dimethyl sulfoxide


Degree of polymerization (or polyaddition) in the side chain


Degree of substitution


Degree of acyl substitution


Ethyl cellulose


Fourier transform infrared spectroscopy




Hydroxypropyl cellulose


Ionic liquid


Interpenetrating network


Lower critical solution temperature


Molar substitution


Optical rotatory dispersion


Chiral nematic (or cholesteric) pitch


Poly(acrylic acid)


Propionyl ethyl cellulose




Poly(ethylene glycol)


Poly(ethylene oxide)


Poly(2-hydroxyethyl methacrylate)


Polarized optical microscope


Poly(N-vinyl pyrrolidone)


Scanning electron microscope


Cloud point


Transmission electron microscope




Tetraethyl orthosilicate (or Tetraethoxysilane)


Glass transition temperature




Isotropization temperature


Tetramethl orthosilicate (or Tetramethoxysilane)


Triethylene glycol monomethyl ether


Wide angle X-ray diffraction


Wavelength of maximum light reflectance



One of the authors (YN) is grateful to Professor O. J. Rojas of Aalto University for his encouragement and helpful suggestions as well as for his kind invitation to contribute to this special volume. The authors also wish to convey many thanks to Professor Y. Teramoto of Gifu University, and to the graduate students K. Horikiri, T. Ogiwara, and T. Hirata in our laboratory for their assistance in the preparation of this chapter.


  1. 1.
    Werbowyj RS, Gray DG (1976) Mol Cryst Liq Cryst (Lett) 34:97CrossRefGoogle Scholar
  2. 2.
    Guo J-X, Gray DG (1994) In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Carl Hanser, MunichGoogle Scholar
  3. 3.
    Gray DG (1994) Carbohydr Polym 25:277CrossRefGoogle Scholar
  4. 4.
    Gray DG, Harkness BR (1994) In: Shibaev VP, Lam L (eds) Liquid crystalline and mesomorphic polymers. Springer, New York, 298 pGoogle Scholar
  5. 5.
    Fukuda T, Takada A, Miyamoto T (1994) In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Carl Hanser, MunichGoogle Scholar
  6. 6.
    Fukuda T, Tsujii Y, Miyamoto T (1995) Macromol Symp 99:257CrossRefGoogle Scholar
  7. 7.
    Zugenmaier P (1994) In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Carl Hanser, MunichGoogle Scholar
  8. 8.
    Zugenmaier P (1998) In: Demus D, Goodby J, Gray GW, Spiess H-W, Vill V (eds) Handbook of liquid crystals, vol 3. Wiley-VCH, WeinheimGoogle Scholar
  9. 9.
    de Gennes PG (1975) The physics of liquid crystals. Oxford University Press, OxfordGoogle Scholar
  10. 10.
    Nishio Y (2006) Adv Polym Sci 205:97CrossRefGoogle Scholar
  11. 11.
    Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Int J Biol Macromol 14:170CrossRefGoogle Scholar
  12. 12.
    Habibi Y, Lucia LA, Rojas OJ (2010) Chem Rev 110:3479CrossRefGoogle Scholar
  13. 13.
    Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray DG, Dorris A (2011) Angew Chem Int Ed 50:5438CrossRefGoogle Scholar
  14. 14.
    Onsager L (1949) Ann N Y Acad Sci 51:627CrossRefGoogle Scholar
  15. 15.
    Flory PJ (1956) Proc R Soc Lond A 234:73CrossRefGoogle Scholar
  16. 16.
    Dong XM, Kimura T, Revol J-F, Gray DG (1996) Langmuir 12:2076CrossRefGoogle Scholar
  17. 17.
    Dong XM, Revol J-F, Gray DG (1998) Cellulose 5:19CrossRefGoogle Scholar
  18. 18.
    Favier V, Chanzy H, Cavaillé JY (1995) Macromolecules 28:6365CrossRefGoogle Scholar
  19. 19.
    Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Langmuir 21:2034CrossRefGoogle Scholar
  20. 20.
    Flory PJ (1984) Adv Polym Sci 59:1CrossRefGoogle Scholar
  21. 21.
    Gray DG (1985) Faraday Discuss Chem Soc 79:257CrossRefGoogle Scholar
  22. 22.
    Sato T, Teramoto A (1996) Adv Polym Sci 126:85CrossRefGoogle Scholar
  23. 23.
    Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) J Am Chem Soc 124:4974CrossRefGoogle Scholar
  24. 24.
    Song H, Niu Y, Wang Z, Zhang J (2011) Biomacromolecules 12:1087CrossRefGoogle Scholar
  25. 25.
    de Vries H (1951) Acta Crystallogr 4:219CrossRefGoogle Scholar
  26. 26.
    Straley JP (1976) Phys Rev A 14:1835CrossRefGoogle Scholar
  27. 27.
    Osipov MA (1988) Nuovo Cimento 10D:1249CrossRefGoogle Scholar
  28. 28.
    Werbowyj RS, Gray DG (1980) Macromolecules 13:69CrossRefGoogle Scholar
  29. 29.
    Fortin S, Charlet G (1989) Macromolecules 22:2286CrossRefGoogle Scholar
  30. 30.
    Nishio Y, Chiba R, Miyashita Y, Oshima K, Miyajima T, Kimura N, Suzuki H (2002) Polym J 34:149CrossRefGoogle Scholar
  31. 31.
    Chiba R, Ito M, Nishio Y (2010) Polym J 42:232CrossRefGoogle Scholar
  32. 32.
    Rwei S-P, Lyu M-S, Wu P-S, Tseng C-H, Huang H-W (2009) Cellulose 16:9CrossRefGoogle Scholar
  33. 33.
    Tseng SL, Valente A, Gray DG (1981) Macromolecules 14:715CrossRefGoogle Scholar
  34. 34.
    Hou H, Reuning A, Wendorff JH, Greiner A (2000) Macromol Chem Phys 201:2050CrossRefGoogle Scholar
  35. 35.
    Huang B, Ge JJ, Li Y, Hou H (2007) Polymer 48:264CrossRefGoogle Scholar
  36. 36.
    Yamagishi T, Nakamoto Y, Sixou P (2006) Cellulose 13:205CrossRefGoogle Scholar
  37. 37.
    Ritcey AM, Gray DG (1988) Macromolecules 21:1251CrossRefGoogle Scholar
  38. 38.
    Guo J-X, Gray DG (1989) Macromolecules 22:2086CrossRefGoogle Scholar
  39. 39.
    Guo J-X, Gray DG (1994) J Polym Sci B Polym Phys 32:2529CrossRefGoogle Scholar
  40. 40.
    Ties JC, Cowie JMG (2001) Polymer 42:1297CrossRefGoogle Scholar
  41. 41.
    Nada T, Teramoto, Y, Nishio Y (2010) 17th annual meeting of the cellulose society of Japan, Preprints 17:61Google Scholar
  42. 42.
    Horikiri K, Aoki D, Teramoto, Y, Nishio Y (2014) 21st annual meeting of the cellulose society of Japan, Preprints 21:98Google Scholar
  43. 43.
    Shimamoto S, Gray DG (1998) Chem Mater 10:1720CrossRefGoogle Scholar
  44. 44.
    Zugenmaier P (1998) In: Dumitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New YorkGoogle Scholar
  45. 45.
    Rout DK, Barman SP, Pulapura SK, Gross RA (1994) Macromolecules 27:2945CrossRefGoogle Scholar
  46. 46.
    Asahina D, Miyashita Y, Nishio Y (1999) Sen’I Gakkaishi 55:28CrossRefGoogle Scholar
  47. 47.
    Asahina D, Matsubara T, Miyashita Y, Nishio Y (2000) Sen’I Gakkaishi 56:435CrossRefGoogle Scholar
  48. 48.
    Dong Y, Yuan Q, Wu Y, Wang M (2000) J Appl Polym Sci 76:2057CrossRefGoogle Scholar
  49. 49.
    Kuse Y, Asahina D, Nishio Y (2009) Biomacromolecules 10:166CrossRefGoogle Scholar
  50. 50.
    Revol J-F, Marchessault RH (1993) Int J Biol Macromol 15:329CrossRefGoogle Scholar
  51. 51.
    Sato J, Morioka N, Teramoto Y, Nishio Y (2014) Polym J 46:559CrossRefGoogle Scholar
  52. 52.
    Uematsu I, Uematsu Y (1984) Adv Polym Sci 59:37CrossRefGoogle Scholar
  53. 53.
    Robinson C (1961) Tetrahedron 13:219CrossRefGoogle Scholar
  54. 54.
    Duke RW, Du Pré DB, Hines WA, Samulski ET (1976) J Am Chem Soc 98:3094CrossRefGoogle Scholar
  55. 55.
    Samulski TV, Samulski ET (1977) J Chem Phys 67:824CrossRefGoogle Scholar
  56. 56.
    Zugenmaier P, Voihsel M (1984) Macromol Chem Rapid Commun 5:245CrossRefGoogle Scholar
  57. 57.
    Oyamada K, Terao K, Suwa M, Kitamura S, Sato T (2013) Macromolecules 46:4589CrossRefGoogle Scholar
  58. 58.
    Terao K, Maeda F, Oyamada K, Ochiai T, Kitamura S, Sato T (2012) J Phys Chem B 116:12714CrossRefGoogle Scholar
  59. 59.
    Matsuo K, Gekko K (2004) Carbohydr Res 339:591CrossRefGoogle Scholar
  60. 60.
    Matsuo K, Namatame H, Taniguchi M, Gekko K (2009) Biosci Biotechnol Biochem 73:557CrossRefGoogle Scholar
  61. 61.
    Chiba R, Nishio Y, Miyashita Y (2003) Macromolecules 36:1706CrossRefGoogle Scholar
  62. 62.
    Nishio Y, Chiba R (2003) Ekisho 7:218Google Scholar
  63. 63.
    Chiba R, Nishio Y, Sato Y, Ohtaki M, Miyashita Y (2006) Biomacromolecules 7:3076CrossRefGoogle Scholar
  64. 64.
    Ito M, Teramoto Y, Nishio Y (2012) Biomacromolecules 13:569CrossRefGoogle Scholar
  65. 65.
    Wang L, Huang Y (2003) Macromol Symp 192:207CrossRefGoogle Scholar
  66. 66.
    Wenzlik D, Ohm C, Serra C, Zentel R (2011) Soft Matter 7:2340CrossRefGoogle Scholar
  67. 67.
    Wenzlik D, Zentel R (2013) Macromol Chem Phys 214:2405CrossRefGoogle Scholar
  68. 68.
    Arrighi V, Cowie JMG, Vaqueiro P, Prior KA (2002) Macromolecules 35:7354CrossRefGoogle Scholar
  69. 69.
    Wang L, Huang Y (2004) Macromolecules 37:303CrossRefGoogle Scholar
  70. 70.
    Goto H, Akagi K (2006) Chem Mater 18:255CrossRefGoogle Scholar
  71. 71.
    Ogiwara T, Teramoto Y, Nishio Y (2013) 62nd annual meeting of the society of polymer science, Japan. Polym Preprints Jpn 62:1049Google Scholar
  72. 72.
    Nishio Y, Susuki S, Takahashi T (1985) Polym J 17:753CrossRefGoogle Scholar
  73. 73.
    Nishio Y, Fujiki Y (1991) J Macromol Sci Phys B30:357CrossRefGoogle Scholar
  74. 74.
    Nishimura T, Ito T, Yamamoto Y, Yoshio M, Kato T (2008) Angew Chem Int Ed 47:2800CrossRefGoogle Scholar
  75. 75.
    Thomas A, Antonietti M (2003) Adv Funct Mater 13:763CrossRefGoogle Scholar
  76. 76.
    Sato J, Teramoto Y, Nishio Y (2013) 3rd European Polysaccharide Network of Excellence (EPNOE) international polysaccharide conference, Nice, France. Book of abstracts, p 120Google Scholar
  77. 77.
    Revol J-F, Godbout L, Gray DG (1998) J Pulp Paper Sci 24:146Google Scholar
  78. 78.
    Edgar CD, Gray DG (2001) Cellulose 8:5CrossRefGoogle Scholar
  79. 79.
    Odijk T (1986) Macromolecules 19:2313CrossRefGoogle Scholar
  80. 80.
    Lima MMD, Borsali R (2004) Macromol Rapid Commun 25:771CrossRefGoogle Scholar
  81. 81.
    Araki J, Kuga S (2001) Langmuir 17:4493CrossRefGoogle Scholar
  82. 82.
    Hirai A, Inui O, Horii F, Tsuji M (2009) Langmuir 25:497CrossRefGoogle Scholar
  83. 83.
    Araki J, Wada M, Kuga S, Okano T (1998) Colloids Surf A 142:75CrossRefGoogle Scholar
  84. 84.
    Roman M, Winter WT (2004) Biomacromolecules 5:1671CrossRefGoogle Scholar
  85. 85.
    Araki J, Wada M, Kuga S, Okano T (2000) Langmuir 16:2413CrossRefGoogle Scholar
  86. 86.
    Araki J, Wada M, Kuga S, Okano T (1999) J Wood Sci 45:258CrossRefGoogle Scholar
  87. 87.
    Habibi Y, Chanzy H, Vignon MR (2006) Cellulose 13:679CrossRefGoogle Scholar
  88. 88.
    Leung ACW, Hrapovic S, Lam E, Liu Y, Male K, Mahmoud KA, Luong JHT (2011) Small 7:302CrossRefGoogle Scholar
  89. 89.
    Castro-Guerrero CF, Gray DG (2014) Cellulose 21:2567CrossRefGoogle Scholar
  90. 90.
    Wang N, Ding E, Cheng R (2008) Langmuir 24:5CrossRefGoogle Scholar
  91. 91.
    Dong XM, Gray DG (1997) Langmuir 13:2404CrossRefGoogle Scholar
  92. 92.
    Beck-Candanedo S, Viet D, Gray DG (2006) Cellulose 13:629CrossRefGoogle Scholar
  93. 93.
    Edgar CD, Gray DG (2002) Macromolecules 35:7400CrossRefGoogle Scholar
  94. 94.
    Beck-Candanedo S, Viet D, Gray DG (2006) Langmuir 22:8690CrossRefGoogle Scholar
  95. 95.
    Beck-Candanedo S, Viet D, Gray DG (2007) Macromolecules 40:3429CrossRefGoogle Scholar
  96. 96.
    Viet D, Beck-Candanedo S, Gray DG (2007) Cellulose 14:109CrossRefGoogle Scholar
  97. 97.
    Azizi Samir MAS, Alloin F, Sanchez J-Y, El Kissi N, Dufresne A (2004) Macromolecules 37:1386CrossRefGoogle Scholar
  98. 98.
    van den Berg O, Capadona JR, Weder C (2007) Biomacromolecules 8:1353CrossRefGoogle Scholar
  99. 99.
    Heux L, Chauve G, Bonini C (2000) Langmuir 16:8210CrossRefGoogle Scholar
  100. 100.
    Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) J Phys Chem B 113:11069CrossRefGoogle Scholar
  101. 101.
    Zhou Q, Brumer H, Teeri TT (2009) Macromolecules 42:5430CrossRefGoogle Scholar
  102. 102.
    Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Chem Soc Rev 40:3941CrossRefGoogle Scholar
  103. 103.
    Araki J (2013) Soft Matter 9:4125CrossRefGoogle Scholar
  104. 104.
    Habibi Y (2014) Chem Soc Rev 43:1519CrossRefGoogle Scholar
  105. 105.
    Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Polymer 43:2645CrossRefGoogle Scholar
  106. 106.
    Araki J, Wada M, Kuga S (2001) Langmuir 17:21CrossRefGoogle Scholar
  107. 107.
    Kloser E, Gray DG (2010) Langmuir 26:13450CrossRefGoogle Scholar
  108. 108.
    Yi J, Xu Q, Zhang X, Zhang H (2008) Polymer 49:4406CrossRefGoogle Scholar
  109. 109.
    Xu Q, Yi J, Zhang X, Zhang H (2008) Eur Polym J 44:2830CrossRefGoogle Scholar
  110. 110.
    Yi J, Xu Q, Zhang X, Zhang H (2009) Cellulose 16:989CrossRefGoogle Scholar
  111. 111.
    Revol J-F, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Liq Cryst 16:127CrossRefGoogle Scholar
  112. 112.
    Majoinen J, Kontturi E, Ikkala O, Gray DG (2012) Cellulose 19:1599CrossRefGoogle Scholar
  113. 113.
    Roman M, Gray DG (2005) Langmuir 21:5555CrossRefGoogle Scholar
  114. 114.
    Pan J, Hamad W, Straus SK (2010) Macromolecules 43:3851CrossRefGoogle Scholar
  115. 115.
    Beck S, Bouchard J, Berry R (2011) Biomacromolecules 12:167CrossRefGoogle Scholar
  116. 116.
    Beck S, Bouchard J, Chauve G, Berry R (2013) Cellulose 20:1401CrossRefGoogle Scholar
  117. 117.
    Bordel D, Putaux J-L, Heux L (2006) Langmuir 22:4899CrossRefGoogle Scholar
  118. 118.
    Habibi Y, Heim T, Douillard R (2008) J Polym Sci B Polym Phys 46:1430CrossRefGoogle Scholar
  119. 119.
    Favier V, Canova GR, Cavaillé JY, Chanzy H, Dufresne A, Gauthier C (1995) Polym Adv Technol 6:351CrossRefGoogle Scholar
  120. 120.
    Tatsumi M, Teramoto Y, Nishio Y (2012) Biomacromolecules 13:1584CrossRefGoogle Scholar
  121. 121.
    Nishio Y, Hirose N (1992) Polymer 33:1519CrossRefGoogle Scholar
  122. 122.
    Nishio Y, Yamane T, Takahashi T (1985) J Polym Sci Polym Phys Ed 23:1043CrossRefGoogle Scholar
  123. 123.
    Tatsumi M, Kimura F, Kimura T, Teramoto Y, Nishio Y (2014) Biomacromolecules 15:4579CrossRefGoogle Scholar
  124. 124.
    Kimura F, Kimura T (2008) Sci Technol Adv Mater 9:024212CrossRefGoogle Scholar
  125. 125.
    Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Angew Chem Int Ed 52:8912CrossRefGoogle Scholar
  126. 126.
    Cheung CCY, Giese M, Kelly JA, Hamad WY, MacLachlan MJ (2013) ACS Macro Lett 2:1016CrossRefGoogle Scholar
  127. 127.
    Giese M, Khan MK, Hamad WY, MacLachlan MJ (2013) ACS Macro Lett 2:818CrossRefGoogle Scholar
  128. 128.
    Khan MK, Giese M, Yu M, Kelly JA, Hamad WY, MacLachlan MJ (2013) Angew Chem Int Ed 52:8921CrossRefGoogle Scholar
  129. 129.
    Lin N, Huang J, Dufresne A (2012) Nanoscale 4:3274CrossRefGoogle Scholar
  130. 130.
    Lagerwall JPF, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) NPG Asia Mater 6:e80CrossRefGoogle Scholar
  131. 131.
    Dujardin E, Blaseby M, Mann S (2003) J Mater Chem 13:696CrossRefGoogle Scholar
  132. 132.
    Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Nature 468:422CrossRefGoogle Scholar
  133. 133.
    Nguyen T-D, Hamad WY, MacLachlan MJ (2013) Chem Commun 49:11296CrossRefGoogle Scholar
  134. 134.
    Shopsowitz KE, Kelly JA, Hamad WY, MacLachlan MJ (2014) Adv Funct Mater 24:327CrossRefGoogle Scholar
  135. 135.
    Shopsowitz KE, Stahl A, Hamad WY, MacLachlan MJ (2012) Angew Chem Int Ed 51:6886CrossRefGoogle Scholar
  136. 136.
    Giese M, Witt JCD, Shopsowitz KE, Manning AP, Dong RY, Michal CA, Hamad WY, MacLachlan MJ (2013) ACS Appl Mater Interfaces 5:6854CrossRefGoogle Scholar
  137. 137.
    Mehr SHM, Giese M, Qi H, Shopsowitz KE, Hamad WY, MacLachlan MJ (2013) Langmuir 29:12579CrossRefGoogle Scholar
  138. 138.
    Shopsowitz KE, Hamad WY, MacLachlan MJ (2011) Angew Chem Int Ed 50:10991CrossRefGoogle Scholar
  139. 139.
    Nguyen T-D, Shopsowitz KE, MacLachlan MJ (2013) Chem Eur J 19:15148CrossRefGoogle Scholar
  140. 140.
    Boltoeva MY, Dozov I, Davidson P, Antonova K, Cardoso L, Alonso B, Belamie E (2013) Langmuir 29:8208CrossRefGoogle Scholar
  141. 141.
    Yamamoto Y, Nishimura T, Saito T, Kato T (2010) Polym J 42:583CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yoshiyuki Nishio
    • 1
    Email author
  • Junichi Sato
    • 1
  • Kazuki Sugimura
    • 1
  1. 1.Division of Forest and Biomaterials Science, Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations