Skip to main content

Morphology of P3HT in Thin Films in Relation to Optical and Electrical Properties

  • Chapter
  • First Online:
P3HT Revisited – From Molecular Scale to Solar Cell Devices

Part of the book series: Advances in Polymer Science ((POLYMER,volume 265))

Abstract

The search for renewable and environmentally friendly energy sources has made organic electronics an interesting field of research. Semiconducting polymers stand out because they offer cheap and easy processability at a large-scale from solution, combined with impressive optoelectronic properties. Polythiophenes, in particular poly(3-hexylthiophene) (P3HT), are the most prominent and investigated representatives of semiconducting polymers and have been applied in various devices such as solar cells and field-effect transistors. For this class of polymers, it has been well established that the morphology of the functional layer has a significant impact on the device performance. However, transport bottlenecks are hard to determine due to the complex semicrystalline microstructure, which is composed of a mixture of crystalline and amorphous domains. In order to gain a deeper understanding of the correlation between microstructure and functional properties, precise control of nucleation and growth of semicrystalline polymers such as P3HT is crucial. This article gives an overview of recent publications addressing the morphology and crystallization of regioregular P3HT, both in solution and thin film, and attempts to correlate these structural features to the functional (i.e. optical and electrical) properties of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Nature 401:685–688

    CAS  Google Scholar 

  2. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) Science 290:2123–2126

    CAS  Google Scholar 

  3. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A (2009) Nature 457:679–686

    CAS  Google Scholar 

  4. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Nat Photon 6:591–595

    Google Scholar 

  5. Bao Z, Dodabalapur A, Lovinger AJ (1996) Appl Phys Lett 69:4108–4110

    CAS  Google Scholar 

  6. Spano FC (2005) J Chem Phys 122:234701

    Google Scholar 

  7. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Ree M (2006) Nat Mater 5:197–203

    CAS  Google Scholar 

  8. Salleo A (2007) Mater Today 10:38–45

    CAS  Google Scholar 

  9. Muthukumar M (2000) Eur Phys J E 3:199–202

    CAS  Google Scholar 

  10. Muthukumar M (2007) Shifting paradigms in polymer crystallization. In: Reiter G, Strobl GR (eds) Progress in understanding of polymer crystallization. Springer, Berlin/Heidelberg, p 1–18

    Google Scholar 

  11. Phillips PJ (1968) Rep Prog Phys 53:549–604

    Google Scholar 

  12. Keller A, Machin MJ (1967) J Macromol Sci B Phys 1:41–91

    CAS  Google Scholar 

  13. Brady JM, Thomas EL (1989) J Mater Sci 24:3311–3318

    CAS  Google Scholar 

  14. Till PH (1957) J Polym Sci 24:301–306

    CAS  Google Scholar 

  15. Young R, Bowden P (1973) J Mater Sci 8:1177–1184

    CAS  Google Scholar 

  16. Wu Z, Petzold A, Henze T, Thurn-Albrecht T, Lohwasser RH, Sommer M, Thelakkat M (2010) Macromolecules 43:4646–4653

    CAS  Google Scholar 

  17. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, Rabe JP, Scherf U, Neher D (2004) Adv Funct Mater 14:757–764

    CAS  Google Scholar 

  18. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Fréchet JMJ, Toney MF (2005) Macromolecules 38:3312–3319

    CAS  Google Scholar 

  19. Jimison LH, Toney MF, McCulloch I, Heeney M, Salleo A (2009) Adv Mater 21:1568–1572

    CAS  Google Scholar 

  20. Crossland EJW, Tremel K, Fischer F, Rahimi K, Reiter G, Steiner U, Ludwigs S (2012) Adv Mater 24:839–844

    CAS  Google Scholar 

  21. Lin JW-P, Dudek LP (1980) J Polym Sci Polym Chem Ed 18:2869–2873

    CAS  Google Scholar 

  22. Yamamoto T, Sanechika K, Yamamoto A (2008) J Polym Sci Polym Lett Ed 18:2869–2873

    Google Scholar 

  23. McCullough RD, Lowe RD (1992) J Chem Soc Chem Commun 1992(1):70–72

    Google Scholar 

  24. Mccullough RD, Lowe RD, Jayaraman M, Anderson DL (1993) J Org Chem 58:904–912

    CAS  Google Scholar 

  25. Chen T-A, Rieke RD (1992) J Am Chem Soc 114:10087–10088

    CAS  Google Scholar 

  26. Loewe RS, Khersonsky SM, McCullough RD (1999) Adv Mater 11:250–253

    CAS  Google Scholar 

  27. Senkovskyy V, Khanduyeva N, Komber H, Oertel U, Stamm M, Kuckling D, Kiriy A (2007) J Am Chem Soc 129:6626–6632

    CAS  Google Scholar 

  28. Bronstein HA, Luscombe CK (2009) J Am Chem Soc 131:12894–12895

    CAS  Google Scholar 

  29. Sista P, Luscombe CK (2014) Progress in the synthesis of poly(3-hexylthiophene). (2014) Adv Polym Sci. doi:10.1007/12_2014_278

  30. Trznadel M, Pron A, Zagorska M, Chrzaszcz R, Pielichowski J (1998) Macromolecules 31:5051–5058

    CAS  Google Scholar 

  31. Gritzner G, Kuta J (1984) Electrochim Acta 29:869–873

    Google Scholar 

  32. Skompska M, Szkurłat A (2001) Electrochim Acta 46:4007–4015

    CAS  Google Scholar 

  33. Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Chem Rev 110:4724–4771

    CAS  Google Scholar 

  34. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Adv Mater 23:2367–2371

    CAS  Google Scholar 

  35. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J (1995) Adv Mater 7:551–554

    CAS  Google Scholar 

  36. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18:789–794

    CAS  Google Scholar 

  37. Guan Z-L, Kim JB, Wang H, Jaye C, Fischer DA, Loo Y-L, Kahn A (2010) Org Electron 11:1779–1785

    CAS  Google Scholar 

  38. Heffner GW, Pearson DS (1991) Macromolecules 24:6295–6299

    CAS  Google Scholar 

  39. Adachi T, Brazard J, Ono RJ, Hanson B, Traub MC, Wu Z-Q, Li Z, Bolinger JC, Ganesan V, Bielawski CW, Vanden Bout DA, Barbara PF (2011) J Phys Chem Lett 2:1400–1404

    CAS  Google Scholar 

  40. Chen T, Wu X, Rieke RD (1995) J Am Chem Soc 117:233–244

    CAS  Google Scholar 

  41. Mao H, Xu B, Holdcroft S (1993) Macromolecules 26:1163–1169

    CAS  Google Scholar 

  42. Xu B, Holdcroft S (1993) Macromolecules 26:4457–4460

    CAS  Google Scholar 

  43. Kim DH, Han JT, Park YD, Jang Y, Cho JH, Hwang M, Cho K (2006) Adv Mater 18:719–723

    CAS  Google Scholar 

  44. Rahimi K, Botiz I, Stingelin N, Kayunkid N, Sommer M, Koch FPV, Nguyen H, Coulembier O, Dubois P, Brinkmann M, Reiter G (2012) Angew Chem Int Ed 51:11131–11135

    CAS  Google Scholar 

  45. Brinkmann M, Hartmann L, Kayunkid N, Djurado D (2014) Understanding the structure and crystallization of regioregular poly(3-hexylthiophene) from the perspective of epitaxy. Adv Polym Sci. doi:10.1007/12_2014_280

    Google Scholar 

  46. Lim JA, Liu F, Ferdous S, Muthukumar M, Briseno AL (2010) Mater Today 13:14–24

    CAS  Google Scholar 

  47. Ihn KJ, Moulton J, Smith P (1993) J Polym Sci B Polym Phys 31:735–742

    CAS  Google Scholar 

  48. Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K (2008) Macromolecules 41:8000–8010

    CAS  Google Scholar 

  49. Liu J, Arif M, Zou J, Khondaker SI, Zhai L (2009) Macromolecules 42:9390–9393

    CAS  Google Scholar 

  50. Berson S, De Bettignies R, Bailly S, Guillerez S (2007) Adv Funct Mater 17:1377–1384

    CAS  Google Scholar 

  51. Koppe M, Brabec CJ, Heiml S, Schausberger A, Duffy W, Heeney M, McCulloch I (2009) Macromolecules 42:4661–4666

    CAS  Google Scholar 

  52. Sun S, Salim T, Wong LH, Foo YL, Boey F, Lam YM (2011) J Mater Chem 21:377–386

    CAS  Google Scholar 

  53. Oosterbaan WD, Bolsée J-C, Gadisa A, Vrindts V, Bertho S, D’Haen J, Cleij TJ, Lutsen L, McNeill CR, Thomsen L, Manca JV, Vanderzande D (2010) Adv Funct Mater 20:792–802

    CAS  Google Scholar 

  54. Kiriy N, Jähne E, Adler H-J, Schneider M, Kiriy A, Gorodyska G, Minko S, Jehnichen D, Simon P, Fokin AA, Stamm M (2003) Nano Lett 3:707–712

    CAS  Google Scholar 

  55. Li L, Lu G, Yang X (2008) J Mater Chem 18:1984–1990

    CAS  Google Scholar 

  56. Park YD, Lee HS, Choi YJ, Kwak D, Cho JH, Lee S, Cho K (2009) Adv Funct Mater 19:1200–1206

    CAS  Google Scholar 

  57. Kim B, Kim M, Kim J (2010) ASC Nano 4:2160–2166

    CAS  Google Scholar 

  58. Malik S, Jana T, Nandi AK (2001) Macromolecules 34:275–282

    CAS  Google Scholar 

  59. Malik S, Nandi AK (2007) J Appl Polym Sci 103:2528–2537

    CAS  Google Scholar 

  60. Merlo JA, Frisbie CD (2003) J Polym Sci B Polym Phys 41:2674–2680

    CAS  Google Scholar 

  61. Merlo JA, Frisbie CD (2004) J Phys Chem B 108:19169–19179

    CAS  Google Scholar 

  62. Mas-Torrent M, Den Boer D, Durkut M, Hadley P, Schenning APHJ (2004) Nanotechnology 15:S265–S269

    CAS  Google Scholar 

  63. Samitsu S, Shimomura T, Heike S, Hashizume T, Ito K (2010) Macromolecules 43:7891–7894

    CAS  Google Scholar 

  64. Xin H, Kim FS, Jenekhe SA (2008) J Am Chem Soc 130:5424–5425

    CAS  Google Scholar 

  65. Xin H, Ren G, Kim FS, Jenekhe SA (2008) Chem Mater 20:6199–6207

    CAS  Google Scholar 

  66. Kim JS, Lee JH, Park JH, Shim C, Sim M, Cho K (2011) Adv Funct Mater 21:480–486

    CAS  Google Scholar 

  67. Yang H, Shin TJ, Yang L, Cho K, Ryu CY, Bao Z (2005) Adv Funct Mater 15:671–676

    CAS  Google Scholar 

  68. Yang H, LeFevre SW, Ryu CY, Bao Z (2007) Appl Phys Lett 90:172116

    Google Scholar 

  69. Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Chem Mater 16:4772–4776

    CAS  Google Scholar 

  70. Wang G, Swensen J, Moses D, Heeger AJ (2003) J Appl Phys 93:6137

    CAS  Google Scholar 

  71. Delongchamp DM, Vogel BM, Jung Y, Gurau MC, Richter CA, Kirillov OA, Obrzut J, Fischer DA, Sambasivan S, Richter LJ, Lin EK (2005) Chem Mater 17:5610–5612

    CAS  Google Scholar 

  72. Kline RJ, McGehee MD, Toney MF (2006) Nat Mater 5:222–228

    Google Scholar 

  73. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Fréchet JMJ (2003) Adv Mater 15:1519–1522

    CAS  Google Scholar 

  74. Zen A, Saphiannikova M, Neher D, Grenzer J, Grigorian S, Pietsch U, Asawapirom U, Janietz S, Scherf U, Lieberwirth I, Wegner G (2006) Macromolecules 39:2162–2171

    CAS  Google Scholar 

  75. Verilhac J-M, LeBlevennec G, Djurado D, Rieutord F, Chouiki M, Travers J-P, Pron A (2006) Synth Met 156:815–823

    CAS  Google Scholar 

  76. Brown P, Thomas D, Köhler A, Wilson J, Kim J-S, Ramsdale C, Sirringhaus H, Friend R (2003) Phys Rev B 67:064203

    Google Scholar 

  77. Clark J, Silva C, Friend R, Spano F (2007) Phys Rev Lett 98:206406

    Google Scholar 

  78. Clark J, Chang J-F, Spano FC, Friend RH, Silva C (2009) Appl Phys Lett 94:163306

    Google Scholar 

  79. Zhang R, Li B, Iovu MC, Jeffries-El M, Sauvé G, Cooper J, Jia S, Tristram-Nagle S, Smilgies DM, Lambeth DN, McCullough RD, Kowalewski T (2006) J Am Chem Soc 128:3480–3481

    CAS  Google Scholar 

  80. Yang H, Shin TJ, Bao Z, Ryu CY (2007) J Polym Sci B Polym Phys 45:1303–1312

    CAS  Google Scholar 

  81. Pascui OF, Lohwasser R, Sommer M, Thelakkat M, Thurn-Albrecht T, Saalwächter K (2010) Macromolecules 43:9401–9410

    CAS  Google Scholar 

  82. Mena-Osteritz E (2002) Adv Mater 14:609–616

    CAS  Google Scholar 

  83. Grévin B, Rannou P, Payerne R, Pron A, Travers J-P (2003) Adv Mater 15:881–884

    Google Scholar 

  84. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N, Smith P, Toney MF, Salleo A (2013) Nat Mater 12:1038–1044

    CAS  Google Scholar 

  85. Kim DH, Park YD, Jang Y, Kim S, Cho K (2005) Macromol Rapid Commun 26:834–839

    CAS  Google Scholar 

  86. Dang MT, Hirsch L, Wantz G, Wuest JD (2013) Chem Rev 113:3734–3765

    CAS  Google Scholar 

  87. Zaumseil J (2014) P3HT and other polythiophene field-effect transistors. Adv Polym Sci. doi:10.1007/12_2014_279

    Google Scholar 

  88. Prosa TJ, Winokur MJ, Mccullough RD (1996) Macromolecules 29:3654–3656

    CAS  Google Scholar 

  89. Prosa TJ, Winokur MJ, Moulton J, Smith P, Heeger AJ (1992) Macromolecules 25:4364–4372

    CAS  Google Scholar 

  90. Tashiro K, Kobayashi M, Kawai T, Yoshino K (1997) Polymer 38:2867–2879

    CAS  Google Scholar 

  91. Brinkmann M, Rannou P (2007) Adv Funct Mater 17:101–108

    CAS  Google Scholar 

  92. Dudenko D, Kiersnowski A, Shu J, Pisula W, Sebastiani D, Spiess HW, Hansen MR (2012) Angew Chem 51:11068–11072

    CAS  Google Scholar 

  93. Brinkmann M (2011) J Polym Sci B Polym Phys 49:1218–1233

    CAS  Google Scholar 

  94. Malik S, Nandi AK (2002) J Polym Sci B Polym Phys 40:2073–2085

    CAS  Google Scholar 

  95. Snyder CR, Henry JS, DeLongchamp DM (2011) Macromolecules 44:7088–7091

    CAS  Google Scholar 

  96. Lee CS, Dadmun MD (2014) Polymer 55:4–7

    CAS  Google Scholar 

  97. Aryal M, Trivedi K, Hu WW (2009) ACS Nano 3:3085–3090

    CAS  Google Scholar 

  98. Liu J, Sun Y, Gao X, Xing R, Zheng L, Wu S, Geng Y, Han Y (2011) Langmuir 27:4212–4219

    CAS  Google Scholar 

  99. Nagamatsu S, Takashima W, Kaneto K, Yoshida Y, Tanigaki N, Yase K, Omote K (2003) Macromolecules 36:5252–5257

    CAS  Google Scholar 

  100. Hartmann L, Tremel K, Uttiya S, Crossland E, Ludwigs S, Kayunkid N, Vergnat C, Brinkmann M (2011) Adv Funct Mater 21:4047–4057

    CAS  Google Scholar 

  101. Meyerhofer D (1978) J Appl Phys 49:3993

    Google Scholar 

  102. Aasmundtveit KE, Samuelsen EJ, Guldstein M, Steinsland C, Flornes O, Fagermo C, Seeberg TM, Pettersson LAA, Inganas O, Feidenhans’l R, Ferrer S (2000) Macromolecules 33:3120–3127

    CAS  Google Scholar 

  103. Joshi S, Grigorian S, Pietsch U, Pingel P, Zen A, Neher D, Scherf U (2008) Macromolecules 41:6800–6808

    CAS  Google Scholar 

  104. Kim DH, Park YD, Jang Y, Yang H, Kim YH, Han JI, Moon DG, Park S, Chang T, Chang C, Joo M, Ryu CY, Cho K (2005) Adv Funct Mater 15:77–82

    Google Scholar 

  105. Kim DH, Jang Y, Park YD, Cho K (2005) Langmuir 21:3203–3206

    CAS  Google Scholar 

  106. Joshi S, Pingel P, Grigorian S, Panzner T, Pietsch U, Neher D, Forster M, Scherf U (2009) Macromolecules 42:4651–4660

    CAS  Google Scholar 

  107. Brinkmann M, Wittmann J-C (2006) Adv Mater 18:860–863

    CAS  Google Scholar 

  108. De Rosa C, Park C, Thomas EL, Lotz B (2000) Nature 2145:433–437

    Google Scholar 

  109. Crossland EJW, Rahimi K, Reiter G, Steiner U, Ludwigs S (2011) Adv Funct Mater 21:518–524

    CAS  Google Scholar 

  110. Lu GH, Li LG, Yang XN (2007) Adv Mater 19:3594–3598

    CAS  Google Scholar 

  111. Lu G, Li L, Yang X (2008) Macromolecules 41:2062–2070

    CAS  Google Scholar 

  112. Street R, Northrup J, Salleo A (2005) Phys Rev B 71:165202

    Google Scholar 

  113. Wittmann JC, Smith P (1991) Nature 352:414–417

    CAS  Google Scholar 

  114. Heil H, Finnberg T, von Malm N, Schmechel R, von Seggern H (2003) J Appl Phys 93:1636

    CAS  Google Scholar 

  115. Hu Z, Jonas AM (2010) Soft Matter 6:21–28

    CAS  Google Scholar 

  116. Zheng Z, Yim K-H, Saifullah MSM, Welland ME, Friend RH, Kim J-S, Huck WTS (2007) Nano Lett 7:987–992

    CAS  Google Scholar 

  117. Hu Z, Baralia G, Bayot V, Gohy J-F, Jonas AM (2005) Nano Lett 5:1738–1743

    CAS  Google Scholar 

  118. Schmid S, Yim K, Chang M, Zheng Z, Huck W, Friend R, Kim J, Herz L (2008) Phys Rev B 77:115338

    Google Scholar 

  119. Cui D, Li H, Park H, Cheng X (2008) J Vac Sci Technol B Microelectron Nanometer Struct 26:2404

    CAS  Google Scholar 

  120. Hlaing H, Lu X, Hofmann T, Yager KG, Black CT, Ocko BM (2011) ACS Nano 5:7532–7538

    CAS  Google Scholar 

  121. Yang Y, Mielczarek K, Aryal M, Zakhidov A, Hu W (2012) ACS Nano 6:2877–2892

    CAS  Google Scholar 

  122. Coakley KM, Srinivasan BS, Ziebarth JM, Goh C, Liu Y, McGehee MD (2005) Adv Funct Mater 15:1927–1932

    CAS  Google Scholar 

  123. Voicu NE, Ludwigs S, Crossland EJW, Andrew P, Steiner U (2007) Adv Mater 19:757–761

    CAS  Google Scholar 

  124. Khang D-Y, Lee HH (2000) Appl Phys Lett 76:870

    CAS  Google Scholar 

  125. Lai KL, Hon MH, Leu IC (2011) J Micromech Microeng 21:075013

    Google Scholar 

  126. Zhou M, Aryal M, Mielczarek K, Zakhidov A, Hu W (2010) J Vac Sci Technol B Microelectron Nanometer Struct 28:C6M6

    Google Scholar 

  127. He X, Gao F, Tu G, Hasko D, Hüttner S, Steiner U, Greenham NC, Friend RH, Huck WTS (2010) Nano Lett 10:1302–1307

    CAS  Google Scholar 

  128. He X, Gao F, Tu G, Hasko DG, Hüttner S, Greenham NC, Steiner U, Friend RH, Huck WTS (2011) Adv Funct Mater 21:139–146

    CAS  Google Scholar 

  129. Park JY, Hendricks NR, Carter KR (2011) Langmuir 27:11251–11258

    CAS  Google Scholar 

  130. Fischer FSU, Tremel K, Sommer M, Crossland EJC, Ludwigs S (2012) Nanoscale 4:2138–2144

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support is acknowledged from the DFG within IRTG-1642, SPP1355 and the Emmy Noether Programme. We thank F. Fischer, Dr. A. Ruff and M. Goll from our group for support with Figures 2, 13 and 16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Ludwigs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tremel, K., Ludwigs, S. (2014). Morphology of P3HT in Thin Films in Relation to Optical and Electrical Properties. In: Ludwigs, S. (eds) P3HT Revisited – From Molecular Scale to Solar Cell Devices. Advances in Polymer Science, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2014_288

Download citation

Publish with us

Policies and ethics