Advertisement

Multicomponent Polymerization of Alkynes

  • Rongrong Hu
  • Ben Zhong Tang
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 269)

Abstract

Multicomponent reactions (MCRs) are a group of unique reactions with a number of advantages such as atom economy, high efficiency, and simple procedure. These convenient reactions, especially MCRs based on alkyne monomers, are widely studied and extensively reported. However, polymerization methods based on MCRs of alkynes have rarely been developed to benefit the preparation of macromolecules. In this paper, up-to-date progress in the development of multicomponent polymerizations (MCPs) based on alkyne monomers is summarized, including MCP of alkynes, aldehydes and amines; MCP of alkynes, azides and amines/alcohols; and multicomponent tandem polymerization of alkynes, carbonyl chloride and thiols. Efforts in monomer screening, polymerization condition optimization, and structural characterization of the resultant polymer have generated a series of functional polymer materials with fascinating properties such as aggregation-induced/enhanced emission, light refractivity, photopatternability, and magnetism.

Keywords

Multi-component polymerization Tandem polymerization Alkyne polymerization Aggregation-induced emission 

Notes

Acknowledgements

This work was partially supported by the National Basic Research Program of China (973 Program; 2013CB834701), the National Science Foundation of China (21404041), the Research Grants Council of Hong Kong (16305014, 604913, 602212, and 604711). B.Z.T. thanks the support of the Guangdong Innovative Research Team Program (201101C0105067115).

References

  1. 1.
    Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Chem Rev 114:8323–8359CrossRefGoogle Scholar
  2. 2.
    Estevez V, Villacampa M, Menendez JC (2014) Chem Soc Rev 43:4633–4657CrossRefGoogle Scholar
  3. 3.
    Bae I, Han H, Chang S (2005) J Am Chem Soc 127:2038–2039CrossRefGoogle Scholar
  4. 4.
    Yoo EJ, Bae I, Cho SH, Han H, Chang S (2006) Org Lett 8:1347–1350CrossRefGoogle Scholar
  5. 5.
    Yoo EJ, Ahlquist M, Bae I, Fokin VV, Sharpless KB, Chang S (2008) J Org Chem 73:5520–5528CrossRefGoogle Scholar
  6. 6.
    Cho SH, Yoo EJ, Bae I, Chang S (2005) J Am Chem Soc 127:16046–16047CrossRefGoogle Scholar
  7. 7.
    Passerini MG (1921) Gazz Chim Ital 51:126–129Google Scholar
  8. 8.
    Andreana PR, Liu CC, Schreiber SL (2004) Org Lett 6:4231–4233CrossRefGoogle Scholar
  9. 9.
    Mannich C, Krosche W (1912) Arch Pharm 250:647–667CrossRefGoogle Scholar
  10. 10.
    Arend M, Westermann B, Risch N (1998) Angew Chem Int Ed 37:1044–1070CrossRefGoogle Scholar
  11. 11.
    Peshkov VA, Pereshivko OP, Van der Eycken EV (2012) Chem Soc Rev 41:3790–3807CrossRefGoogle Scholar
  12. 12.
    Li CJ (2010) Acc Chem Res 43:581–590CrossRefGoogle Scholar
  13. 13.
    Crowley JD, Bandeen PH (2010) Dalton Trans 39:612–623CrossRefGoogle Scholar
  14. 14.
    Chen NC, Li SH, Battig MR, Wang Y (2013) Small 9:3944–3949CrossRefGoogle Scholar
  15. 15.
    Ryohei K (2014) Angew Chem Int Ed 53:46–48CrossRefGoogle Scholar
  16. 16.
    Lundberg P, Hawker CJ, Hult A, Malkoch M (2008) Macromol Rapid Commun 29:998–1015CrossRefGoogle Scholar
  17. 17.
    Wang YZ, Deng XX, Li L, Li ZL, Du FS, Li ZC (2013) Polym Chem 4:444–448CrossRefGoogle Scholar
  18. 18.
    Deng XX, Cui Y, Du FS, Li ZC (2014) Polym Chem 5:3316–3320CrossRefGoogle Scholar
  19. 19.
    Sehlinger A, Dannecker PK, Kreye O, Meier MAR (2014) Macromolecules 47:2774–2783CrossRefGoogle Scholar
  20. 20.
    Liu J, Lam JWY, Tang BZ (2009) Chem Rev 109:5799–5867CrossRefGoogle Scholar
  21. 21.
    Li CJ, Wei C (2002) Chem Commun 3:268–269CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Li P, Wang M, Wang L (2009) J Org Chem 74:4364–4367CrossRefGoogle Scholar
  23. 23.
    Chan CYK, Tseng NW, Lam JWY, Liu J, Kwok RTK, Tang BZ (2013) Macromolecules 46:3246–3256CrossRefGoogle Scholar
  24. 24.
    Hong Y, Lam JWY, Tang BZ (2011) Chem Soc Rev 40:5361–5388CrossRefGoogle Scholar
  25. 25.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Adv Mater 26:5429–5479CrossRefGoogle Scholar
  26. 26.
    Hu R, Leung NLC, Tang BZ (2014) Chem Soc Rev 43:4494–4562CrossRefGoogle Scholar
  27. 27.
    Hu R, Lam JWY, Yu Y, Sung HHY, Williams ID, Yuen MMF, Tang BZ (2013) Polym Chem 4:95–105CrossRefGoogle Scholar
  28. 28.
    Jim CKW, Lam JWY, Qin A, Zhao Z, Liu J, Hong Y, Tang BZ (2012) Macromol Rapid Commun 33:568–572CrossRefGoogle Scholar
  29. 29.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley, LondonGoogle Scholar
  30. 30.
    Babudri F, Farinola GM, Naso F (2004) J Mater Chem 14:11–34CrossRefGoogle Scholar
  31. 31.
    Chan WY, Berenbaum A, Clendenning SB, Lough AJ, Manners I (2003) Organometallics 22:3796–3808CrossRefGoogle Scholar
  32. 32.
    Tang BZ, Geng Y, Lam JWY, Li B, Jing X, Wang X, Wang F, Pakhomov AB, Zhang XX (1999) Chem Mater 11:1581–1589CrossRefGoogle Scholar
  33. 33.
    Uhlig N, Li CJ (2012) Org Lett 14:3000–3003CrossRefGoogle Scholar
  34. 34.
    Liu Y, Gao M, Lam JWY, Hu R, Tang BZ (2014) Macromolecules 47:4908–4919CrossRefGoogle Scholar
  35. 35.
    Bariwal JB, Ermolat’ev DS, Eycken VEV (2010) Chem Eur J 16:3281–3284CrossRefGoogle Scholar
  36. 36.
    Liu J, Ueda M (2009) J Mater Chem 19:8907–8919CrossRefGoogle Scholar
  37. 37.
    Sharavanan K, Komber H, Bohme F (2002) Macromol Chem Phys 203:1852–1858CrossRefGoogle Scholar
  38. 38.
    Kholkhoev BC, Burdukovskii VF, Mognonov DM (2011) Russ J Appl Chem 84:510–511CrossRefGoogle Scholar
  39. 39.
    Lee IH, Kim H, Choi TL (2013) J Am Chem Soc 135:3760–3763CrossRefGoogle Scholar
  40. 40.
    Kim JY, Kim SH, Chang S (2008) Tetrahedron Lett 49:1745–1749CrossRefGoogle Scholar
  41. 41.
    Sanzhizhapov DB, Tonevitskii YV, Mognonov DM, Doroshenko YE (2003) Russ J Appl Chem 76:619–622CrossRefGoogle Scholar
  42. 42.
    Roger R, Neilson DG (1961) Chem Rev 61:179–211CrossRefGoogle Scholar
  43. 43.
    Kim H, Choi TL (2014) ACS Macro Lett 3:791–794CrossRefGoogle Scholar
  44. 44.
    Tietze LF (1996) Chem Rev 96:115–136CrossRefGoogle Scholar
  45. 45.
    Tsuchiya K, Shibasaki Y, Ueda M (2003) Macromolecules 36:1815–1818CrossRefGoogle Scholar
  46. 46.
    Ranjan R, Brittain WJ (2007) Macromol Rapid Commun 28:2084–2089CrossRefGoogle Scholar
  47. 47.
    Park H, Lee HK, Choi TL (2013) J Am Chem Soc 135:10769–10775CrossRefGoogle Scholar
  48. 48.
    Park H, Choi TL (2012) J Am Chem Soc 134:7270–7273CrossRefGoogle Scholar
  49. 49.
    Chan JW, Hoyle CE, Lowe AB (2009) J Am Chem Soc 131:5751–5753CrossRefGoogle Scholar
  50. 50.
    Teiber M, Müller TJ (2012) Chem Commun 48:2080–2082CrossRefGoogle Scholar
  51. 51.
    Deng H, Hu R, Zhao E, Chan CYK, Lam JWY, Tang BZ (2014) Macromolecules 47:4920–4929CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and EngineeringSouth China University of Technology (SCUT)GuangzhouChina
  2. 2.Department of Chemistry, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Institute for Advanced Study, Institute of Molecular Functional MaterialsThe Hong Kong University of Science and Technology (HKUST)KowloonHong Kong
  3. 3.HKUST-Shenzhen Research InstituteShenzhenChina

Personalised recommendations