Aromatic Hyperbranched Polymers: Synthesis and Application

  • Anindita GhoshEmail author
  • Susanta Banerjee
  • Brigitte Voit
Part of the Advances in Polymer Science book series (POLYMER, volume 266)


Hyperbranched (hb) polymers have been receiving increasing attention because of their unique architecture that results in an interesting set of unusual chemical and physical properties. Over the past decade quite a number of excellent reviews on hb polymers have been published by different research groups, covering various aspects of this class of polymers. This review will highlight the work on aromatic hb polymers of the last decade, emphasizing general synthetic strategies and recent development of alternative synthetic strategies, and discussing various aspects of hb polymers to demonstrate their wide range of applications.


Hyperbranched polymers Polymer applications Polymer synthesis 





Atomic force microscopy




2,2-Bis[4-(3,4-dicarboxyphenoxy) phenyl]propane dianhydride


3,3′,4,4′-Benzophenonetetracarboxylic dianhydride






Dispersity (M w/M n )


Degree of branching


Dimethyl acetamide




Dimethyl sulfoxide


Differential scanning calorimetry


Elongation at break


Fourier transform infra-red spectroscopy


Gel permeation chromatography


1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride




Number average molecular weight


Weight average molecular weight




Nuclear magnetic resonance




4,4′-Oxydiphthalic dianhydride


Polyamic acid




Pyromellitic dianhydride


Scanning electron microscopy


Crystallization temperature


Onset decomposition temperature


5% weight loss temperature


10% weight loss temperature


Transmission electron microscopy


Glass transition temperature


Thermogravimetric analysis




Melting temperature




  1. 1.
    Voit BI, Lederer A (2009) Hyperbranched and highly branched polymer architectures-synthetic strategies and major characterization aspects. Chem Rev 109:5924–5973Google Scholar
  2. 2.
    Voit BI, Komber H, Lederer A (2013) Hyperbranched polymers: synthesis and characterization aspects. Mater Sci Technol. doi: 10.1002/9783527603978.mst043 Google Scholar
  3. 3.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275Google Scholar
  4. 4.
    Ishizu K, Tsubaki K, Mori A, Uchida S (2002) Architecture of nanostructured polymers. Prog Polym Sci 28:27–54Google Scholar
  5. 5.
    Voit B (2000) New developments in hyperbranched polymers. J Polym Sci A Polym Chem 38:2505–2525Google Scholar
  6. 6.
    Schluter AD, Rabe JP (2000) Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation. Angew Chem Int Ed 39:864–883Google Scholar
  7. 7.
    Roovers J, Comanita B (1999) Dendrimers and dendrimer-polymer hybrids. Adv Polym Sci 142:179–228Google Scholar
  8. 8.
    Moore JS (1997) Shape-persistent molecular architectures of nanoscale dimension. Acc Chem Res 30:402–413Google Scholar
  9. 9.
    Newkome GR, Moorefield CN, Vogtle F (2001) Dendrimers and dendrons. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Peerlings HWI, Meijer EW (1997) Chirality in dendritic architectures. Chem Eur J 3:1563–1570Google Scholar
  11. 11.
    Jang JG, Bae YC (1999) Phase behaviors of hyperbranched polymer solutions. Polymer 40:6761–6768Google Scholar
  12. 12.
    Pirrung FOH, Loen EM, Noordam A (2002) Hyperbranched polymers as a novel class of pigment dispersants. Macromol Symp 187:683–694Google Scholar
  13. 13.
    Striba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41:1329–1334Google Scholar
  14. 14.
    Mezzenga R, Boogh L, Manson JAE (2001) A review of dendritic hyperbranched polymer as modifiers in epoxy composites. Compos Sci Technol 61:787–795Google Scholar
  15. 15.
    Haag R (2001) Dendrimers and hyperbranched polymers as high-loading supports for organic synthesis. Chem Eur J 7:327–335Google Scholar
  16. 16.
    Hirao A, Hayashi M, Loykulnant S, Sugiyami K, Ryu SW, Haraguchi N, Matsuo A, Higashihara T (2005) Precise syntheses of chain-multi-functionalized polymers, star-branched polymers, star-linear block polymers, densely branched polymers, and dendritic branched polymers based on iterative approach using functionalized 1,1-diphenylethylene derivatives. Prog Polym Sci 30:111–182Google Scholar
  17. 17.
    Unal S, Long TE (2006) Highly branched poly(ether ester)s via cyclization-free melt condensation of A2 oligomers and B3 monomers. Macromolecules 39:2788–2793Google Scholar
  18. 18.
    McKee MG, Park T, Unal S, Yilgor I, Long TE (2005) Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46:2011–2015Google Scholar
  19. 19.
    Nomura R, Matsuno T, Endo T (1999) Synthesis and polymerization of a self-condensable macromonomer. Polym Bull 42:251–256Google Scholar
  20. 20.
    Yamada B, Konosu O, Tanaka K, Oku F (2000) Preparation of branched polymer by radical polymerization using polymerizable chain transfer agent. Polymer 41:5625–5631Google Scholar
  21. 21.
    Trollsas M, Kelly MA, Claesson H, Seimens R, Hedrik JL (1999) Highly branched block copolymers: design, synthesis, and morphology. Macromolecules 32:4917–4924Google Scholar
  22. 22.
    Peleshanko S, Gunawidjaja R, Petrash S, Tsukruk VV (2006) Synthesis and interfacial behavior of amphiphilic hyperbranched polymers: poly(ethylene oxide)−polystyrene hyperbranches. Macromolecules 39:4756–4766Google Scholar
  23. 23.
    Bernard J, Schappacher M, Viville P, Lazzaroni R, Deffieux A (2005) Synthesis and properties of PS–PEO core–shell amphiphilic dendrigrafts. Polymer 46:6767–6776Google Scholar
  24. 24.
    Ishizu K, Ochi K (2006) Architecture of star−block copolymers consisting of triblock arms via a N,N-diethyldithiocarbamate-mediated living radical photo-polymerization and application for nanocomposites by using as fillers. Macromolecules 39:3238–3244Google Scholar
  25. 25.
    Kreutzer G, Ternat C, Nguyen TQ, Plummer CJG, Manson JAE, Castelletto V, Hamley IW, Sun F, Sheiko SS, Herrmann A, Ouali L, Sommer H, Fieber W, Velazco MI, Klok HA (2006) water-soluble unimolecular containers based on amphiphilic multiarm star block copolymers. Macromolecules 39:4507–4516Google Scholar
  26. 26.
    Magnusson H, Malmstrom E, Hult A (1999) Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol Rapid Commun 20:453–457Google Scholar
  27. 27.
    Istratov V, Kautz H, Kim YK, Schubert R, Frey H (2003) Linear-dendritic nonionic poly(propylene oxide)–polyglycerol surfactants. Tetrahedron 59:4017–4024Google Scholar
  28. 28.
    An SG, Cho CG (2004) Synthesis and characterization of Dumbbell type amphiphilic block copolymers via ATRP. Polym Bull 51:255–262Google Scholar
  29. 29.
    Kwak SY, Ahn DU, Choi J, Song HJ, Lee SH (2004) Amelioration of mechanical brittleness in hyperbranched polymer. 1. Macroscopic evaluation by dynamic viscoelastic relaxation. Polymer 45:6889–6896Google Scholar
  30. 30.
    Okrasa L, Zigon M, Zagar E, Czech P, Boiteux G (2005) Molecular dynamics of linear and hyperbranched polyurethanes and their blends. J Non-Cryst Solids 351:2753–2758Google Scholar
  31. 31.
    Seino M, Hayakawa T, Ishida Y, Kakimoto M (2006) Synthesis and characterization of crystalline hyperbranched polysiloxysilane with POSS groups at the terminal position. Macromolecules 39:8892–8894Google Scholar
  32. 32.
    Fanghond G, Tang H, Liu C, Jiang B, Ren Q, Yang Y (2006) Preparation of hyperbranched polymers through ATRP of in situ formed AB* monomer. J Appl Polym Sci 101:850–856Google Scholar
  33. 33.
    Zhu X, Chen L, Yan D, Chen Q, Yao Y, Xiao Y, Hou J, Li J (2004) Supramolecular self-assembly of inclusion complexes of a multiarm hyperbranched polyether with cyclodextrins. langmuir 20:484–490Google Scholar
  34. 34.
    Yan D, Gao C, Frey H (eds) (2011) Hyperbranched polymers: synthesis, properties, and applications. Wiley, HobokenGoogle Scholar
  35. 35.
    Peleshanko S, Tsukruk V (2011) Grafting and surface properties of hyperbranched polymers. In: Yan D, Gao C, Frey H (eds) Hyperbranched polymers: synthesis, properties and applications, 1st edn. Wiley, Hoboken, pp 369–386. doi:10.1002/9780470929001.ch14Google Scholar
  36. 36.
    Bruchmann B, Voit B (2011) Applications of hyperbranched polymers in coatings, as additives, and in nanotechnology. In: Yan D, Gao C, Frey H (eds) Hyperbranched polymers: synthesis, properties, and applications. Wiley, Hoboken, pp. 415–440. doi:10.1002/9780470929001.ch16Google Scholar
  37. 37.
    Zhang D, Liang E, Li T, Chen S, Zhang J, Cheng X, Zhou J, Zhang A (2013) Environment-friendly synthesis and performance of a novel hyperbranched epoxy resin with a silicone skeleton. RSC Adv 3:3095–3102Google Scholar
  38. 38.
    Zhu Q, Qiu F, Zhu B, Zhu X (2013) Hyperbranched polymers for bioimaging. RSC Adv 3:2071–2083Google Scholar
  39. 39.
    Wang D, Chen H, Su Y, Qiu F, Zhu L, Huan X, Zhu B, Yan D, Guo F, Zhu X (2013) Supramolecular amphiphilic multiarm hyperbranched copolymer: synthesis, self-assembly and drug delivery applications. Polym Chem 4:85–94Google Scholar
  40. 40.
    Hartmann-Thompson C, Hu J, Kaganove SN, Keinath SN, Keeley DL, Dvornic PR (2004) Hydrogen-bond acidic hyperbranched polymers for surface acoustic wave (SAW) sensors. Chem Mater 16:5357–5364Google Scholar
  41. 41.
    Kricheldorf HR, Stukenbrock T (1998) New polymer syntheses XCIII. Hyperbranched homo- and copolyesters derived from gallic acid and β-(4-hydroxyphenyl)-propionic acid. J Polym Sci A Polym Chem 36:2347–2357Google Scholar
  42. 42.
    Li J, Bo Z (2004) “AB2 + AB” approach to hyperbranched polymers used as polymer blue light emitting materials. Macromolecules 37:2013–2015Google Scholar
  43. 43.
    Robeson LM (2010) Polymer blends in membrane transport processes. Ind Eng Chem Res 49:11859–11865Google Scholar
  44. 44.
    Newkome GR, Moorefield CN, Vogtle F (2008) Dendritic molecules: concepts, syntheses, perspectives. VCH, New York, pp 49–161Google Scholar
  45. 45.
    Astruc D, Chardac F (2001) Dendritic catalysts and dendrimers in catalysis. Chem Rev 101:2991–3024Google Scholar
  46. 46.
    Emrick T, Chang HT, Fréchet JMJ (2000) The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from ABn and A2 + B3 monomers. J Polym Sci A Polym Chem 38:4850–4869Google Scholar
  47. 47.
    Fang J, Kita H, Okamoto K (2000) Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization. Macromolecules 33:4639–4646Google Scholar
  48. 48.
    Kim YH (1992) Lyotropic liquid crystalline hyperbranched aromatic polyamides. J Am Chem Soc 114:4947–4948Google Scholar
  49. 49.
    Monticelli O, Russo S, Campagna R, Voit B (2005) Preparation and characterisation of blends based on polyamide 6 and hyperbranched aramids as palladium nanoparticle supports. Polymer 46:3597–3606Google Scholar
  50. 50.
    Yamakawa Y, Ueda M, Takeuchi K, Asai M (1999) One-pot synthesis of dendritic polyamide. J Polym Sci A Polym Chem 37:3638–3645Google Scholar
  51. 51.
    Yamakawa Y, Ueda M, Takeuchi K, Asai M (1999) One-pot synthesis of dendritic polyamide. 2. Dendritic polyamide from 5-[3-(4-aminophenyl)propionylamino]isophthalic acid hydrochloride. Macromolecules 32:8363–8369Google Scholar
  52. 52.
    Jikei M, Chon SH, Kakimoto MA, Kawauchi S, Imase T, Watanebe J (1999) Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid. Macromolecules 32:2061–2064Google Scholar
  53. 53.
    Tabuani D, Monticelli O, Chincarini A, Bianchini C, Vizza F, Moneti S, Russo S (2003) Palladium nanoparticles supported on hyperbranched aramids: synthesis, characterization, and some applications in the hydrogenation of unsaturated substrates. Macromolecules 36:4294–4301Google Scholar
  54. 54.
    Tabuani D, Monticelli O, Komber H, Russo S (2003) Preparation and characterisation of Pd nanoclusters in hyperbranched aramid templates to be used in homogeneous catalysis. Macromol Chem Phys 204:1576–1583Google Scholar
  55. 55.
    Fang J, Kita H, Okamoto K (2001) Gas permeation properties of hyperbranched polyimide membranes. J Membr Sci 182:245–256Google Scholar
  56. 56.
    Yamaguchi N, Wang JS, Hewitt JM, Lenhart WC, Mourey TH (2002) Acid chloride-functionalized hyperbranched polyester for facile and quantitative chain-end modification: one-pot synthesis and structure characterization. J Polym Sci A Polym Chem 40:2855–2867Google Scholar
  57. 57.
    Kricheldorf HR, Hobzova R, Schwarz G (2003) Cyclic hyperbranched polyesters derived from 4,4-bis(4′-hydroxyphenyl)valeric acid. Polymer 44:7361–7368Google Scholar
  58. 58.
    Kricheldorf HR, Zang QZ, Schwarz G (1982) New polymer syntheses: 6. Linear and branched poly(3-hydroxy-benzoates). Polymer 23:1821–1829Google Scholar
  59. 59.
    Moore JS, Stupp SI (1990) Room temperature polyesterification. Macromolecules 23:65–70Google Scholar
  60. 60.
    Blencowe A, Davidson L, Hayes A (2003) Synthesis and characterization of hyperbranched polyesters incorporating the AB2 monomer 3,5-bis(3-hydroxylprop-1-ynyl)benzoic acid. Eur Polym J 39:1955–1963Google Scholar
  61. 61.
    Kang SH, Luo J, Ma H, Barto RR, Frank CW, Dalton LR, Jen AKY (2003) Hyperbranched aromatic fluoropolyester for photonic applications. Macromolecules 36:4355–4359Google Scholar
  62. 62.
    Jayakannan M, Ramakrishnan S (2001) Recent developments in polyether synthesis. Macromol Rapid Comm 22:1463–1473Google Scholar
  63. 63.
    Miller TM, Neenan TX, Kwock EW, Stein SM (1993) Dendritic analogs of engineering plastics: a general one-step synthesis of dendritic polyaryl ethers. J Am Chem Soc 115:356–357Google Scholar
  64. 64.
    Chu F, Hawker CJ (1993) A versatile synthesis of isomeric hyperbranched polyetherketones. Polym Bull 30:265–272Google Scholar
  65. 65.
    Hawker CJ, Chu F (1996) Hyperbranched poly(ether ketones): manipulation of structure and physical properties. Macromolecules 29:4370–4380Google Scholar
  66. 66.
    Shu CF, Leu CM (1999) Hyperbranched poly(ether ketone) with carboxylic acid terminal groups: synthesis, characterization, and derivatization. Macromolecules 32:100–105Google Scholar
  67. 67.
    Mu JX, Zhang CL, Chen J, Jiang ZH, Kireev VV (2006) Synthesis of functionalized fluorine-containing hyperbranched poly(aryl ether ketones) for optical applications. Polym Sci Ser A 48:1035–1040Google Scholar
  68. 68.
    Wang D, Zhang SL, Zhang YH, Wang H, Mu JX, Wang GB, Jiang Z (2008) Preparation and nonlinear optical characterization of a novel hyperbranched poly(aryl ether ketone) end-functionalized with nickel phthalocyanine. Dyes Pigments 79:217–223Google Scholar
  69. 69.
    Choi JY, Tan LS, Baek JB (2006) Self-controlled synthesis of hyperbranched poly(ether ketone)s from A3 + B2 approach via different solubilities of monomers in the reaction medium. Macromolecules 39:9057–9063Google Scholar
  70. 70.
    Baek JB, Tan LS (2003) Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(ether–ketones) using polyphosphoric acid/P2O5 as polymerization medium. Polymer 44:4135–4147Google Scholar
  71. 71.
    Baek JB, Park SY, Price GE, Lyons CB, Tan LS (2005) Unusual thermal relaxation of viscosity-and-shear-induced strain in poly(ether-ketones) synthesized in highly viscous polyphosphoric acid/P2O5 medium. Polymer 46:1543–1552Google Scholar
  72. 72.
    Martinez CA, Hay AS (1997) Preparation of hyperbranched macromolecules with aryl fluoride and phenol terminal functionalities using new monomers and Cs2CO3 or Mg(OH)2 as the condensation agent. J Polym Sci A Polym Chem 35:2015–2033Google Scholar
  73. 73.
    Martinez CA, Hay AS (1998) Synthesis of hyperbranched oligomers with activated aryl chloride and phenol terminal groups. J Macromol Sci Pure Appl Chem 35:57–90Google Scholar
  74. 74.
    Kim YJ, Chung IS, Kim SY (2003) Synthesis of poly(phenylene oxide) containing trifluoromethyl groups via selective and sequential nucleophilic aromatic substitution reaction. Macromolecules 36:3809–3811Google Scholar
  75. 75.
    Kim YJ, Kakimoto MA, Kim SY (2006) Synthesis of hyperbranched poly(arylene ether) from monomer containing nitro group: kinetically controlled growth of polymer chain through dynamic exchange of end functional groups. Macromolecules 39:7190–7192Google Scholar
  76. 76.
    Kim YH, Webster OW (1992) Hyperbranched polyphenylenes. Macromolecules 25:5561–5572Google Scholar
  77. 77.
    Häußler M, Lam JWY, Zheng R, Peng H, Luo J, Chen J, Charles CCW, Tang BZ (2003) Hyperbranched polyarylenes. Chimie 6:833–842Google Scholar
  78. 78.
    Flory PJ (1952) Molecular size distribution in three dimensional polymers. VI. Branched polymers containing A-R-Bf-1 type units. J Am Chem Soc 74:2718–2723Google Scholar
  79. 79.
    Hawker, CJ, Fréchet, JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113:4583–4588Google Scholar
  80. 80.
    Holter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48:30–35Google Scholar
  81. 81.
    Odian G (1991) Principles of polymerization. Wiley, New YorkGoogle Scholar
  82. 82.
    Yang X, Wang L, He X (2010) Kinetics of nonideal hyperbranched A2 + B3 polycondensation: Simulation and comparison with experiments. J Polym Sci A Polym Chem 48:5072–5082Google Scholar
  83. 83.
    Reisch A (2005) Untersuchungen zur Strukturentwicklung in Hochverzweigten Polymeren auf der Basis von A2+B3 Systemen. Diploma Thesis, Technische Universität Dresden, DresdenGoogle Scholar
  84. 84.
    Reisch A, Komber H, Voit B (2007) Kinetic analysis of two hyperbranched A2 + B3 polycondensation reactions by NMR spectroscopy. Macromolecules 40:6846–6858Google Scholar
  85. 85.
    Yan DY, Gao C (2000) Hyperbranched polymers made from A2 and BB‘2 type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone. Macromolecules 33:7693–7699Google Scholar
  86. 86.
    Gao C, Yan DY (2001) Polyaddition of B2 and BB‘2 type monomers to A2 type monomer. 1. Synthesis of highly branched copoly(sulfone–amine)s. Macromolecules 34:156–161Google Scholar
  87. 87.
    Gao C, Tang W, Yan DY, Zhu PF, Tao P (2001) Hyperbranched polymers made from A2, B2 and BB′2 type monomers, 2. Preparation of hyperbranched copoly(sulfone-amine)s by polyaddition of N-ethylethylenediamine and piperazine to divinylsulfone. Polymer 42:3437–3443Google Scholar
  88. 88.
    Gao C, Yan DY, Zhu X, Huang W (2001) Preparation of water-soluble hyperbranched poly(sulfone-amine)s by polyaddition of N-ethylethylenediamine to divinyl sulfone. Polymer 42:7603–7610Google Scholar
  89. 89.
    Liu Y, Chung TS (2002) Facile synthesis of hyperbranched polyimides from A2 + BB 2 monomers. J Polym Sci A Polym Chem 40:4563–4569Google Scholar
  90. 90.
    Chang YT, Shu CF (2003) Synthesis of hyperbranched aromatic poly(amide–imide): Copolymerization of B‘B2 monomer with A2 monomer. Macromolecules 36:661–666Google Scholar
  91. 91.
    Abdelrehim M, Komber H, Langenwalter J, Voit B, Bruchmann B (2004) Synthesis and characterization of hyperbranched poly(urea-urethane)s based on AA* and B2B* monomers. J Polym Sci A Polym Chem 42:3062–3081Google Scholar
  92. 92.
    Radke W, Litvinenko G, Müller AHE (1998) Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules 31:239–248Google Scholar
  93. 93.
    Litvinenko G, Simon PFW, Müller AHE (2001) Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization, 2. Non Equal Rate Constants Macromolecules 34:2418–2426Google Scholar
  94. 94.
    Beginn U, Drohman C, Moller M (1997) Conversion dependence of the branching density for the polycondensation of ABn monomers. Macromolecules 30:4112–4116Google Scholar
  95. 95.
    Dusek K, Somvarsky J, Smrckova M, Simonsick WJ, Wilczek L (1999) Role of cyclization in the degree-of-polymerization distribution of hyperbranched polymers modelling and experiments. Polym Bull 42:489–496Google Scholar
  96. 96.
    Cameron C, Fawcett AH, Hetherington CR, Mee RAW, McBride FV (1997) Cycles frustrating fractal formation in an AB2 stepgrowth polymerization. Chem Commun 1997(18):1801–1802. doi:10.1039/A703567EGoogle Scholar
  97. 97.
    Galina H, Lechowicz JB, Kaczmarski K (2001) Kinetic models of the polymerization of an AB2 monomer. Macromol Theory Simul 10:174–178Google Scholar
  98. 98.
    Zhou Z, Jia Z, Yan D (2010) Kinetic analysis of co-polycondensation of AB2 and AB type monomers in presence of multi-functional cores. Polymer 51:2763–2768Google Scholar
  99. 99.
    Voit B (2005) Hyperbranched polymers – all problems solved after 15 years of research? J Polym Sci A Polym Chem 43:2679–2699Google Scholar
  100. 100.
    Liaw DJ, Chang FC, Leung MK, Chou MY, Muellen K (2005) High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene–biphenyldiamine. Macromolecules 38:4024–4029Google Scholar
  101. 101.
    Scholl M, Kadlecova Z, Klok HA (2009) Dendritic and hyperbranched polyamides. Prog Polym Sci 34:24–61Google Scholar
  102. 102.
    Chao D, He L, Berda EB, Wang S, Jia X, Wang C (2013) Multifunctional hyperbranched polyamide: synthesis and properties. Polymer 54:3223–3229Google Scholar
  103. 103.
    Seike Y, Okude Y, Iwakura I, Chiba I, Ikeno T, Yamada T (2003) Synthesis of polyphenylene ether derivatives: estimation of their dielectric constants. Macromol Chem Phys 204:1876–1881Google Scholar
  104. 104.
    Chiang C, Chang F (1998) Polymer blends of polyamide-6 (PA6) and poly(phenylene ether) (PPE) compatibilized by a multifunctional epoxy coupler. J Polym Sci B Polym Phys 36:1805–1819Google Scholar
  105. 105.
    Wegner G (1981) Polymers with metal-like conductivity-a review of their synthesis, structure and properties. Angew Chem Int Ed Engl 20:361–381Google Scholar
  106. 106.
    Peng H, Dong Y, Jia D, Tang B (2004) Syntheses of readily processable, thermally stable, and light-emitting hyperbranched polyphenylenes. Chinese Sci Bull 49:2637–2639Google Scholar
  107. 107.
    Erber M, Boye S, Hartmann T, Voit B, Lederer A (2009) A convenient room temperature polycondensation toward hyperbranched AB2-type all-aromatic polyesters with phenol terminal groups. J Polym Sci A Polym Chem 47:5158–5168Google Scholar
  108. 108.
    Turner SR, Voit BI, Mourey TH (1993) All-aromatic hyperbranched polyesters with phenol and acetate end groups: synthesis and characterization. Macromolecules 26:4617–4623Google Scholar
  109. 109.
    Schmaljohann D (1998) Funktionalisierung von Hochverzweigten Polyestern fur den Einsatzals Beschichtungs- und Blend material. Ph.D. thesis, TU Munchen, MunchenGoogle Scholar
  110. 110.
    Schmaljohann D, Komber H, Barratt JG, Appelhans D, Voit B (2003) Kinetics of nonideal hyperbranched polymerizations. 2. Kinetic analysis of the polycondensation of 3,5-Bis(trimethylsiloxy)benzoyl chloride using NMR spectroscopy. Macromolecules 36:97–108Google Scholar
  111. 111.
    Magnusson H, Malmstrom E, Hult A (2000) Structure buildup in hyperbranched polymers from 2,2-Bis(hydroxymethyl)propionic acid. Macromolecules 33:3099–3104Google Scholar
  112. 112.
    Thompson DS, Markoski LJ, Moore JS (1999) Rapid synthesis of hyperbranched aromatic polyetherimides. Macromolecules 32:4764–4768Google Scholar
  113. 113.
    Khalyavina A, Häußler L, Lederer A (2012) Effect of the degree of branching on the glass transition temperature of polyesters. Polymer 53:1049–1053Google Scholar
  114. 114.
    Wooley KL, Hawker CJ, Pochan JM, Frechet JMJ (1993) Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules 26:1514–1519Google Scholar
  115. 115.
    Fan Z, Lederer A, Voit B (2009) Synthesis and characterization of A2 + B3-type hyperbranched aromatic polyesters with phenolic end groups. Polymer 50:3431–3439Google Scholar
  116. 116.
    Lin Q, Long TE (2003) Polymerization of A2 with B3 Monomers: a facile approach to hyperbranched poly(aryl ester)s. Macromolecules 36:9809–9816Google Scholar
  117. 117.
    Unal S, Lin Q, Mourey TH, Long TE (2005) Tailoring the degree of branching: preparation of poly(ether ester)s via copolymerization of poly(ethylene glycol) oligomers (A2) and 1,3,5-benzenetricarbonyl trichloride (B3). Macromolecules 38:3246–3254Google Scholar
  118. 118.
    Schallausky F, Erber M, Komber H, Lederer A (2008) An easy strategy for the synthesis of well-defined aliphatic-aromatic hyperbranched polyesters. Macromol Chem Phys 209:2331–2338Google Scholar
  119. 119.
    Baek JB, Harris FW (2003) Poly(arylether amides) and poly(aryletherketone amides) via aromatic nucleophilic substitution reactions of self-polymerizable AB and AB2 monomers. J Polym Sci A Polym Chem 41:2374–2389Google Scholar
  120. 120.
    In I, Kim SY (2005) Hyperbranched poly(arylene ether amide) via nucleophilic aromatic substitution reaction. Macromol Chem Phys 206:1862–1869Google Scholar
  121. 121.
    Shabbir S, Zulfiqar S, Sarwar MI (2011) Amine-terminated aromatic and semi-aromatic hyperbranched polyamides: synthesis and characterization. J Polym Res 18:1919–1929Google Scholar
  122. 122.
    Ohta Y, Fujii S, Yokoyama A, Furuyama T, Uchiyama M, Yokozawa T (2009) Synthesis of well-defined hyperbranched polyamides by condensation polymerization of AB2 monomer through changed substituent effects. Angew Chem Int Ed 48:5942–5945Google Scholar
  123. 123.
    Liou GS, Lin HY, Yen HJ (2009) Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B-type triphenylamine moieties. Mater Chem 19:7666–7673Google Scholar
  124. 124.
    Liou GS, Chang CW (2008) Highly stable anodic electrochromic aromatic polyamides containing N, N, N′, N′-tetraphenyl-p-phenylenediamine moieties: synthesis, electrochemical, and electrochromic properties. Macromolecules 41:1667–1674Google Scholar
  125. 125.
    Liou GS, Lin KH (2009) Synthesis and characterization of a novel electrochromic aromatic polyamide from AB-type triphenylamine-based monomer. J Polym Sci Part A Polym Chem 47:1988–2001Google Scholar
  126. 126.
    Mittal KL (ed) (2009) Polyimides and other high temperature polymers, vol. 5. VSP/Brill, LeidenGoogle Scholar
  127. 127.
    Ghosh A, Sen SK, Banerjee S, Voit B (2012) Solubility improvements in aromatic polyimides by macromolecular engineering. RSC Adv 2:5900–5926Google Scholar
  128. 128.
    Kricheldorf HR, Bolender O, Wollheim T (1998) New polymer synthesis 99. Hyperbranched poly(ester-imide)s derived from 4,5-dichlorophthalic acid. High Perform Polym 10:217–229Google Scholar
  129. 129.
    Maier G, Zech C, Voit B, Komber H (1998) An approach to hyperbranched polymers with a degree of branching of 100%. Macromol Chem Phys 199:2655–2664Google Scholar
  130. 130.
    Orlicki JA, Thompson JL, Markoski LJ, Sill KN, Moore JS (2002) Synthesis and characterization of end-group modified hyperbranched polyetherimides. J Polym Sci A Polym Chem 40:936–946Google Scholar
  131. 131.
    Baek JB, Qin H, Mather PT, Tan LS (2002) A new hyperbranched poly(arylene–ether–ketone − imide): synthesis, chain-end functionalization, and blending with a bis(maleimide). Macromolecules 35:4951–4959Google Scholar
  132. 132.
    Hao J, Jikei M, Kakimoto M (2003) Synthesis and comparison of hyperbranched aromatic polyimides having the same repeating unit by AB2 self-polymerization and A2 + B3 polymerization. Macromolecules 36:3519–3528Google Scholar
  133. 133.
    Yamanaka K, Jikei M, Kakimoto MA (2000) Synthesis of hyperbranched aromatic polyimides via polyamic acid methyl ester precursor. Macromolecules 33:1111–1114Google Scholar
  134. 134.
    Yamanaka K, Jikei M, Kakimoto MA (2000) Preparation and properties of hyperbranched aromatic polyimides via polyamic acid methyl ester precursors. Macromolecules 33:6937–6944Google Scholar
  135. 135.
    Wang KL, Jikei M, Kakimoto MA (2004) Synthesis of soluble branched polyimides derived from an ABB′ monomer. J Polym Sci A Polym Chem 42:3200–3211Google Scholar
  136. 136.
    Shen J, Zhang Y, Chen W, Wang W, Xu Z, Yeung KWK, Yi C (2013) Synthesis and properties of hyperbranched polyimides derived from novel triamine with prolonged chain segments. J Polym Sci A Polym Chem 51:2425–2437Google Scholar
  137. 137.
    Chen W, Yan W, Wu S, Xu Z, Yeung KWK, Yi C (2010) Preparation and properties of novel triphenylpyridine-containing hyperbranched polyimides derived from 2,4,6-tris(4-aminophenyl)pyridine under microwave irradiation. Macromol Chem Phys 211:1803–1813Google Scholar
  138. 138.
    Gao H, Wang D, Guan S, Wi J, Jiang Z, Gao W, Zhang D (2007) Fluorinated hyperbranched polyimide for optical waveguides. Macromol Rapid Commun 28:252–259Google Scholar
  139. 139.
    Kaino T (1987) Preparation of plastic optical fibers for near-IR region transmission. J Polym Sci A Polym Chem 25:37–46Google Scholar
  140. 140.
    Liu Y, Zhang Y, Guan S, Zhang H, Yue X, Jiang Z (2009) Synthesis of novel fluorinated hyperbranched polyimides with excellent optical properties. J Polym Sci A Polym Chem 47:6269–6279Google Scholar
  141. 141.
    Gao H, Wang D, Jiang W, Guan S, Jiang Z (2008) Gas permeability of fluorinated hyperbranched polyimide. J Appl Polym Sci 109:2341–2346Google Scholar
  142. 142.
    Zhao L, Yao H, Liu Y, Zhang Y, Jiang Z (2013) Synthesis and properties of novel hyperbranched polyimides end-capped with metallophthalocyanines. J Appl Polym Sci 128:3405–3410Google Scholar
  143. 143.
    Banerjee S, Komber H, Häußler L, Voit B (2009) Synthesis and characterization of hyperbranched poly(arylene ether)s from a new activated trifluoro B3 monomer adopting an A2 + B3 approach. Macromol Chem Phys 210:1272–1282Google Scholar
  144. 144.
    Park SJ, Li K, Jin FL (2008) Synthesis and characterization of hyperbranched polyimides from 2,4,6-triaminopyrimidine and dianhydrides system. Mater Chem Phys 108:214–219Google Scholar
  145. 145.
    Peter J, Khalyavina A, Kriz J, Bleha M (2009) Synthesis and gas transport properties of ODPA–TAP–ODA hyperbranched polyimides with various comonomer ratios. Eur Polym J 45:1716–1727Google Scholar
  146. 146.
    Chen Y, Zhang Q, Sun W, Lei XF, Yao P (2014) Synthesis and gas permeation properties of hyperbranched polyimides membranes from a novel (A2 + B2B′ + B2)-type method. J Membr Sci 450:138–146Google Scholar
  147. 147.
    Hawthorne DG, Hodgkin JH (1999) Amine reactivity changes in imide formation from heterocyclic bases. High Perform Polym 11:315–329Google Scholar
  148. 148.
    Riley D, Gungor A, Srinivasan SA, McGrath JE (1997) Synthesis and characterization of flame resistant poly(arylene ether)s. Polym Eng Sci 37:1501–1511Google Scholar
  149. 149.
    Smith CD, Grubbs H, Gungor A, Webster HF, Wightman JP, McGrath JE (1991) Unique characteristics derived from poly(arylene ether phosphine oxide)s. High Perform Polym 3:211–229Google Scholar
  150. 150.
    Yang J, Gibson HW (1999) A polyketone synthesis involving nucleophilic substitution via carbanions derived from bis(α-aminonitrile)s. 5. A new, well-controlled route to “long” bisphenol and activated aromatic dihalide monomers. Macromolecules 32:8740–8746Google Scholar
  151. 151.
    Kricheldorf HR, Vakhtangishvili L, Schwarz G, Kruger RP (2003) Cyclic hyperbranched poly(ether ketone)s derived from 3,5-bis(4-fluorobenzoyl)phenol. Macromolecules 36:5551–5558Google Scholar
  152. 152.
    Morikawa A (1998) Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units. Macromolecules 31:5999–6009Google Scholar
  153. 153.
    Agarwal S, Kumar S, Maken S (2012) Synthesis and characterization of new hyperbranched poly(ether ketones) with various number of phenylene units. J Ind Eng Chem 18:1489–1495Google Scholar
  154. 154.
    Baek JB, Tan LS (2003) Linear-hyperbranched copolymerization as a tool to modulate thermal properties and crystallinity of a para-poly(ether-ketone). Polymer 44:3451–3459Google Scholar
  155. 155.
    Choi JY, Oh SJ, Lee HJ, Wang DH, Tan LS, Baek JB (2007) In-situ grafting of hyperbranched poly(ether ketone)s onto multiwalled carbon nanotubes via the A3 + B2 approach. Macromolecules 40:4474–4480Google Scholar
  156. 156.
    Li X, Zhang S, Wang H, Pang J, Sun D, Mu J, Wang G, Jiang Z (2010) Facile synthesis and characterization of hyperbranched poly(aryl ether ketone)s obtained via an A2 + BB′2 approach. Polym Int 59:1360–1366Google Scholar
  157. 157.
    Himmelberg P, Fossum E (2005) Development of an efficient route to hyperbranched poly(arylene ether sulfone)s. J Polym Sci A Polym Chem 43:3178–3187Google Scholar
  158. 158.
    Jikei M, Uchida D, Haruta Y, Takahashi Y, Matsumoto K (2012) Synthesis and properties of hyperbranched poly(ether sulfone)s prepared by self-polycondensation of novel AB2 monomer. J Polym Sci A Polym Chem 50:3830–3839Google Scholar
  159. 159.
    Imai Y, Ishikawa H, Park KH, Kakimoto M (1997) A facile cesium fluoride-mediated synthesis of aromatic polyethers from bisphenols and activated aromatic dihalides. J Polym Sci Part A Polym Chem 35:2055–2061Google Scholar
  160. 160.
    Kricheldorf HR, Vakhtangisgvili L, Fritsch D (2002) Synthesis and functionalization of poly(ether sulfone)s based on 1,1,1-tris(4-hydroxyphenyl)ethane. J Polym Sci Part A Polym Chem 40:2967–2978Google Scholar
  161. 161.
    Lin Q, Unal S, Fornof AR, Yilgor I, Long TE (2006) Highly branched poly(arylene ether)s via oligomeric A2 + B3 strategies. Macromol Chem Phys 207:576–586Google Scholar
  162. 162.
    Osano K, Force L, Turner SR (2010) Synthesis and properties of linear poly(ether sulfone)s with hyperbranched terminal groups. Ind Eng Chem Res 49:12098–12103Google Scholar
  163. 163.
    Grunzinger SJ, Hayakawa T, Kakimoto MA (2008) Synthesis of multiblock hyperbranched-linear poly(ether sulfone) copolymers. J Polym Sci Part A Polym Chem 46:4785–4793Google Scholar
  164. 164.
    Lee HS, Takeuchi M, Kakimoto MA, Kim SY (2000) Hyperbranched poly(arylene ether phosphine oxide)s. Polym Bull 45:319–326Google Scholar
  165. 165.
    Lin Q, Long TE (2000) Synthesis and characterization of a novel AB2 monomer and corresponding hyperbranched poly(arylene ether phosphine oxide)s. J Polym Sci A Polym Chem 38:3736–3741Google Scholar
  166. 166.
    Bernal DP, Bankey N, Cockayne RC, Fossum E (2002) Fluoride-terminated hyperbranched poly(arylene ether phosphine oxide)s via nucleophilic aromatic substitution. J Polym Sci A Polym Chem 40:1456–1467Google Scholar
  167. 167.
    Bernal DP, Bedrossian L, Collins K, Fossum E (2003) Effect of core reactivity on the molecular weight, polydispersity, and degree of branching of hyperbranched poly(arylene ether phosphine oxide)s. Macromolecules 36:333–338Google Scholar
  168. 168.
    Czupik M, Fossum E (2003) Manipulation of the molecular weight and branching structure of hyperbranched poly(arylene ether phosphine oxide)s prepared via an A2 + B3 approach. J Polym Sci A Polym Chem 41:3871–3881Google Scholar
  169. 169.
    Sennet L, Fossum E, Tan LS (2008) Branched poly(arylene ether ketone)s with tailored thermal properties: effects of AB/AB2 ratio, core (B3) percentage, and reaction temperature. Polymer 49:3731–3736Google Scholar
  170. 170.
    Fossum E, Tan LS (2005) Geometrical influence of ABn monomer structure on the thermal properties of linear-hyperbranched ether–ketone copolymers prepared via an AB + ABn route. Polymer 46:9686–9693Google Scholar
  171. 171.
    Wang DH, Baek JB, Tan LS (2005) Phthalonitrile-terminated hyperbranched poly(arylene-ether-ketone-imide): synthesis and its blending with 4,4′-bis(3,4-dicyanophenoxy)biphenyl, phthalonitrile-terminated hyperbranched poly(arylene-ether-ketone-imide): synthesis and its blending with 4,4′-Bis(3,4-dicyanophenoxy)biphenyl. Polym Prepr 46:727–728Google Scholar
  172. 172.
    Yu Z, Fossum E, Wang DH, Tan LS (2008) Alternative approach to an AB2 monomer for hyperbranched poly(arylene ether ketone imide)s. Syn Commun 38:419–427Google Scholar
  173. 173.
    Gong ZH, Leu CM, Wu FI, Shu CF (2000) Hyperbranched poly(aryl ether oxazole)s: synthesis, characterization, and modification. Macromolecules 33:8527–8533Google Scholar
  174. 174.
    Schmaljohann D, Haussler L, Potschke P, Voit BI, Loontjens TJA (2000) Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters. Macromol Chem Phys 201:49–57Google Scholar
  175. 175.
    Wu FI, Shu CF (2001) Synthesis and characterization of new hyperbranched poly(aryl ether oxadiazole)s. J Polym Sci A Polym Chem 39:3851–3860Google Scholar
  176. 176.
    Fu Y, Oosterwijck CV, Vandendriessche A, Kowalczuk-Bleja A, Zhang X, Dworak A, Dehaen W, Smet M (2008) Hyperbranched poly(arylene oxindole)s with a degree of branching of 100% for the construction of nanocontainers by orthogonal modification. Macromolecules 41:2388–2393Google Scholar
  177. 177.
    Kowalczuk A, Vandendriessche A, Trzebicka B, Mendrek B, Szeluga U, Cholenwiński G, Smet M, Dworak A, Dehaen W (2009) Core-shell nanoparticles with hyperbranched poly(arylene-oxindole) interiors. J Polym Sci A Polym Chem 47:1120–1135Google Scholar
  178. 178.
    Colquhoun H, Zolotukhin M, Khalolov L, Dzhemilev U (2001) Superelectrophiles in aromatic polymer chemistry. Macromolecules 34:1122–1124Google Scholar
  179. 179.
    Baek JB, Harris FW (2005) Hyperbranched polyphenylquinoxalines from self-polymerizable AB2 and A2B monomers. Macromolecules 38:297–306Google Scholar
  180. 180.
    Baek JB, Harris FW (2005) Fluorine- and hydroxyl-terminated hyperbranched poly(phenylquinoxalines) (PPQs) from copolymerization of self-polymerizable AB and AB2, BA, and BA2 monomers. Macromolecules 38:1131–1140Google Scholar
  181. 181.
    Baek JB, Tan LS (2006) Hyperbranched poly(phenylquinoxaline–ether–ketone) synthesis in poly(phosphoric acid)/P2O5 medium: optimization and some interesting observations. Macromolecules 39:2794–2803Google Scholar
  182. 182.
    Dhara M, Banerjee S (2010) Fluorinated high-performance polymers: poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog Polym Sci 35:1022–1077Google Scholar
  183. 183.
    Labadie JW, Hedrick JL (1990) Perfluoroalkylene-activated poly(aryl ether) synthesis. Macromolecules 23:5371–5373Google Scholar
  184. 184.
    Yang H, Hay AS (1993) Fluorine substitutent effects on poly(2,6-diphenylphenylene ether). J Polym Sci A Polym Chem 31:2015–2029Google Scholar
  185. 185.
    Maier G, Hecht R (1995) Poly(aryl ether thiazole)s with pendent trifluoromethyl groups. Macromolecules 28:7558–7565Google Scholar
  186. 186.
    Park SK, Kim SY (1998) Synthesis of poly(arylene ether ketone)s containing trifluoromethyl groups via nitro displacement reaction. Macromolecules 31:3385–3387Google Scholar
  187. 187.
    Mohanty AK, Sen SK, Ghosh A, Maji S, Banerjee S (2010) Synthesis, characterization, and comparison of properties of new fluorinated poly(arylene ether)s containing phthalimidine moiety in the main chain. Polym Adv Technol 21:767–773Google Scholar
  188. 188.
    Aggarwal M, Maji S, Sen SK, Dasgupta B, Chatterjee S, Ghosh A, Banerjee S (2009) New poly(arylene ether)s containing phthalimidine group in the main chain. J Appl Polym Sci 112:1226–1233Google Scholar
  189. 189.
    Salunke AK, Ghosh A, Banerjee S (2007) Synthesis and characterization of novel poly(arylene ether)s based on 9,10-bis-(4-fluoro-3-trifluoromethylphenyl) anthracene and 2,7-bis-(4-fluoro-3-trifluoromethylphenyl) fluorine. J Appl Polym Sci 106:664–672Google Scholar
  190. 190.
    Digal AK, Ghosh A, Banerjee S (2008) Synthesis and characterization of novel poly(Arylene Ether)s from 4,4′‐thiodiphenol. J Macromol Sci A Pure and Appl Chem 45:212–217Google Scholar
  191. 191.
    Banerjee S, Maier G, Dannenberg C, Spinger J (2004) Gas permeabilities of novel poly(arylene ether)s with terphenyl unit in the main chain. J Membr Sci 229:63–71Google Scholar
  192. 192.
    Xu ZK, Dannenberg C, Springer J, Banerjee S, Maier G (2002) Novel poly(arylene ether) as membranes for gas separation. J Membr Sci 205:23–31Google Scholar
  193. 193.
    Ghosh A, Banerjee S (2009) Synthesis and characterization of new fluorinated polyimides derived from 9, 10-bis[3′-trifluoromethyl-4′ (4″-aminobenzoxy) benzyl] anthracene. High Perform Polym 21:173–186Google Scholar
  194. 194.
    Banerjee S (2007) Synthesis and characterization of novel hyperbranched poly(arylene ether) from a AB2monomer. J Polym Mater 24:247–254Google Scholar
  195. 195.
    Satpathi H, Ghosh A, Banerjee S, Komber H, Voit B (2011) Synthesis and characterization of new semifluorinated linear and hyperbranched poly(arylene ether phosphine oxide)s through B2 + A2 and AB2 approaches. Eur Polym J 47:196–207Google Scholar
  196. 196.
    Herbert CG, Bass RG, Watson KA, Connell JW (1996) Preparation of poly(arylene ether pyrimidine)s by aromatic nucleophilic substitution reactions. Macromolecules 29:7709–7716Google Scholar
  197. 197.
    Ghosh A, Banerjee S, Komber H, Voit B (2010) Extremely high molar mass hyperbranched poly(arylene ether)s from a new semifluorinated AB2 monomer by an unusual AB2 + A2 polymerization approach. Macromolecules 43:2846–2854Google Scholar
  198. 198.
    Dusek K, Duskova-Smrckova M, Voit B (2005) Highly-branched off-stoichiometric functional polymers as polymer networks precursors. Polymer 46:4265–4282Google Scholar
  199. 199.
    Mahapatra SS, Karak N (2007) Hyperbranched aromatic polyamines with s-triazine rings. J Appl Polym Sci 106:95–102Google Scholar
  200. 200.
    Zhang J, Wang H, Li X (2006) Novel hyperbranched poly(phenylene oxide)s with phenolic terminal groups: synthesis, characterization, and modification. Polymer 47:1511–1518Google Scholar
  201. 201.
    Lv J, Meng Y, He L, Qiu T, Li X, Wang H (2013) Novel epoxidized hyperbranched poly(phenylene oxide): synthesis and application as a modifier for diglycidyl ether of bisphenol A. J Appl Polym Sci 128:907–914Google Scholar
  202. 202.
    Theil F (1999) Synthesis of diaryl ethers: a long-standing problem has been solved. Angew Chem Int Ed 38:2345–2347Google Scholar
  203. 203.
    Luo L, Qiu T, Meng Y, Guo L, Yang J, Li Z, Cao X, Li X (2013) A novel fluoro-terminated hyperbranched poly(phenylene oxide) (FHPPO): synthesis, characterization, and application in low-k epoxy materials. RSC Adv 3:14509–14520Google Scholar
  204. 204.
    Ghosh A, Chatterjee S, Banerjee S, Komber H, Voit B (2011) Linear and hyperbranched poly(arylene ether)s from a new semifluorinated AB monomer. J Macromol Sci A Pure and Appl Chem 48:509–517Google Scholar
  205. 205.
    Frey H, Holter D (1999) Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers. Acta Polym 50:67–76Google Scholar
  206. 206.
    Mellace A, Hanson JE, Griepenburg J (2005) Hyperbranched poly(phenylene sulfide) and poly(phenylene sulfone). Chem Mater 17:1812–1817Google Scholar
  207. 207.
    Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, 4th edn. Wiley, New YorkGoogle Scholar
  208. 208.
    De Girolamo Del Mauro A, Loffredo F, Venditto V, Longo P, Guerra G (2003) Polymorphic behavior of syndiotactic poly(p-chlorostyrene) and styrene/p-chlorostyrene cosyndiotactic random copolymers. Macromolecules 36:7577–7584Google Scholar
  209. 209.
    Bo Y, Yanmo C, Hao Y, Bin S, Meifang Z (2009) Kinetics of the thermal degradation of hyperbranched poly(phenylene sulfide). J Appl Polym Sci 111:1900–1904Google Scholar
  210. 210.
    Day M, Budgell DR (1992) Kinetics of the thermal degradation of poly(phenylene sulfide). Thermochim Acta 203:465–474Google Scholar
  211. 211.
    Yang MH (2002) On the thermal degradation of poly(styrene sulfone)s. V Thermogravimetric kinetic simulation of polyacrylamide pyrolysis. J Appl Polym Sci 86:1540–1548Google Scholar
  212. 212.
    Li XG, Huang MR (1999) Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolyester. Polym Degrad Stab 64:81–90Google Scholar
  213. 213.
    Popescu C (1996) Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions A variant on the Ozawa–Flynn–Wall method. Thermochim Acta 285:309–323Google Scholar
  214. 214.
    Sun JT, Huang YD, Gong GF, Cao HL (2006) Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups. Polym Degrad Stab 91:339–346Google Scholar
  215. 215.
    Núñez L, Fraga F, Núñez MR, Villanueva M (2000) Thermogravimetric study of the decomposition process of the system BADGE (n=0)/1,2 DCH. Polymer 41:4635–4641Google Scholar
  216. 216.
    Montserrat S, Málek J, Colomer P (1998) Thermal degradation kinetics of epoxy–anhydride resins: I.: influence of a silica filler. Thermochim Acta 313:83–95Google Scholar
  217. 217.
    Xu R, Liu H, Liu S, Li Y, Shi W (2008) Effect of core structure on the fluorescence properties of hyperbranched poly(phenylene sulfide). J Appl Polym Sci 107:1857–1864Google Scholar
  218. 218.
    Zeng Q, Li Z, Dong Y, Di C, Qin A, Hong Y, Ji L, Zhu Z, Jim CKW, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang BZ (2007) Fluorescence enhancements of benzene-cored luminophors by restricted intramolecular rotations: AIE and AIEE effects. Chem Commun 2007(1):70–72. doi:10.1039/B613522FGoogle Scholar
  219. 219.
    Lam JWY, Chen J, Law CCW, Peng H, Xie Z, Cheuk KKL, Kwork HS, Tang BZ (2003) Silole-containing linear and hyperbranched polymers: synthesis, thermal stability, light emission, nano-dimensional aggregation, and optical power limiting. Macromol Symp 196:289–300Google Scholar
  220. 220.
    Tang BZ (2008) Construction of functional polymers from acetylenic triple-bond building blocks. Macromol Chem Phys 209:1303–1307Google Scholar
  221. 221.
    Haussler M, Qin A, Tang BZ (2007) Acetylenes with multiple triple bonds: a group of versatile An-type building blocks for the construction of functional hyperbranched polymers. Polymer 48:6181–6204Google Scholar
  222. 222.
    Peng H, Lam JWY, Tang BZ (2005) Hyperbranched poly(aryleneethynylene)s: synthesis, thermal stability and optical properties. Macromol Rapid Commun 26:673–677Google Scholar
  223. 223.
    Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 2009(29): 4332–4353. doi:10.1039/B904665HGoogle Scholar
  224. 224.
    Qin A, Lam JWY, Tang BZ (2010) Click polymerization. Chem Soc Rev 39:2522–2544Google Scholar
  225. 225.
    Mukamal H, Harris FW, Stille JK (1967) Diels–Alder polymers. III. Polymers containing phenylated phenylene units. J Polym Sci A Polym Chem 5:2721–2729Google Scholar
  226. 226.
    Loi S, Butt HJ, Hampel C, Bauer R, Wiesler UM, Müllen K (2002) Two-dimensional structure of self-assembled alkyl-substituted polyphenylene dendrimers on graphite. Langmuir 18:2398–2405Google Scholar
  227. 227.
    Andreitchenko EV, Clark CG Jr, Bauer RE, Lieser G, Müllen K (2005) Pushing the synthetic limit: polyphenylene dendrimers with “exploded” branching units—22-nm-diameter, monodisperse, stiff macromolecules. Angew Chem Int Ed 44:6348–6354Google Scholar
  228. 228.
    Tasdelen MA (2011) Diels–Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145Google Scholar
  229. 229.
    Xu K, Peng H, Sun Q, Dong Y, Salhi F, Luo J, Chen J, Huang Y, Zhang D, Xu Z, Tang BZ (2002) Polycyclotrimerization of diynes: synthesis and properties of hyperbranched polyphenylenes. Macromolecules 35:5821–5834Google Scholar
  230. 230.
    Dong H, Zheng R, Lam JWY, Häussler M, Tang BZ (2005) A new route to hyperbranched macromolecules: syntheses of photosensitive poly(aroylarylene)s via 1,3,5-regioselective polycyclotrimerization of bis(aroylacetylene)s. Macromolecules 38:6382–6391Google Scholar
  231. 231.
    Stumpe K, Komber H, Voit B (2006) Novel branched polyphenylenes based on A2/B3 and AB2/AB monomers via Diels–Alder cycloaddition. Macromol Chem Phys 207:1825–1833Google Scholar
  232. 232.
    Stumpe K, Eichhorn KJ, Voit B (2008) Characterisation of thin composite films from hyperbranched polyphenylene and thermolabile hyperbranched polycarbonate. Macromol Chem Phys 209:1787–1796Google Scholar
  233. 233.
    Pötzsch R, Voit B (2012) Thermal and photochemical crosslinking of hyperbranched polyphenylene with organic azides. Macromol Rapid Commun 33:635–639Google Scholar
  234. 234.
    Pötzsch R, Komber H, Stahl BC, Hawker CJ, Voit BI (2013) Radical thiol-yne chemistry on diphenylacetylene: selective and quantitative addition enabling the synthesis of hyperbranched poly(vinyl sulfide)s. Macromol Rapid Commun 34:1772–1778Google Scholar
  235. 235.
    Liu JG, Ueda M (2009) High refractive index polymers: fundamental research and practical applications. J Mater Chem 19:8907–8919Google Scholar
  236. 236.
    Pötzsch R, Stahl BC, Komber H, Hawker CJ, Voit BI (2014) High refractive index polyvinylsulfide materials prepared by selective radical mono-addition thiol–yne chemistry. Polym Chem 5:2911–2921Google Scholar
  237. 237.
    Lam JWY, Tang BZ (2005) Functional polyacetylenes. Acc Chem Res 38:745–754Google Scholar
  238. 238.
    Schluter AD, Wegner G (1993) Palladium and nickel catalyzed polycondensation – the key to structurally defined polyarylenes and other aromatic polymers. Acta Polym 44:59–69Google Scholar
  239. 239.
    Tour JM (1994) Soluble oligo- and polyphenylenes. Adv Mater 6:190–198Google Scholar
  240. 240.
    Watson MD, Fechtenkotter A, Mullen K (2001) Big is beautiful − “aromaticity” revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. Chem Rev 101:1267–1300Google Scholar
  241. 241.
    Zheng R, Dong H, Peng H, Lam JWY, Tang BZ (2004) Construction of hyperbranched poly(alkenephenylene)s by Diyne polycyclotrimerization: single-component catalyst, glycogen-like macromolecular structure, facile thermal curing, and strong thermolysis resistance. Macromolecules 37:5196–5210Google Scholar
  242. 242.
    Zheng R, Haussler M, Dong H, Lam JWY, Tang BZ (2006) Synthesis, structural characterization, and thermal and optical properties of hyperbranched poly(aminoarylene)s. Macromolecules 39:7973–7984Google Scholar
  243. 243.
    Liu J, Zheng R, Tang Y, Haussler M, Lam JWY, Qin A, Ye M, Hong Y, Gao P, Tang BZ (2007) Hyperbranched poly(silylenephenylenes) from polycyclotrimerization of A2-type diyne monomers: synthesis, characterization, structural modeling, thermal stability, and fluorescent patterning. Macromolecules 40:7473–7486Google Scholar
  244. 244.
    Haussler M, Liu J, Zheng R, Lam JWY, Qin A, Tang BZ (2007) Synthesis, thermal stability, and linear and nonlinear optical properties of hyperbranched polyarylenes containing carbazole and/or fluorene moieties. Macromolecules 40:1914–1925Google Scholar
  245. 245.
    Shi J, Jim CJW, Mahtab F, Liu J, Lam JWY, Sung HHY, Williams ID, Dong Y, Tang BZ (2010) Ferrocene-functionalized hyperbranched polyphenylenes: synthesis, redox activity, light refraction, transition-metal complexation, and precursors to magnetic ceramics. Macromolecules 43:680–690Google Scholar
  246. 246.
    Liu J, Deng C, Tseng NW, Chan CYK, Yue Y, Ng JCY, Lam JWY, Wang J, Hong Y, Sung HHY, Williams ID, Tang BZ (2011) A new polymerisation route to conjugated polymers: regio- and stereoselective synthesis of linear and hyperbranched poly(arylene chlorovinylene)s by decarbonylative polyaddition of aroyl chlorides and alkynes. Chem Sci 2:1850–1859Google Scholar
  247. 247.
    Schmaljohann D, Pötschke P, Haussler R, Voit BI, Froehling PE, Mostert B, Loontjens JA (1999) Blends of amphiphilic, hyperbranched polyesters and different polyolefins. Macromolecules 32:6333–6339Google Scholar
  248. 248.
    Jang J, Hak Oh J, Moon SI (2000) Crystallization behavior of poly(ethylene terephthalate) blended with hyperbranched polymers: the effect of terminal groups and composition of hyperbranched polymers. Macromolecules 33:1864–1870Google Scholar
  249. 249.
    Hsieh TT, Tiu C, Simon GP (2001) Rheological behaviour of polymer blends containing only hyperbranched polyesters of varying generation number. Polymer 42:7635–7638Google Scholar
  250. 250.
    Nunez CM, Chiou BS, Andrady AL, Khan SA (2000) Solution rheology of hyperbranched polyesters and their blends with linear polymers. Rheological behaviour of polymer blends containing only hyperbranched polyesters of varying generation number. Macromolecules 33:1720–1726Google Scholar
  251. 251.
    Li X, Zhang S, Wang H, Zhang C, Pang J, Mu J, Ma G, Wang G, Jiang Z (2011) Study of blends of linear poly(ether ether ketone) of high melt viscosity and hyperbranched poly(ether ether ketone). Polym Int 60:607–612Google Scholar
  252. 252.
    Tang H, Fan X, Shen Z, Zhou Q (2013) One-pot synthesis of hyperbranched poly(aryl ether ketone)s for the modification of bismaleimide resins. Polym Eng Sci 54:1675–1685Google Scholar
  253. 253.
    Hakme C, Stevenson I, Fulchiron R, Seytre G, Clement F, Odoni L, Rochat S, Varlet J (2005) Dielectric studies of hyperbranched aromatic polyamide and polyamide-6,6 blends. J Appl Polym Sci 97:1522–1537Google Scholar
  254. 254.
    Monticelli O, Oliva D, Russo S, Clausnitzer C, Potschke P, Voit B (2003) On blends of polyamide 6 and a hyperbranched aramid. Macromol Mater Eng 288:318–325Google Scholar
  255. 255.
    Huber T, Pötschke P, Pompe G, Häßler R, Voit B, Grutke S, Gruber F (2000) Blends of hyperbranched poly(ether amide)s and polyamide-6. Macromol Mater Eng 280–281:33–40Google Scholar
  256. 256.
    Bӧhme F, Clausnitzer C, Gruber F, Grutke S, Huber T, Potschke P, Voit B (2001) Hyperbranched poly(ether amide)s via nucleophilic ring opening reaction of oxazolines. High Perform Polym 13:S21–S31Google Scholar
  257. 257.
    Fang K, Li J, Ke C, Zhu Q, Zhu J, Yan Q (2010) Synergistic effect between a novel hyperbranched flame retardant and melamine pyrophosphate on the char forming of polyamide 6. Polym Plastics Technol Eng 49:1489–1497Google Scholar
  258. 258.
    Chen X, Jiao C, Li S, Sun J (2011) Flame retardant epoxy resins from bisphenol-A epoxy cured with hyperbranched polyphosphate ester. J Polym Res 18:2229–2237Google Scholar
  259. 259.
    Sari MG, Stribeck N, Moradian S, Zeinolebadi A, Bastani S, Botta S (2013) Correlation of nanostructural parameters and macromechanical behaviour of hyperbranched-modified polypropylene using time-resolved small-angle X-ray scattering measurements. Polym Int 62:1101–1111Google Scholar
  260. 260.
    Foix D, Ramis X, Ferrando F, Serra A (2012) Improvement of epoxy thermosets using a thiol-ene based polyester hyperbranched polymer as modifier. Polym Int 61:727–734Google Scholar
  261. 261.
    Qiang TT, Wang X (2007) Study on synthesis of hyperbranched polymer with terminal carboxyl and its effect of chrome-tanning assistant. PhD Thesis, Shanxi University of Science and Technology, ChinaGoogle Scholar
  262. 262.
    Ren L, Zhao G, Qiang T, Wang X, Wang N (2013) Synthesis of amino-terminated hyperbranched polymers and their application in microfiber synthetic leather base dyeing. Textile Res J 83:381–395Google Scholar
  263. 263.
    Lei L, Wang H, Zhang Y, Li X, Mu J, Wang G, Jiang Z, Zhang S (2010) Preparation and characterization of a novel hyperbranched poly(aryl ether ketone) terminated with cobalt phthalocyanine to be used for oxidative decomposition of 2,4,6-trichlorophenol. Macromol Res 18:331–335Google Scholar
  264. 264.
    Zhang YH, Niu YM, Xu R, Wang GB, Jiang ZH (2006) Synthesis and characterization of poly(aryl ether sulfone)s with metallophthalocyanine pendant unit. J Appl Polym Sci 102:3457–3461Google Scholar
  265. 265.
    Zhang YH, Sun XB, Niu YM, Xu R, Wang GB, Jiang ZH (2006) Synthesis and characterization of novel poly(aryl ether ketone)s with metallophthalocyanine pendant unit from a new bisphenol containing dicyanophenyl side group. Polymer 47:1569–1574Google Scholar
  266. 266.
    Huang P, Gu A, Liang G, Yuan L (2012) Synthesis of epoxy-functionalized hyperbranched poly(phenylene oxide) and its modification of cyanate ester resin. J Appl Polym Sci 123:2351–2359Google Scholar
  267. 267.
    Fan Z, Jaehnichen K, Desbois P, Haussler L, Vogel R, Voit B (2009) Blends of different linear polyamides with hyperbranched aromatic AB2 and A2 + B3 polyesters. J Polym Sci A Polym Chem 47:3558–3572Google Scholar
  268. 268.
    Mulkern TJ, Beck Tan NC (2000) Processing and characterization of reactive polystyrene/hyperbranched polyester blends. Polymer 41:3193–3203Google Scholar
  269. 269.
    Ke C, Li J, Fang K, Zhu Q, Zhu J, Yan Q (2011) Enhancement of a hyperbranched charring and foaming agent on flame retardancy of polyamide 6. Polym Adv Technol 22:2237–2243Google Scholar
  270. 270.
    Yan H, Chen Y (2010) Blends of polypropylene and hyperbranched poly(phenylene sulphide) for production of dyeable PP fibres. Iran Polym J 19:791–799Google Scholar
  271. 271.
    Lau WJ, Ismail AF, Misdan N, Kassim MA (2012) A recent progress in thin film composite membrane: a review. Desalination 287:190–199Google Scholar
  272. 272.
    Tang CY, Kwon YN, Leckie JO (2007) Probing the nano- and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J Membr Sci 287:146–156Google Scholar
  273. 273.
    Jadav GL, Singh PS (2009) Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties. J Membr Sci 328:257–267Google Scholar
  274. 274.
    Chiang YC, Hsub YZ, Ruaan RC, Chuang CJ, Tung KL (2009) Nanofiltration membranes synthesized from hyperbranched polyethyleneimine. J Membr Sci 326:19–26Google Scholar
  275. 275.
    Park SY, Kim SG, Chun JH, Chun BH, Kim SH (2012) Fabrication and characterization of the chlorine-tolerant disulfonated poly(arylene ether sulfone)/hyperbranched aromatic polyamide-grafted silica composite reverse osmosis membrane. Desalin Water Treat 43:221–229Google Scholar
  276. 276.
    Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384Google Scholar
  277. 277.
    Colicchio I, Keul H, Sanders D, Simon U, Weirich TE, Moeller M (2006) Development of hybrid polymer electrolyte membranes based on the semi-interpenetrating network concept. Fuel Cells 6:225–236Google Scholar
  278. 278.
    Gode P, Hult A, Jannasch P, Johansson M, Karlsson LE, Lindbergh G, Malmström E, Sandquist D (2006) A novel sulfonated dendritic polymer as the acidic component in proton conducting membranes. Solid State Ionics 177:787–794Google Scholar
  279. 279.
    Itoh T, Hamaguchi Y, Uno T, Kubo M, Aihara Y, Sonai A (2006) Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell. Solid State Ionics 177:185–189Google Scholar
  280. 280.
    Ghosh A, Sen SK, Dasgupta B, Banerjee S, Voit B (2010) Synthesis, characterization and gas transport properties of new poly(imide siloxane) copolymers from 4,4′-(4,4′-isopropylidenediphenoxy)bis(phthalic anhydride). J Membr Sci 364:211–218Google Scholar
  281. 281.
    Cornelius CJ, Marand E (2002) Hybrid silica-polyimide composite membranes: gas transport properties. J Membr Sci 202:97–118Google Scholar
  282. 282.
    Hibshman C, Cornelius CJ, Marand E (2003) The gas separation effects of annealing polyimide–organosilicate hybrid membranes. J Membr Sci 211:25–40Google Scholar
  283. 283.
    Hibshman C, Mager M (2004) Marand E (2004) Effects of feed pressure on fluorinated polyimide–organosilicate hybrid membranes. J Membr Sci 229:73–80Google Scholar
  284. 284.
    Suzuki T, Yamada Y (2006) Characterization of 6FDA-based hyperbranched and linear polyimide–silica hybrid membranes by gas permeation and 129Xe NMR measurements. J Polym Sci B Polym Phys 44:291–298Google Scholar
  285. 285.
    Suzuki T, Yamada Y (2007) Effect of end group modification on gas transport properties of 6FDA-TAPOB hyperbranched polyimide—silica hybrid membranes. High Perform Polym 19:553–564Google Scholar
  286. 286.
    Suzuki T, Yamada Y, Itahashi K (2008) 6FDA-TAPOB hyperbranched polyimide-silica hybrids for gas separation membranes. J Appl Polym Sci 109:813–819Google Scholar
  287. 287.
    Wang H, Pang J, Zhou F, Zhang H, Jiang Z, Zhang S (2013) Synthesis and preparation of sulfonated hyperbranched poly(aryl ether ketone)–sulfonated linear poly(aryl ether ketone) blend membranes for proton exchange membranes. High Perform Polym 25:759–768Google Scholar
  288. 288.
    Suda T, Yamazaki K, Kawakami H (2010) Syntheses of sulfonated star-hyperbranched polyimides and their proton exchange membrane properties. J Power Sources 195:4641–4646Google Scholar
  289. 289.
    Suzuki T, Miki M, Yamada Y (2012) Gas transport properties of hyperbranched polyimide/hydroxy polyimide blend membranes. Eur Polym J 48:1504–1512Google Scholar
  290. 290.
    Hosseini SS, Teoh MM, Chung TS (2008) Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks. Polymer 49:1594–1603Google Scholar
  291. 291.
    Low BT, Chung TS, Chen H, Jean YC, Pramoda KP (2009) Tuning the free volume cavities of polyimide membranes via the construction of pseudo-interpenetrating networks for enhanced gas separation performance. Macromolecules 42:7042–7054Google Scholar
  292. 292.
    Im H, Kim H, Kim CK, Kim J (2009) Enhancement of gas selectivities of hexafluoroisopropylidene-based polyimides with poly(methylmethacrylate) blending. Ind Eng Chem Res 48:8663–8669Google Scholar
  293. 293.
    Morisato A, Shen HC, Sankar SS, Freeman BD, Pinnau I, Casillas CG (1996) Polymer characterization and gas permeability of poly(1-trimethylsilyl-1-propyne) [PTMSP], poly(1-phenyl-1-propyne) [PPP], and PTMSP/PPP blends. J Polym Sci B Polym Phys 34:2209–2222Google Scholar
  294. 294.
    Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185Google Scholar
  295. 295.
    Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400Google Scholar
  296. 296.
    Trimble AR, Tully DC, Fréchet JMJ, Medeiros DR, Angelopoulos M (2000) Patterning of hyperbranched resist materials by electron-beam lithography. Polym Prepr 41:325–326Google Scholar
  297. 297.
    Okazaki M, Shibasaki Y, Ueda M (2001) New negative-type photosensitive polyimide based on hyperbranched poly(ether imide), a cross-linker, and a photoacid generator. Chem Lett 8:762–763Google Scholar
  298. 298.
    In I, Lee H, Fujigaya T, Okazaki M, Ueda M, Kim SY (2003) A new photoresist based on hyperbranched poly(ary1ene ether phosphine oxide). Polym Bull 49:349–355Google Scholar
  299. 299.
    Hong CS, Jikei M, Kikuchi R, Kakimoto M (2003) Chemically amplified photosensitive polybenzoxazoles based on tert-butoxycarbonyl protected hyperbranched poly(o-hydroxyamide)s. Macromolecules 36:3174–3179Google Scholar
  300. 300.
    Chen H, Yin J (2003) Synthesis of autophotosensitive hyperbranched polyimides based on 3,3′,4,4′-benzophenonetetracarboxylic dianhydride and 1,3,5-tris(4-aminophenoxy)benzene via end capping of the terminal anhydride groups by ortho-alkyl aniline. J Polym Sci A Polym Chem 41:2026–2035Google Scholar
  301. 301.
    Chen H, Yin J (2003) Preparation of auto-photosensitive hyperbranched co-polyimide by the condensation of 4,4′-(hexafluoroisopropy1idene)diphthalic anhydride and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride with 1,3,5-tris(4-aminophenoxy)benzene through a stage addition reaction method. Polym Bull 50:303–310Google Scholar
  302. 302.
    Chen H, Yin J (2004) Synthesis and characterization of negative-type photosensitive hyperbranched polyimides with excellent organosolubility from an A2 + B3 monomer system. J Polym Sci A Polym Chem 42:1735–1744Google Scholar
  303. 303.
    Liu C, Zhao X, Li Y, Yang D, Wang L, Jin L, Chen C, Zhou H (2013) New autophotosensitive semiaromatic hyperbranched polyimides with excellent thermal stabilities and low birefringences. High Perform Polym 25:301–311Google Scholar
  304. 304.
    Zyss J (1994) Molecular nonlinear optics: materials, physics and devices. Academic, BostonGoogle Scholar
  305. 305.
    Li Z, Dong S, Li P, Li Z, Ye C, Qin J (2008) New PVK-based nonlinear optical polymers: enhanced nonlinearity and improved transparency. J Polym Sci A Polym Chem 46:2983–2993Google Scholar
  306. 306.
    Czech P, Okrasa L, Méchin F, Boiteux G, Ulanski J (2006) Investigation of the polyurethane chain length influence on the molecular dynamics in networks crosslinked by hyperbranched polyester. Polymer 47:7207–7215Google Scholar
  307. 307.
    Ren Q, Gong F, Jiang B, Zhang D, Fang J, Guo F (2006) Preparation of hyperbranched copolymers of maleimide inimer and styrene by ATRP. Polymer 47:3382–3389Google Scholar
  308. 308.
    Zhou Z, Yan D (2006) Distribution function of hyperbranched polymers formed by AB2 type polycondensation with substitution effect. Polymer 47:1473–1479Google Scholar
  309. 309.
    Zhu Z, Li Z, Tan Y, Li Z, Li Q, Zeng Q, Ye C, Qin J (2006) New hyperbranched polymers containing second-order nonlinear optical chromophores: synthesis and nonlinear optical characterization. Polymer 47:7881–7888Google Scholar
  310. 310.
    Chang HL, Chao TY, Yang CC, Dai SA, Jeng RJ (2007) Second-order nonlinear optical hyperbranched polymers via facile ring-opening addition reaction of azetidine-2,4-dione. Eur Polym J 43:3988–3996Google Scholar
  311. 311.
    Xie J, Deng X, Cao Z, Shen Q, Zhang W, Shi W (2007) Synthesis and second-order nonlinear optical properties of hyperbranched polymers containing pendant azobenzene chromophores. Polymer 48:5988–5993Google Scholar
  312. 312.
    Bai Y, Song N, Gao JP, Sun X, Wang X, Yu G, Wang ZY (2005) A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. J Am Chem Soc 127:2060–2061Google Scholar
  313. 313.
    Xie J, Hu L, Shi W, Deng X, Cao Z, Shen Q (2008) Synthesis and nonlinear optical properties of hyperbranched polytriazole containing second-order nonlinear optical chromophore. J Polym Sci B Polym Phys 46:1140–1148Google Scholar
  314. 314.
    He N, Chen Y, Doyle J, Liu Y, Blau WJ (2008) Optical and nonlinear optical properties of an octasubstituted liquid crystalline copper phthalocyanine. Dyes Pigments 76:569–573Google Scholar
  315. 315.
    Zhang Y, Wang L, Wada T, Sasabe H (1996) One-pot synthesis of a new hyperbranched polyester containing 3,6-di-acceptor-substituted carbazole chromophores for nonlinear optics. Macromol Chem Phys 197:667–676Google Scholar
  316. 316.
    Pitois C, Wiesmann D, Lindgren M, Hult A (2001) Functionalized fluorinated hyperbranched polymers for optical waveguide applications. Adv Mater 13:1483–1484Google Scholar
  317. 317.
    Gao H, Yorifuji D, Wakita J, Jiang Z-H, Ando S (2010) In situ preparation of nano ZnO/hyperbranched polyimide hybrid film and their optical properties. Polymer 51:3173–3180Google Scholar
  318. 318.
    Jiang X, Wang H, Chen X, Li X, Lei L, Mu J, Wang G, Zhang S (2010) A novel photoactive hyperbranched poly(aryl ether ketone) with azobenzene end groups for optical storage applications. React Funct Polym 70:699–705Google Scholar
  319. 319.
    Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26:3–65Google Scholar
  320. 320.
    Volksen W, Miller RD, Dubois G (2010) Low dielectric constant materials. Chem Rev 110:56–110Google Scholar
  321. 321.
    Martin SJ, Godschalx JP, Mills ME, Shaffer EO II, Townsend PH (2000) Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Adv Mater 12:1769–1778Google Scholar
  322. 322.
    Somboonsub B, Thongyai S, Praserthdam P (2009) Dielectric properties and solubility of multilayer hyperbranched polyimide/polyhedral oligomeric silsesquioxane nanocomposites. J Appl Polym Sci 114:3292–3302Google Scholar
  323. 323.
    Banerjee S, Maier G, Burger M (1999) Novel poly(arylene ether)s with pendent trifluoromethyl groups. Macromolecules 32:4279–4289Google Scholar
  324. 324.
    Hedrick JL et al (1993) US Patent 5,776,990Google Scholar
  325. 325.
    Zhong B (2001) US Patent 6,197,913Google Scholar
  326. 326.
    Li Z, Wu W, Ye C, Qin J, Li Z (2010) New hyperbranched polyaryleneethynylene containing azobenzene chromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polym Chem 1:78–81Google Scholar
  327. 327.
    Hu R, Lam JWY, Liu J, Sung HHY, Williams ID, Yue Z, Wong KS, Yuen MMF, Tang BZ (2012) Hyperbranched conjugated poly(tetraphenylethene): synthesis, aggregation-induced emission, fluorescent photopatterning, optical limiting and explosive detection. Polym Chem 3:1481–1489Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Anindita Ghosh
    • 1
    Email author
  • Susanta Banerjee
    • 2
  • Brigitte Voit
    • 3
  1. 1.Department of Applied Science, Symbiosis Institute of Technology (SIT)Symbiosis International University (SIU)PuneIndia
  2. 2.Materials Science CentreIndian Institute of TechnologyKharagpurIndia
  3. 3.Leibniz-Institut für Polymerforschung Dresden e. V.DresdenGermany

Personalised recommendations