Advertisement

Microwave-Assisted Synthesis of Polyesters and Polyamides by Ring-Opening Polymerization

  • Martin Fimberger
  • Frank WiesbrockEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 274)

Abstract

Microwave-assisted heating has been described as an efficient heating technique that can enhance the reaction rate for many reactions. Consequently, it is a key strategy for ring-opening polymerizations, which are often limited by low polymerization rates. This review summarizes recent efforts in the field of microwave-assisted polyester and polyamide syntheses from cyclic monomers and dimers, with a broad focus on poly(lactic acid)s and poly(ε-caprolactone)s. Homo- and copolymerizations as well as graft polymerizations are discussed. Both the polymerizations themselves as well as the preparation of composites/materials are addressed. Special attention is directed towards the discussion of non-thermal microwave effects.

Keywords

Microwave-assisted polymerization Non-thermal microwave effects Polyamide Polyester Ring-opening polymerization 

Abbreviations

(d/l)-LA

(d/l)-lactic acid

CH

Conventional heating

CL

ε-Caprolactone

ĐM

Molar mass dispersity

DMF

Dimethylformamide

DMSO

Dimethyl sulfoxide

DO

Dioxanone

DSC

Differential scanning calorimetry

GA

Glycolic acid

IR

Infrared (spectroscopy)

LCCC

Liquid chromatography under critical conditions

MALDI

Matrix-assisted laser desorption ionization

Mm

Mass-average molecular weight

Mn

Number-average molecular weight

mPEG

Methoxylated poly(ethylene glycol)

Mv

Viscosity-average molecular weight

MW

Microwave

NCA

N-Carboxyanhydride

P(d/l)LA

Poly((d/l)-lactic acid)

PAA

Poly(acrylic acid)

PCL

Poly(ε-caprolactone)

PDO

Polydioxanone

PEG

Poly(ethylene glycol)

PET

Poly(ethylene terephthalate)

PGA

Poly(glycolic acid)

PHA

Poly(hydroxy alkanoate)

PLGA

Poly(lactic-co-glycolic) acid

PSt

Polystyrene

PTMC

Poly(trimethylene carbonate)

PVA

Poly(vinyl alcohol)

ROP

Ring-opening polymerization

SBF

Simulated body fluid

SEC

Size exclusion chromatography

SEM

Scanning electron microscopy

stat

Statistical

TEM

Transmission electron microscopy

Tg

Glass-transition temperature

TGA

Thermogravimetric analysis

THF

Tetrahydrofuran

Tm

Melting temperature

TMC

Trimethylene carbonate

TOF

Time of flight (spectroscopy)

wt

Weight

XRD

X-ray diffraction

β-TCP

β-Tricalcium phosphate

Notes

Acknowledgement

The research work was performed within the K-Project “PolyComp” and at the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Federal Ministry for Transport, Innovation and Technology and the Federal Ministry for Economy, Family and Youth, with contributions by the Graz University of Technology and Infineon Technologies Austria AG. Funding of the K-Project “PolyComp” is provided by the Austrian Government and the State Government of Styria; the PCCL is funded by the Austrian Government and the State Governments of Styria, Lower Austria, and Upper Austria.

References

  1. 1.
    Luef KP, Hoogenboom R, Schubert US, Wiesbrock F (2015) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. Adv Polym Sci. doi: 10.1007/12_2015_340
  2. 2.
    Herrero MA, Kremsner JM, Kappe CO (2008) Nonthermal microwave effects revisited: on the importance of internal temperature monitoring and agitation in microwave chemistry. J Org Chem 73:36–47CrossRefGoogle Scholar
  3. 3.
    Wiesbrock F, Hoogenboom R, Schubert US (2004) Microwave-assisted polymer synthesis: state-of-the-art and future perspectives. Macromol Rapid Commun 25:1739–1764CrossRefGoogle Scholar
  4. 4.
    Ebner C, Bodner T, Stelzer F, Wiesbrock F (2011) One decade of microwave-assisted polymerizations: quo vadis? Macromol Rapid Commun 32:254–288CrossRefGoogle Scholar
  5. 5.
    Zhang C, Liao L, Gong S (2007) Recent developments in microwave-assisted polymerization with a focus on ring-opening polymerization. Green Chem 9:303–314CrossRefGoogle Scholar
  6. 6.
    Nakamura T, Nagahata R, Takeuchi K (2011) Microwave-assisted polyester and polyamide synthesis. Mini-Reviews Org Chem 8:306–314CrossRefGoogle Scholar
  7. 7.
    Auras R, Lim L-T, Selke SEM, Tsuji H (eds) (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, HobokenGoogle Scholar
  8. 8.
    Li G, Zhao N, Bai W, Chen DL, Xiong CD (2010) Microwave-assisted ring-opening polymerization of poly(glycolic acid-co-lactic acid) copolymers. e-Polymers 10:557–562. doi: 10.1515/epoly.2010.10.1.557
  9. 9.
    Jin H-H, Min S-H, Hwang KH, Park I-M, Park H-C, Yoon S-Y (2006) Synthesis of biodegradable β-TCP/PLGA composites using microwave energy. Mater Sci Forum 510–511:758–761CrossRefGoogle Scholar
  10. 10.
    Park H-C, Jin H-H, Hyun Y-T, Lee WK, Yoon S-Y (2007) Degradation behaviors of β-TCP/PLGA composites prepared with microwave energy. Key Eng Mater 342–343:205–208CrossRefGoogle Scholar
  11. 11.
    Jin H-H, Min S-H, Song Y-K, Park H-C, Yoon S-Y (2010) Degradation behavior of poly(lactide-co-glycolide)/β-TCP composites prepared using microwave energy. Polym Degrad Stab 95:1856–1861CrossRefGoogle Scholar
  12. 12.
    Naik S, Carpenter EE (2008) Poly(d,l-lactide-co-glycolide) microcomposite containing magnetic iron core nanoparticles as drug carrier. J Appl Phys 103:07A313Google Scholar
  13. 13.
    Khodaverdi E, Tekie FSM, Mohajeri SA, Ganji F, Zohuri G, Hadizadeh F (2012) Preparation and investigation of sustained drug delivery systems using an injectable, thermosensitive, in situ forming hydrogel composed of PLGA–PEG–PLGA. AAPS Pharm Sci Tech 13(2):590–600CrossRefGoogle Scholar
  14. 14.
    Wiesbrock F, Hoogenboom R, Leenen MAM, Meier MAR, Schubert US (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034Google Scholar
  15. 15.
    Ramier J, Renard E, Grande D (2012) Microwave-assisted ring-opening polymerization of d,l-lactide: a probe for the nonexistence of nonthermal microwave effects. Macromol Chem Physic 213:784–788CrossRefGoogle Scholar
  16. 16.
    Yang X-G, Liu L-J (2008) Improved preparation of d,l-lactide from d,l-lactic acid using microwave irradiation. Polym Bull 61:177–188CrossRefGoogle Scholar
  17. 17.
    Hirao K, Masutani K, Ohara H (2009) Noncatalytic polycondensation of l-lactic acid under microwave irradiation. J Chem Eng Jpn 42:417–419CrossRefGoogle Scholar
  18. 18.
    Hirao K, Masutani K, Ohara H (2009) Synthesis of l,l-lactide via depolymerization of oligo(l-lactic acid) by microwave irradiation. J Chem Eng Jpn 42:687–690CrossRefGoogle Scholar
  19. 19.
    Liu LJ, Zhang C, Liao LQ, Wang XL, Zhuo RX (2001) Microwave-assisted polymerization of d,l-lactide with stannous octanoate as catalyst. Chin Chem Lett 12:663–664Google Scholar
  20. 20.
    Zhang C, Liao L, Liu L (2004) Rapid ring-opening polymerization of d,l-lactide by microwaves. Macromol Rapid Commun 25:1402–1405CrossRefGoogle Scholar
  21. 21.
    Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M (2010) Novel microwave-assisted synthesis of poly(d,l-lactide): the influence of monomer/initiator molar ratio on the product properties. Sensors 10:5063–5073CrossRefGoogle Scholar
  22. 22.
    Jing S, Peng W, Tong Z, Baoxiu Z (2006) Microwave-irradiated ring-opening polymerization of d,l-lactide under atmosphere. J Appl Polym Sci 100:2244–2247CrossRefGoogle Scholar
  23. 23.
    Frediani M, Sémeril D, Matt D, Rizzolo F, Papini AM, Frediani P, Rosi L, Santella M, Giachi G (2010) l-lactide polymerization by calix[4]arene-titanium (IV) complex using conventional heating and microwave irradiation. e-Polymers 10:177–184. doi: 10.1515/epoly.2010.10.1.177
  24. 24.
    Frediani M, Sémeril D, Matt D, Rosi L, Frediani P, Rizzolo F, Papini AM (2010) Ring-opening polymerisation of rac-lactide using a calix[4]arene-based titanium(IV) complex. Int J Polym Sci. doi: 10.1155/2010/490724 Google Scholar
  25. 25.
    Pandey A, Aswath P (2010) Microwave-assisted in situ synthesis of poly l-lactic acid with nanoparticles of calcium phosphate. Int J Polym Mater 59:911CrossRefGoogle Scholar
  26. 26.
    Cao H, Wang P, Yuan W, Lei H (2010) Microwave-assisted preparation of poly-lactide/organomontmorillonite nanocomposites via in situ polymerization. J Appl Polym Sci 115:1468–1473CrossRefGoogle Scholar
  27. 27.
    Ramier J, Renard E, Grande D (2012) Microwave-assisted synthesis and characterization of biodegradable block copolyesters based on poly(3-hydroxyalkanoate)s and poly(d,l-lactide). J Polym Sci Part A Polym Chem 50:1445–1455CrossRefGoogle Scholar
  28. 28.
    Nan A, Turcu R, Craciunescu I, Leostean C, Bratu I, Liebscher J (2009) Surface initiated ring-opening polymerization of lactones on iron oxide nanoparticles. J Phys Conf Ser 182:4ppCrossRefGoogle Scholar
  29. 29.
    Nan A, Turcu R, Craciunescu I, Pana O, Scharf H, Liebscher J (2009) Microwave-assisted graft polymerization of ε-caprolactone onto magnetite. J Polym Sci Part A Polym Chem 47:5397–5404CrossRefGoogle Scholar
  30. 30.
    Koroskenyi B, McCarthy SP (2002) Microwave-assisted solvent-free or aqueous-based synthesis of biodegradable polymers. J Polym Environ 10:93–104CrossRefGoogle Scholar
  31. 31.
    Luo B, Yang J, Zhao J, Hsu CE, Li J, Zhou C (2011) Rapid synthesis and characterization of chitosan-g-poly(d,l-lactide) copolymers with hydroxyethyl chitosan as a macroinitiator under microwave irradiation. J Appl Polym Sci 125:E125–E131CrossRefGoogle Scholar
  32. 32.
    Luo B-H, Zhong C-H, He Z-G, Zhou C-R (2009) Microwave-assisted synthesis of a brush-like copolymer of poly(d,l-lactide) grafted onto chitosan. In: Proceedings 3rd international conference on bioinformatics and biomedical engineering, 11–13 June 2009, Beijing, pp 1–3. doi: 10.1109/ICBBE.2009.5163057
  33. 33.
    Duan J, Han C, Yang J (2012) Preparation of cellulose copolymer grafted polylactide(PLA) by the microwave method. In: Proceedings of the international conference on biobased material science and engineering, 21–23 October 2012, Changsha, pp 96–98. doi: 10.1109/BMSE.2012.6466189
  34. 34.
    Luo B, Hsu CE, Yang J, Zhao J, Zhou C (2011) Synthesis of nano-hydroxyapatite surface-grafting poly(l-lactide) under microwave irradiation. Adv Mater Res 204–210:1929–1933CrossRefGoogle Scholar
  35. 35.
    Luo B-H, Hsu C-E, Li J-H, Zhao L-F, Liu M-X, Wang X-Y, Zhou C-R (2013) Nano-composite of poly(l-lactide) and halloysite nanotube surface-grafted with l-lactide oligomer under microwave irradiation. J Biomed Nanotechnol 9:649–658CrossRefGoogle Scholar
  36. 36.
    Zhang C, Liao L, Gong S (2007) Microwave-assisted synthesis of PLLA-PEG-PLLA triblock copolymers. Macromol Rapid Commun 28:422–427CrossRefGoogle Scholar
  37. 37.
    Zhang C, Liao L, Gong S (2007) Synthesis of PLLA-MPEG diblock copolymers by microwave-assisted copolymerization of l-lactide and methoxy poly(ethylene glycol). Macromol Chem Phys 208:1122–1128CrossRefGoogle Scholar
  38. 38.
    Karagöz A, Dinçer S (2010) Microwave-assisted synthesis of poly(ε-caprolactone)-block-poly(ethylene glycol) and poly(lactide)-bloc-poly(ethylene glycol). Macromol Symp 395:131–137CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Ren J, Feng Y, Li J, Yuan W (2010) Microwave-assisted synthesis of star shaped poly(ε-caprolactone)-block-poly(l-lactide) copolymers and the crystalline morphologies. J Polym Sci Part A Polym Chem 48:5063–5071CrossRefGoogle Scholar
  40. 40.
    Albert P, Warth H, Mülhaupt R (1996) Comparison of thermal and microwave-activated polymerization of ε-caprolactone with titanium tetrabutylate as catalyst. Macromol Chem Phys 197:1633–1641CrossRefGoogle Scholar
  41. 41.
    Barbier-Baudry D, Brachais C-H, Cretu A, Loupy A, Stuerga D (2002) An easy way toward ε-caprolactone macromonomers by microwave irradiation using early lanthanide halides as catalysts. Macromol Rapid Commun 23:200–204CrossRefGoogle Scholar
  42. 42.
    Liao Q, Liu LJ, Zhang C, He F, Zhuo RX, Wan K (2002) Microwave-assisted ring-opening polymerization of ε-caprolactone. J Polym Sci Part A Polym Chem 40:1749–1755CrossRefGoogle Scholar
  43. 43.
    Liao LQ, Liu LJ, Zhang C, He F, Zhuo RX (2003) Heating characteristics and polymerization of ε-caprolactone under microwave irradiation. J Appl Polym Sci 90:2657–2664CrossRefGoogle Scholar
  44. 44.
    Li H, Liao L, Wang Q, Liu L (2010) Flash-heating-enhanced ring-opening polymerizations of ε-caprolactone under conventional conditions. Macromol Chem Phys 207:1789–1793CrossRefGoogle Scholar
  45. 45.
    Li H, Liao L, Liu L (2007) Kinetic investigation into the non-thermal microwave effect on the ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun 28:411–416CrossRefGoogle Scholar
  46. 46.
    Yu ZJ, Liu LJ, Zhuo RX (2002) Microwave-improved polymerization of ε-caprolactone initiated by carboxylic acids. J Polym Sci Part A Polym Chem 41:13–21CrossRefGoogle Scholar
  47. 47.
    Tan BY, Cai S, Liao L, Wang Q, Liu L (2009) Microwave-assisted ring-opening polymerization of ε-caprolactone in presence of hydrogen phosphonates. Polym J 41:849–854CrossRefGoogle Scholar
  48. 48.
    Liu LJ, Cai SJ, Tan Y, Du JJ, Dong HQ, Wu XJ, Wu MY, Liao LQ (2009) Ring opening insertion polymerization of ε-caprolactone with hydrogen phosphonate initiators. J Polym Sci Part A Polym Chem 47:6214–6222CrossRefGoogle Scholar
  49. 49.
    Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770CrossRefGoogle Scholar
  50. 50.
    Liao L, Zhang C, Gong S (2007) Preparation of poly(ε-caprolactone)/clay nanocomposites by microwave-assisted in situ ring-opening polymerization. Macromol Rapid Commun 28:1148–1154CrossRefGoogle Scholar
  51. 51.
    Liao L, Zhang C, Gong S (2007) Microwave-assisted synthesis and characterization of poly(ε-caprolactone)/montmorillonite nanocomposites. Macromol Chem Phys 208:1301–1309CrossRefGoogle Scholar
  52. 52.
    Liao L, Liu L, Zhang C, Gong S (2006) Microwave-assisted ring-opening polymerization of ε-caprolactone in the presence of ionic liquid. Macromol Rapid Commun 27:2060–2064CrossRefGoogle Scholar
  53. 53.
    Kerep P, Ritter H (2006) Influence of microwave irradiation on the lipase catalyzed ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun 27:707–710CrossRefGoogle Scholar
  54. 54.
    Kerep P, Ritter H (2006) Chemoenzymatic synthesis of polycaprolactone-block-polystyrene via macromolecular chain transfer reagents. Macromol Rapid Commun 28:759–766CrossRefGoogle Scholar
  55. 55.
    Matos TD, King N, Simmons L, Walker C, McClain AR, Mahapatro A, Rispoli FJ, McDonnell KT, Shah V (2011) Microwave assisted lipase catalyzed solvent free poly-ε-caprolactone synthesis. Green Chem Lett Rev 4:73–79CrossRefGoogle Scholar
  56. 56.
    Song Y, Weng X, Zhuo R, Liu L (2002) Acid-initiated polymerization of ε-caprolactone under microwave irradiation and its application in the preparation of drug controlled release system. J Biomater Sci Polymer Edn 14:241–253CrossRefGoogle Scholar
  57. 57.
    Song Y, Liu LJ, Zhuo RX (2003) Microwave-assisted polymerization of ε-caprolactone with maleic acid as initiator and drug release behavior of ibuprofen-poly(ε-caprolactone)system. Chin Chem Lett 14:32–34Google Scholar
  58. 58.
    Yu ZJ, Liu LJ (2004) Effect of microwave energy on chain propagation of poly(ε-caprolactone) in benzoic acid-initiated ring opening polymerization of ε-caprolactone. Eur Polym J 40:2213–2220CrossRefGoogle Scholar
  59. 59.
    Xu Q, Zhang C, Cai S, Zhu P, Liu L (2010) Large-scale microwave-assisted ring-opening polymerization of ε-caprolactone. Ind Eng Chem 16:872–875CrossRefGoogle Scholar
  60. 60.
    Gotelli GA, Bonelli P, Abraham GA, Sosnik A (2010) Fast and efficient synthesis of high molecular weight poly(epsilon-caprolactone) diols by microwave-assisted polymer synthesis. J Appl Polym Sci 121:1321–1329CrossRefGoogle Scholar
  61. 61.
    Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A (2010) Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B 79:467–479CrossRefGoogle Scholar
  62. 62.
    Yu Z, Liu L (2005) Microwave-assisted synthesis of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) tri-block co-polymers and use as matrices for sustained delivery of ibuprofen taken as model drug. J Biomater Sci Polymer Edn 16:957–971CrossRefGoogle Scholar
  63. 63.
    Yu Z, Liu L (2007) Biodegradable poly(vinyl alcohol)-graft-poly(ε-caprolactone) comb-like polyester: microwave synthesis and its characterization. J Appl Polym Sci 104:3973–3979CrossRefGoogle Scholar
  64. 64.
    Chang PR, Zhou Z, Xu P, Chen Y, Zhou S, Huang J (2009) Thermoforming starch-graft-polycaprolactone biocomposites via one-pot microwave assisted ring opening polymerization. J Appl Polym Sci 113:2973–2979CrossRefGoogle Scholar
  65. 65.
    Lin N, Chen G, Huang J, Dufresne A, Chang PR (2009) Effects of polymer-grafted natural nanocrystals on the structure and mechanical properties of poly(lactic acid): a case of cellulose whisker-graft-polycaprolactone. J Appl Polym Sci 113:3417–3425CrossRefGoogle Scholar
  66. 66.
    Feng L, Zhou Z, Dufresne A, Huang J, Wei M, An L (2008) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112:2830–2837CrossRefGoogle Scholar
  67. 67.
    Liu L, Li Y, Fang Y-E, Chen L (2005) Microwave-assisted graft copolymerization of ε-caprolactone onto chitosan via the phthaloyl protection method. Carbohydr Polym 60:354–356Google Scholar
  68. 68.
    Tiwari A, Prabaharan M (2010) An amphiphilic nanocarrier based on guar gum-graft-poly(ε-caprolactone) for potential drug-delivery applications. J Biomater Sci 21:937–949CrossRefGoogle Scholar
  69. 69.
    Sinwell S, Ritter H (2007) Microwave assisted hydroxyalkylamidation of poly(ethylene-co-acrylic acid) and formation of grafted poly(ε-caprolyctone) side chains. J Polym Sci Part A Polym Chem 45:3659–3667CrossRefGoogle Scholar
  70. 70.
    Sinnwell S, Schmidt AM, Ritter H (2006) Direct synthesis of (meth-)acrylate poly(ε-caprolactone) macromonomers. J Macromol Sci Part A Pure Appl Chem 43:469–476CrossRefGoogle Scholar
  71. 71.
    Hasnat A, Trathnigg B (2009) Characterization of poly(ethylene glycol)-b-poly(ε-caprolactone) by two-dimensional liquid chromatography. J Sep Sci 32:1390–1400CrossRefGoogle Scholar
  72. 72.
    Hasnat A, Trathnigg B, Kappe CO, Saf R (2009) Characterization of poly(ethylene glycol)-b-poly(ε-caprolactone) by liquid chromatography under critical conditions: influence of catalysts and reaction conditions on product composition. Eur Polym J 45:2338–2347CrossRefGoogle Scholar
  73. 73.
    Ahmed H, Trathnigg B, Kappe CO, Saf R (2010) Synthesis of poly(ε-caprolactone) diols and EO-CL block copolymers and their characterization by liquid chromatography and MALDI-TOF-MS. Eur Polym J 46:494–505CrossRefGoogle Scholar
  74. 74.
    Li Y, Wang X-L, Yang K-K, Wang Y-Z (2006) A rapid synthesis of poly (p-dioxanone) by ring-opening polymerization under microwave irradiation. Polym Bull 57:873–880CrossRefGoogle Scholar
  75. 75.
    Chen Y-Y, Wu G, Qiu Z-C, Wang X-L, Zhang Y, Lu F, Wang Y-Z (2008) Microwave-assisted ring-opening polymerization of p-dioxanone. J Polym Sci Part A Polym Chem 46:3207–3213CrossRefGoogle Scholar
  76. 76.
    Wang X-L, Chen Y-Y, Wang Y-Z (2010) Synthesis of poly(p-dioxanone) catalyzed by Zn L-lactate under microwave irradiation and its application in ibuprofen delivery. J Biomater Sci 21:927–936CrossRefGoogle Scholar
  77. 77.
    Chen R, Hao JY, Xiong CD, Deng XM (2010) Rapid synthesis of biodegradable poly(epsilon-caprolactone-co-p-dioxanone) random copolymers under microwave irradiation. Chin Chem Lett 21:249–252CrossRefGoogle Scholar
  78. 78.
    Liao L, Zhang C, Gong S (2007) Rapid synthesis of poly(trimethylene carbonate) by microwave-assisted ring-opening polymerization. Eur Polym J 43:4289–4296CrossRefGoogle Scholar
  79. 79.
    Liao L, Zhang C, Gong S (2007) Microwave-assisted ring-opening polymerization of trimethylene carbonate in the presence of ionic liquid. J Polym Sci Part A Polym Chem 45:5857–5863CrossRefGoogle Scholar
  80. 80.
    Zhang C, Liao L, Gong S (2008) Zinc lactate-catalyzed ring–opening polymerization of trimethylene carbonate under microwave irradiation. J Appl Polym Sci 110:1236–1241CrossRefGoogle Scholar
  81. 81.
    Liao L, Zhang C, Gong S (2008) Preparation of poly(trimethylene carbonate)-block-poly(ethylene glycol)-block-poly(trimethylene carbonate) triblock copolymers under microwave irradiation. React Funct Polym 68:751–758CrossRefGoogle Scholar
  82. 82.
    You Z, Bi X, Jeffries EM, Wang Y (2012) A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polym Chem 3:384–389CrossRefGoogle Scholar
  83. 83.
    Nagahata R, Sugiyama J-I, Velmathi S, Nakao Y, Goto M, Takeuchi K (2004) Synthesis of poly(ethylene terephthalate-co-isophthalate) by copolymerization of ethylene isophthalate cyclic dimer and bis(2-hydroxyethyl) terephthalate. Polym J 36:483–488CrossRefGoogle Scholar
  84. 84.
    Pingale ND, Shukla SR (2008) Microwave assisted ecofriendly recycling of poly(ethylene terephthalate) bottle waste. Eur Polym J 44:4151–4156CrossRefGoogle Scholar
  85. 85.
    Tsintzou GP, Antonakou EV, Achilias DS (2012) Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation. J Hazard Mater 241–242:137–145CrossRefGoogle Scholar
  86. 86.
    Wu Q, Zhou L, Zhang D, Song X, Zhang G (2011) Synthesis and characterization of biodegradable poly(ε-caprolactone)/poly(γ-benzyl L-glutamate) block copolymer. Polym Bull 67:1227–1236CrossRefGoogle Scholar
  87. 87.
    Fang X, Hutcheon R, Scola DA (2000) Microwave syntheses of poly(ε-caprolactam-co-ε-caprolactone). J Polym Sci Part A Polym Chem 38:1379–1390CrossRefGoogle Scholar
  88. 88.
    Fang X, Simone CD, Vaccaro E, Huang SJ, Scola DA (2002) Ring-opening polymerization of ε-caprolactam and ε-caprolactone via microwave irradiation. J Polym Sci Part A Polym Chem 40:2264–2275CrossRefGoogle Scholar
  89. 89.
    Klun U, Kržan A (2002) Degradation of polyamide-6 by using metal salts as catalyst. Polym Adv Technol 13:817–822CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Polymer Competence Center LeobenLeobenAustria
  2. 2.Graz University of Technology, Institute for Chemistry and Technology of MaterialsNAWI GrazGrazAustria

Personalised recommendations