Advertisement

Changing Polymer Solvation by Electrochemical Means: Basics and Applications

  • Felix A. PlamperEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 266)

Abstract

Developments in the area of electrochemical manipulation of polymers are reviewed, with an emphasis on soft condensed matter (with some weight on aqueous systems). Electrochemical control of polymer solubility is a current issue, with applications in smart colloids, gels, and self-assembled systems. Electrode modification is addressed briefly. Different stimuli-responsive systems are categorized by highlighting the peculiarity of electrochemical switching. The review then categorizes different basic mechanisms for electrochemical switching of polymers: electrochemically induced solvation (switching of redox-active sites, which are strongly bound to the polymer), electrochemically induced complexation (free redox-active entities interact with complexation sites along the polymer), and mixed concepts. Further, features of different metallocene-based polymers are compared and ion-specific effects for the interaction of metallates with polyelectrolytes are addressed.

Keywords

Electrochemistry Polymer Solution properties Stimuli responsiveness 

Notes

Acknowledgment

The author gratefully acknowledges the fruitful discussions with André Laschewsky, Ian Manners, and Mario Tagliazucchi, the proof reading by David J. Skinner, and the financial support of the German Research Foundation (DFG) within SFB 985 (Functional Microgels and Microgel Systems).

References

  1. 1.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113Google Scholar
  2. 2.
    Chen T, Ferris R, Zhang J, Ducker R, Zauscher S (2010) Stimulus-responsive polymer brushes on surfaces: transduction mechanisms and applications. Progr Polym Sci 35:94–112Google Scholar
  3. 3.
    Mittal V (2010) Synthesis of environmentally responsive polymers by atom transfer radical polymerization: generation of reversible hydrophilic and hydrophobic surfaces. Polymers 2:40–56Google Scholar
  4. 4.
    Liu X, Abbott NL (2009) Spatial and temporal control of surfactant systems. J Colloid Interface Sci 339:1–18Google Scholar
  5. 5.
    Brown P, Butts CP, Eastoe J (2013) Stimuli-responsive surfactants. Soft Matter 9:2365–2374Google Scholar
  6. 6.
    Plamper FA, McKee JR, Laukkanen A, Nykänen A, Walther A, Ruokolainen J, Aseyev V, Tenhu H (2009) Miktoarm stars of poly(ethylene oxide) and poly(dimethylaminoethyl methacrylate): manipulation of micellization by temperature and light. Soft Matter 5:1812–1821Google Scholar
  7. 7.
    Nguyen T-T-T, Turp D, Wagner M, Müllen K (2013) Photoswitchable conductivity in a rigidly dendronized salt. Angew Chem Int Ed Engl 52:669–673Google Scholar
  8. 8.
    Aseyev V, Tenhu H, Winnik FM (2011) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89Google Scholar
  9. 9.
    Lallana E, Tirelli N (2013) Oxidation-responsive polymers: which groups to use, how to make them, what to expect from them (biomedical applications). Macromol Chem Phys 214:143–158Google Scholar
  10. 10.
    Gracia R, Mecerreyes D (2013) Polymers with redox properties: materials for batteries, biosensors and more. Polym Chem 4:2206–2214Google Scholar
  11. 11.
    Sui X, Feng X, Hempenius MA, Vancso GJ (2013) Redox active gels: synthesis, structures and applications. J Mater Chem B 1:1658–1672Google Scholar
  12. 12.
    Qi S, Iida H, Liu L, Irle S, Hu W, Yashima E (2013) Electrical switching behavior of a [60]fullerene-based molecular wire encapsulated in a syndiotactic poly(methyl methacrylate) helical cavity. Angew Chem Int Ed Engl 52:1049–1053Google Scholar
  13. 13.
    Perera UGE, Ample F, Kersell H, Zhang Y, Vives G, Echeverria J, Grisolia M, Rapenne G, Joachim C, Hla SW (2013) Controlled clockwise and anticlockwise rotational switching of a molecular motor. Nat Nanotechnol 8:46–51Google Scholar
  14. 14.
    Iordache A, Oltean M, Milet A, Thomas F, Baptiste B, Saint-Aman E, Bucher C (2012) Redox control of rotary motions in ferrocene-based elemental ball bearings. J Am Chem Soc 134:2653–2671Google Scholar
  15. 15.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990Google Scholar
  16. 16.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Progr Polym Sci 32:93–146Google Scholar
  17. 17.
    Chong YK, Le TPT, Moad G, Rizzardo E, Thang SH (1999) A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules 32:2071–2074Google Scholar
  18. 18.
    Plamper FA (2014) Polymerizations under electrochemical control. Colloid Polym Sci 292:777–783Google Scholar
  19. 19.
    Bahrenburg J, Renth F, Temps F, Plamper F, Richtering W (2014) Femtosecond spectroscopy reveals huge differences in the photoisomerisation dynamics between azobenzenes linked to polymers and azobenzenes in solution. Phys Chem Chem Phys 16:11549–11554Google Scholar
  20. 20.
    Plamper FA, Walther A, Müller AHE, Ballauff M (2007) Nanoblossoms: light-induced conformational changes of cationic polyelectrolyte stars in the presence of multivalent counterions. Nano Lett 7:167–171Google Scholar
  21. 21.
    Plamper FA, Schmalz A, Ballauff M, Müller AHE (2007) Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly(N, N-dimethylaminoethyl methacrylate). J Am Chem Soc 129:14538–14539Google Scholar
  22. 22.
    Murray RW (1984) Polymer modification of electrodes. Annu Rev Mater Sci 14:145–169Google Scholar
  23. 23.
    Imisides MD, John R, Riley PJ, Wallace GG (1991) The use of electropolymerization to produce new sensing surfaces: a review emphasizing electrodeposition of heteroaromatic compounds. Electroanalysis 3:879–889Google Scholar
  24. 24.
    Kuwabata S, Yoneyama H (2007) Organic polymer modified electrodes. Encycl Electrochem 11:413–426Google Scholar
  25. 25.
    Podlovchenko BI, Andreev VN (2002) Electrocatalysis on polymer-modified electrodes. Russ Chem Rev 71:837–851Google Scholar
  26. 26.
    Bredas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104:4971–5003Google Scholar
  27. 27.
    Venkataraman D, Russell TP (2012) Polymer electronics: power from polymers. J Polym Sci Part B Polym Phys 50:1013Google Scholar
  28. 28.
    Kola S, Sinha J, Katz HE (2012) Organic transistors in the new decade: toward n-channel, printed, and stabilized devices. J Polym Sci Part B Polym Phys 50:1090–1120Google Scholar
  29. 29.
    Liu F, Gu Y, Jung JW, Jo WH, Russell TP (2012) On the morphology of polymer-based photovoltaics. J Polym Sci Part B Polym Phys 50:1018–1044Google Scholar
  30. 30.
    Mike JF, Lutkenhaus JL (2013) Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Lett 2:839–844Google Scholar
  31. 31.
    Tseng RJ, Huang J, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett 5:1077–1080Google Scholar
  32. 32.
    Senthilkumar ST, Selvan RK, Melo JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394Google Scholar
  33. 33.
    Napoli A, Valentini M, Tirelli N, Müller M, Hubbell JA (2004) Oxidation-responsive polymeric vesicles. Nat Mater 3:183–189Google Scholar
  34. 34.
    Nayak S, Gan D, Serpe MJ, Lyon LA (2005) Hollow thermoresponsive microgels. Small 1:416–421Google Scholar
  35. 35.
    Meng F, Hennink WE, Zhong Z (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198Google Scholar
  36. 36.
    Bang E-K, Lista M, Sforazzini G, Sakai N, Matile S (2012) Poly(disulfide)s. Chem Sci 3:1752–1763Google Scholar
  37. 37.
    Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5:1519–1528Google Scholar
  38. 38.
    Chailapakul O, Fujishima A, Tipthara P, Siriwongchai H (2001) Electroanalysis of glutathione and cephalexin using the boron-doped diamond thin-film electrode applied to flow injection analysis. Anal Sci 17(ICAS2001):i419–i422Google Scholar
  39. 39.
    Xu H, Sun W, Zhu H, Du F, Liu F, Xu Y, He Y (2013) Design of electrochemical detection of thiols based on the cleavage of the disulfide bond coupled with thionine modified gold nanoparticle-assisted amplification. Chem Commun 49:9603–9605Google Scholar
  40. 40.
    Szajewski RP, Whitesides GM (1980) Rate constants and equilibrium constants for thiol-disulfide interchange reactions involving oxidized glutathione. J Am Chem Soc 102:2011–2026Google Scholar
  41. 41.
    Factor A, Heinsohn GE (1971) Polyviologens - a novel class of cationic polyelectrolyte redox polymers. J Polym Sci Part B 9:289–295Google Scholar
  42. 42.
    Simon MS, Moore PT (1975) Novel polyviologens. Photochromic redox polymers with film-forming properties. J Polym Sci Polym Chem Ed 13:1–16Google Scholar
  43. 43.
    Lin F, Cheng SZD, Harris FW (2002) Aromatic poly(pyridinium salt)s. Part 3. Photoreduction in amide solvents. Polymer 43:3421–3430Google Scholar
  44. 44.
    Kamogawa H, Mizuno H, Todo Y, Nanasawa M (1979) Syntheses of polymerizable viologens bearing a terminal vinyl group. J Polym Sci Polym Chem Ed 17:3149–3157Google Scholar
  45. 45.
    Gao L-P, Ding G-J, Li C-L, Wang Y-C (2011) Photochromic and electrochromic performances of new types of donor/acceptor systems based on crosslinked polyviologen film and electron donors. Appl Surf Sci 257:3039–3046Google Scholar
  46. 46.
    Avram E, Lacatus C, Mocanu G (2001) Polymers with pendent functional groups VII. Polysaccharide derivatives containing viologen groups. Eur Polym J 37:1901–1906Google Scholar
  47. 47.
    Wadhwa K, Nuryyeva S, Fahrenbach AC, Elhabiri M, Platas-Iglesias C, Trabolsi A (2013) Intramolecular redox-induced dimerization in a viologen dendrimer. J Mater Chem C 1:2302–2307Google Scholar
  48. 48.
    Zhou C, Tian J, Wang J-L, Zhang D-W, Zhao X, Liu Y, Li Z-T (2013) A three-dimensional cross-linking supramolecular polymer stabilized by the cooperative dimerization of the viologen radical cation. Polym Chem 5:341–345Google Scholar
  49. 49.
    Dalton EF, Murray RW (1991) Viologen(2+/1+) and viologen(1+/0) electron-self-exchange reactions in a redox polymer. J Phys Chem 95:6383–6389Google Scholar
  50. 50.
    Raymo FM, Alvarado RJ (2004) Electron transport in bipyridinium films. Chem Rec 4:204–218Google Scholar
  51. 51.
    Nagarale RK, Bhattacharya B, Jadhav NA, Singh PK (2011) Synthesis and electrochemical study of a functional ionic polymer. Macromol Chem Phys 212:1751–1757Google Scholar
  52. 52.
    Laschewsky A (1995) Molecular concepts, self-organization and properties of polysoaps. Adv Polym Sci 124:1–86Google Scholar
  53. 53.
    Anton P, Heinze J, Laschewsky A (1993) Redox-active monomeric and polymeric surfactants. Langmuir 9:77–85Google Scholar
  54. 54.
    Anton P, Laschewsky A, Ward MD (1995) Solubilization control by redox-switching of polysoaps. Polym Bull 34:331–335Google Scholar
  55. 55.
    Yamaguchi I, Mizoguchi N, Sato M (2009) Self-doped polyphenylenes containing electron-accepting viologen side group. Macromolecules 42:4416–4425Google Scholar
  56. 56.
    Ko HC, Park S-A, Paik W-K, Lee H (2002) Electrochemistry and electrochromism of the polythiophene derivative with viologen pendant. Synth Met 132:15–20Google Scholar
  57. 57.
    Guo D-S, Chen S, Qian H, Zhang H-Q, Liu Y (2010) Electrochemical stimulus-responsive supramolecular polymer based on sulfonatocalixarene and viologen dimers. Chem Commun 46:2620–2622Google Scholar
  58. 58.
    Ma X, Sun R, Li W, Tian H (2011) Novel electrochemical and pH stimulus-responsive supramolecular polymer with disparate pseudorotaxanes as relevant unimers. Polym Chem 2:1068–1070Google Scholar
  59. 59.
    Moon K, Grindstaff J, Sobransingh D, Kaifer AE (2004) Cucurbit[8]uril-mediated redox-controlled self-assembly of viologen-containing dendrimers. Angew Chem Int Ed 43:5496–5499Google Scholar
  60. 60.
    Wang P, Martin BD, Parida S, Rethwisch DG, Dordick JS (1995) Multienzymic synthesis of poly(hydroquinone) for use as a redox polymer. J Am Chem Soc 117:12885–12886Google Scholar
  61. 61.
    Yamamoto T, Kimura T, Shiraishi K (1999) Preparation of pi-conjugated polymers composed of hydroquinone, p-benzoquinone, and p-diacetoxyphenylene units. Optical and redox properties of the polymers. Macromolecules 32:8886–8896Google Scholar
  62. 62.
    Yamamoto T, Kimura T (1998) Preparation of pi-conjugated poly(hydroquinone-2,5-diyl) and poly(p-benzoquinone-2,5-diyl) and their electrochemical behavior. Macromolecules 31:2683–2685Google Scholar
  63. 63.
    Schroeter M, Behl M, Kaiser C, Lendlein A (2013) Synthesis and properties of poly(p-phenylene ethynylene)s with oxidation- and reduction-sensitive moieties. Macromol Chem Phys 214:1215–1224Google Scholar
  64. 64.
    Takada K, Gopalan P, Ober CK, Abruna HD (2001) Synthesis, characterization, and redox reactivity of novel quinone-containing polymer. Chem Mater 13:2928–2932Google Scholar
  65. 65.
    Moulay S, Mehdaoui R (2004) Hydroquinone/catechol-bearing polyacrylic acid: redox polymer. React Funct Polym 61:265–275Google Scholar
  66. 66.
    Gupta SK, Weber WP (2000) Synthesis and electrochemistry of copoly(dimethylanthraquinonylene/3,3,5,5-tetramethyl-4-oxa-3,5-disila-1,7-heptanylenes). Macromolecules 33:108–114Google Scholar
  67. 67.
    Allen NS, Hurley JP, Rahman A, Follows GW, Weddell I (1993) Synthesis, properties and photocuring behavior of poly(2-acrylamido-anthraquinone). Eur Polym J 29:1155–1160Google Scholar
  68. 68.
    Yamamoto T, Shiraishi K (1998) Preparation of new main-chain-type polyquinones and their electrochemical response. Chem Lett 27(9):895–896Google Scholar
  69. 69.
    Hall HK Jr, Padias AB, Williams PA, Gosau J-M, Boone HW, Park D-K (1995) Novel polyaromatic quinone imines. Macromolecules 28:1–8Google Scholar
  70. 70.
    Yamamoto T, Etori H (1995) Poly(anthraquinone)s having a π-conjugation system along the main chain. Synthesis by organometallic polycondensation, redox behavior, and optical properties. Macromolecules 28:3371–3379Google Scholar
  71. 71.
    Kenny T, Aly SM, Brisard G, Fortin D, Harvey PD (2013) The Pt-organometallic version of perigraniline: going blue. Macromol Rapid Commun 34:511–515Google Scholar
  72. 72.
    Oyaizu K, Hatemata A, Choi W, Nishide H (2010) Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J Mater Chem 20:5404–5410Google Scholar
  73. 73.
    Milczarek G, Inganäs O (2012) Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335:1468–1471Google Scholar
  74. 74.
    Algharaibeh Z, Pickup PG (2013) Charge trapping in poly(1-amino-anthraquinone) films. Electrochim Acta 93:87–92Google Scholar
  75. 75.
    Choi W, Endo S, Oyaizu K, Nishide H, Geckeler KE (2013) Robust and efficient charge storage by uniform grafting of TEMPO radical polymer around multi-walled carbon nanotubes. J Mater Chem A 1:2999–3003Google Scholar
  76. 76.
    Anton P, Koeberle P, Laschewsky A (1992) Structure and properties of zwitterionic polysoaps: functionalization by redox-switchable moieties. Progr Colloid Polym Sci 89:56–59Google Scholar
  77. 77.
    Nielsen MB, Lomholt C, Becher J (2000) Tetrathiafulvalenes as building blocks in supramolecular chemistry II. Chem Soc Rev 29:153–164Google Scholar
  78. 78.
    Martin N (2013) Tetrathiafulvalene: the advent of organic metals. Chem Commun 49:7025–7027Google Scholar
  79. 79.
    Inagi S, Naka K, Chujo Y (2007) Functional polymers based on electron-donating TTF and derivatives. J Mater Chem 17:4122–4135Google Scholar
  80. 80.
    Wang C, Chen Q, Sun F, Zhang D, Zhang G, Huang Y, Zhao R, Zhu D (2010) Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel–sol transition by redox reactions and light irradiation. J Am Chem Soc 132:3092–3096Google Scholar
  81. 81.
    Bigot J, Charleux B, Cooke G, Delattre F, Fournier D, Lyskawa J, Sambe L, Stoffelbach F, Woisel P (2010) Tetrathiafulvalene end-functionalized poly(N-isopropylacrylamide): a new class of amphiphilic polymer for the creation of multistimuli responsive micelles. J Am Chem Soc 132:10796–10801Google Scholar
  82. 82.
    Coffen DL, Chambers JQ, Williams DR, Garrett PE, Canfield ND (1971) Tetrathioethylenes. J Am Chem Soc 93:2258–2268Google Scholar
  83. 83.
    Le Van H, Schukat G, Fanghaenel E, Libera L (1979) Tetrathiafulvalenes. VIII. Ethylene-bridged polymeric tetrathiafulvalenes. J Prakt Chem 321:475–487Google Scholar
  84. 84.
    Pittman CU Jr, Liang Y-F, Ueda M (1979) Synthesis of polyesters containing tetrathiafulvalene groups in the backbone. Macromolecules 12:355–359Google Scholar
  85. 85.
    Trinh VQ, Van Hinh L, Schukat G, Fanghaenel E (1989) Tetrathiafulvalenes. XXV. Conjugatively connected polymeric tetrathiafulvalenes (TTF). J Prakt Chem 331:826–834Google Scholar
  86. 86.
    Le Van H, Schukat G, Fanghaenel E (1979) Tetrathiafulvalenes. VII. Arylene-bridged polymeric tetrathiafulvalenes. J Prakt Chem 321:299–307Google Scholar
  87. 87.
    Roth HK, Krinichnyi VI (1993) ESR studies on polymers with particular electronic and magnetic properties. Macromol Chem Macromol Symp 72:143–159Google Scholar
  88. 88.
    Gruber H, Patzsch J, Schrodner M, Roth HK, Fanghaenel E (1991) Electrical properties of poly(tetrathiafulvalenes). Synth Met 42:2331–2334Google Scholar
  89. 89.
    Gruber H, Bartl A, Doege HG, Bauriegel L, Schubert G, Patzsch J (1991) Redox properties of poly(tetrathiafulvalenes). Synth Met 43:3025–3028Google Scholar
  90. 90.
    Frenzel S, Arndt S, Gregorious RM, Müllen K (1995) Synthesis of tetrathiafulvalene polymers. J Mater Chem 5:1529–1537Google Scholar
  91. 91.
    Hertler WR (1976) Charge-transfer polymers containing 7,7,8,8-tetracyanoquinodimethan and tetrathiafulvalene. J Org Chem 41:1412–1416Google Scholar
  92. 92.
    Hou Y, Wan X, Yang M, Ma Y, Huang Y, Chen Y (2008) A novel poly(aryleneethynylene) with tetrathiafulvalene (TTF) side chains: synthesis, self-assembly, and electroactive property. Macromol Rapid Commun 29:719–723Google Scholar
  93. 93.
    Inagi S, Naka K, Iida D, Chujo Y (2006) Synthesis of electron-donating polymer having vinylogous TTF in the main chain. Polym J 38:1146–1151Google Scholar
  94. 94.
    Pittman CU Jr, Narita M, Liang YF (1976) Synthesis of tetrathiafulvalene-containing polyamides. Macromolecules 9:360–361Google Scholar
  95. 95.
    Zhang X-C, Zhang Y, Wang C-Y, Lai G-Q, Zhang L, Shen Y-J (2009) Fluorene oligomer with tetrathiafulvalenes as pendant groups: synthesis, electrochemical and spectroscopic properties. Polym Bull 63:815–827Google Scholar
  96. 96.
    Liu Y, Wang C, Li M, Lai G, Shen Y (2008) Synthesis and spectroscopic and electrochemical properties of TTF-derivatized polycarbazole. Macromolecules 41:2045–2048Google Scholar
  97. 97.
    Kanibolotsky AL, Forgie JC, Gordeyev S, Vilela F, Skabara PJ, Lohr JE, Petersen BM, Jeppesen JO (2008) The introduction of pyrrolotetrathiafulvalene into conjugated architectures: synthesis and electronic properties. Macromol Rapid Commun 29:1226–1230Google Scholar
  98. 98.
    Skabara PJ, Berridge R, McInnes EJL, West DP, Coles SJ, Hursthouse MB, Müllen K (2004) The electroactivity of tetrathiafulvalene vs. polythiophene: synthesis and characterization of a fused thieno-TTF polymer. J Mater Chem 14:1964–1969Google Scholar
  99. 99.
    Huchet L, Akoudad S, Levillain E, Roncali J, Emge A, Baeuerle P (1998) Spectroelectrochemistry of electrogenerated tetrathiafulvalene-derivatized poly(thiophenes): toward a rational design of organic conductors with mixed conduction. J Phys Chem B 102:7776–7781Google Scholar
  100. 100.
    Bryce MR, Chissel AD, Gopal J, Kathirgamanathan P, Parker D (1991) Towards highly oriented polythiophenes incorporating mesogenic or tetrathiafulvalene substituents. Synth Met 39:397–400Google Scholar
  101. 101.
    Yamamoto T, Shimizu T (1997) New π-conjugated polymers containing tetrathiafulvalene as the monomeric unit. J Mater Chem 7:1967–1968Google Scholar
  102. 102.
    Shimizu T, Yamamoto T (1999) Preparation of a new poly(arylacetylene) with a tetrathiafulvalene (TTF) unit in the side chain. Chem Commun 1999(6):515–516Google Scholar
  103. 103.
    Divisia-Blohorn B, Genoud F, Salhi F, Mueller H (2002) Poly(dibenzylidenetetrathiapentalene): a redox-active, linearly extended TTF polymer. J Phys Chem B 106:6646–6651Google Scholar
  104. 104.
    Bigot J, Charleux B, Cooke G, Delattre F, Fournier D, Lyskawa J, Stoffelbach F, Woisel P (2010) Synthesis and properties of tetrathiafulvalene end-functionalized polymers prepared via RAFT polymerization. Macromolecules 43:82–90Google Scholar
  105. 105.
    Sambe L, Belal K, Stoffelbach F, Lyskawa J, Delattre F, Bria M, Sauvage FX, Sliwa M, Humblot V, Charleux B, Cooke G, Woisel P (2014) Multi-stimuli responsive supramolecular diblock copolymers. Polym Chem 5:1031–1036Google Scholar
  106. 106.
    Naka K, Inagi S, Chujo Y (2005) Synthesis of soluble electron-donating polymers containing vinylogous TTF by oxidative dimerization of 1,4-bisdithiafulvenyl-2,5-dialkoxybenzene. J Polym Sci Part A Polym Chem 43:4600–4608Google Scholar
  107. 107.
    Naka K, Uemura T, Chujo Y (2001) Alternating pi-conjugated copolymer of dithiafulvene with 2,2′-bipyridyl units. J Polym Sci Part A Polym Chem 39:4083–4090Google Scholar
  108. 108.
    Wang X, Naka K, Itoh H, Uemura T, Chujo Y (2003) Preparation of oriented ultrathin films via self-assembly based on charge transfer interaction between pi-conjugated poly(dithiafulvene) and acceptor polymer. Macromolecules 36:533–535Google Scholar
  109. 109.
    Lupinski JH, Kopple KD (1964) Electroconductive polymers. Science 146:1038–1039Google Scholar
  110. 110.
    Francis CV, Joo P, Chambers JQ (1987) Electrochemistry of polyurethanes containing tetracyanoquinodimethane units in the polymer backbone. J Phys Chem 91:6315–6321Google Scholar
  111. 111.
    Huang W, Han CD (2012) Synthesis and intramolecular charge-transfer interactions of a donor-acceptor type polymer containing ferrocene and TCNAQ moieties. Macromolecules 45:4425–4428Google Scholar
  112. 112.
    Itoh T, Mitsuda Y, Nakasaka K, Uno T, Kubo M, Yamamoto O (2006) Solid polymer electrolytes based on comblike polymers. J Power Sources 163:252–257Google Scholar
  113. 113.
    Gervaldo M, Liddell PA, Kodis G, Brennan BJ, Johnson CR, Bridgewater JW, Moore AL, Moore TA, Gust D (2010) A photo- and electrochemically-active porphyrin-fullerene dyad electropolymer. Photochem Photobiol Sci 9:890–900Google Scholar
  114. 114.
    Huang H-Y, Lee Y-T, Yeh L-C, Jian J-W, Huang T-C, Liang H-T, Yeh J-M, Chou Y-C (2013) Photoactively electroactive polyamide with azo group in the main chain via oxidative coupling polymerization. Polym Chem 4:343–350Google Scholar
  115. 115.
    Yurchenko O, Freytag D, Zur Borg L, Zentel R, Heinze J, Ludwigs S (2012) Electrochemically induced reversible and irreversible coupling of triarylamines. J Phys Chem B 116:30–39Google Scholar
  116. 116.
    Schroot R, Friebe C, Altuntas E, Crotty S, Jäger M, Schubert US (2013) Nitroxide-mediated polymerization of styrenic triarylamines and chain-end functionalization with a ruthenium complex: toward tailored photoredox-active architectures. Macromolecules 46:2039–2048Google Scholar
  117. 117.
    Mangione MI, Spanevello RA, Rumbero A, Heredia D, Marzari G, Fernandez L, Otero L, Fungo F (2013) Electrogenerated conductive polymers from triphenylamine end-capped dendrimers. Macromolecules 46:4754–4763Google Scholar
  118. 118.
    Kim K, Fang Y-K, Kwon W, Pyo S, Chen W-C, Ree M (2013) Tunable electrical memory characteristics of brush copolymers bearing electron donor and acceptor moieties. J Mater Chem C 1:4858–4868Google Scholar
  119. 119.
    Richter TV, Buehler C, Ludwigs S (2012) Water- and ionic-liquid-soluble branched polythiophenes bearing anionic and cationic moieties. J Am Chem Soc 134:43–46Google Scholar
  120. 120.
    Yang R, Chao D, Liu H, Berda EB, Wang S, Jia X, Wang C (2013) Synthesis, electrochemical properties and inhibition performance of water-soluble self-doped oligoaniline derivative. Electrochim Acta 93:107–113Google Scholar
  121. 121.
    Chen R, Benicewicz BC (2003) Preparation and properties of poly(methacrylamide)s containing oligoaniline side chains. Macromolecules 36:6333–6339Google Scholar
  122. 122.
    Wang S, Berda EB, Lu X, Li X, Wang C, Chao D (2013) Tuning the fluorescent response of a novel electroactive polymer with multiple stimuli. Macromol Rapid Commun 34:1648–1653Google Scholar
  123. 123.
    Henson ZB, Zhang Y, Nguyen T-Q, Seo JH, Bazan GC (2013) Synthesis and properties of two cationic narrow band Gap conjugated polyelectrolytes. J Am Chem Soc 135:4163–4166Google Scholar
  124. 124.
    Janoschka T, Hager MD, Schubert US (2012) Powering up the future: radical polymers for battery applications. Adv Mater 24:6397–6409Google Scholar
  125. 125.
    Hauffman G, Maguin Q, Bourgeois J-P, Vlad A, Gohy J-F (2013) Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes. Macromol Rapid Commun 51:101–108Google Scholar
  126. 126.
    Rostro L, Baradwaj AG, Boudouris BW (2013) Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl Mater Interfaces 5:9896–9901Google Scholar
  127. 127.
    Lu J-J, Ma J-Q, Yi J-M, Shen Z-L, Zhong Y-J, Ma C-A, Li M-C (2014) Electrochemical polymerization of pyrrole containing TEMPO side chain on Pt electrode and its electrochemical activity. Electrochim Acta 130:412–417Google Scholar
  128. 128.
    Son S, Namgung R, Kim J, Singha K, Kim WJ (2012) Bioreducible polymers for gene silencing and delivery. Acc Chem Res 45:1100–1112Google Scholar
  129. 129.
    Fluharty AL (1974) Biochemistry of the thiol group. Thiol Group 2:589–668Google Scholar
  130. 130.
    Grzelczak M, Vermant J, Furst EM, Liz-Marzan LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605Google Scholar
  131. 131.
    Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53:3558–3586Google Scholar
  132. 132.
    Whittell GR, Manners I (2007) Metallopolymers: new multifunctional materials. Adv Mater 19:3439–3468Google Scholar
  133. 133.
    Wang X, McHale R (2010) Metal-containing polymers: building blocks for functional (nano)materials. Macromol Rapid Commun 31:331–350Google Scholar
  134. 134.
    Lehn JM (1988) Supramolecular chemistry - molecules, supermolecules, and molecular functional units (Nobel lecture). Angew Chem 100:91–116Google Scholar
  135. 135.
    Lehn J-M (2002) Supramolecular polymer chemistry-scope and perspectives. Polym Int 51:825–839Google Scholar
  136. 136.
    Hudson RDA (2001) Ferrocene polymers: current architectures, syntheses and utility. J Organomet Chem 637–639:47–69Google Scholar
  137. 137.
    Herfurth C, Voll D, Buller J, Weiss J, Barner-Kowollik C, Laschewsky A (2012) Radical addition fragmentation chain transfer (RAFT) polymerization of ferrocenyl (Meth)acrylates. J Polym Sci Part A Polym Chem 50:108–118Google Scholar
  138. 138.
    Tonhauser C, Mazurowski M, Rehahn M, Gallei M, Frey H (2012) Water-soluble poly(vinylferrocene)-b-poly(ethylene oxide) diblock and miktoarm star polymers. Macromolecules 45:3409–3418Google Scholar
  139. 139.
    Whittell GR, Hager MD, Schubert US, Manners I (2011) Functional soft materials from metallopolymers and metallosupramolecular polymers. Nat Mater 10:176–188Google Scholar
  140. 140.
    Hardy CG, Ren L, Zhang J, Tang C (2012) Side-chain metallocene-containing polymers by living and controlled polymerizations. Isr J Chem 52:230–245Google Scholar
  141. 141.
    Abd-El-Aziz AS, Agatemor C, Etkin N (2014) Sandwich complex-containing macromolecules: property tunability through versatile synthesis. Macromol Rapid Commun 35:513–559Google Scholar
  142. 142.
    Gallei M (2014) The renaissance of side-chain ferrocene-containing polymers: scope and limitations of vinylferrocene and ferrocenyl methacrylates. Macromol Chem Phys 215:699–704Google Scholar
  143. 143.
    Gul A, Akhter Z, Siddiq M, Sarfraz S, Mirza B (2013) Ferrocene-based aliphatic and aromatic poly(azomethine)esters: synthesis, physicochemical studies, and biological evaluation. Macromolecules 46:2800–2807Google Scholar
  144. 144.
    Manners I (1999) Poly(ferrocenylsilanes): novel organometallic plastics. Chem Commun 1999(10):857–865Google Scholar
  145. 145.
    Nguyen MT, Diaz AF, Dement’ev VV, Pannell KH (1993) High molecular weight poly(ferrocenediyl-silanes): synthesis and electrochemistry of [−(C5H4)Fe(C5H4)SiR2-]n, R = Me, Et, n-Bu, n-Hex. Chem Mater 5:1389–1394Google Scholar
  146. 146.
    Rulkens R, Lough AJ, Manners I, Lovelace SR, Grant C, Geiger WE (1996) Linear oligo(ferrocenyldimethylsilanes) with between two and nine ferrocene units: electrochemical and structural models for poly(ferrocenylsilane) high polymers. J Am Chem Soc 118:12683–12695Google Scholar
  147. 147.
    Nelson JM, Nguyen P, Petersen R, Rengel H, Macdonald PM, Lough AJ, Manners I, Raju NP, Greedan JE, Barlow S, O’Hare D (1997) Thermal ring-opening polymerization of hydrocarbon-bridged [2]ferrocenophanes: synthesis and properties of poly(ferrocenylethylene)s and their charge-transfer polymer salts with tetracyanoethylene. Chem Eur J 3:573–584Google Scholar
  148. 148.
    Zou S, Hempenius MA, Schönherr H, Vancso GJ (2006) Force spectroscopy of individual stimulus-responsive poly(ferrocenyldimethylsilane) chains: towards a redox-driven macromolecular motor. Macromol Rapid Commun 27:103–108Google Scholar
  149. 149.
    Zou S, Korczagin I, Hempenius MA, Schönherr H, Vancso GJ (2006) Single molecule force spectroscopy of smart poly(ferrocenylsilane) macromolecules: towards highly controlled redox-driven single chain motors. Polymer 47:2483–2492Google Scholar
  150. 150.
    Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA (2007) Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317:644–647Google Scholar
  151. 151.
    Gaedt T, Ieong NS, Cambridge G, Winnik MA, Manners I (2009) Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat Mater 8:144–150Google Scholar
  152. 152.
    Gilroy JB, Gaedt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM, Winnik MA, Manners I (2010) Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem 2:566–570Google Scholar
  153. 153.
    Flanagan JB, Margel S, Bard AJ, Anson FC (1978) Electron transfer to and from molecules containing multiple, noninteracting redox centers. Electrochemical oxidation of poly(vinylferrocene). J Am Chem Soc 100:4248–4253Google Scholar
  154. 154.
    Smith TW, Kuder JE, Wychick D (1976) Voltammetric behavior of poly(vinylferrocene). J Polym Sci Polym Chem Ed 14:2433–2448Google Scholar
  155. 155.
    Qi H, Chang J, Abdelwahed SH, Thakur K, Rathore R, Bard AJ (2012) Electrochemistry and electrogenerated chemiluminescence of π-stacked poly(fluorenemethylene) oligomers. Multiple, interacting electron transfers. J Am Chem Soc 134:16265–16274Google Scholar
  156. 156.
    Saji T, Pasch NF, Webber SE, Bard AJ (1978) Electrochemical behavior of polymers in aprotic media. 1. Polyvinylnaphthalene and polyvinylanthracene. J Phys Chem 82:1101–1105Google Scholar
  157. 157.
    Pendin AA, Leont’evskaya PK, Suverneva OL, Rozenkova IV, Nikol’skii BP (1987) Oxidative decomposition of ferrocenes (ferricenium cations) under the action of molecular oxygen. Dokl Akad Nauk SSSR 293:1411–1415Google Scholar
  158. 158.
    Zotti G, Schiavon G, Zecchin S, Favretto D (1998) Dioxygen-decomposition of ferrocenium molecules in acetonitrile: the nature of the electrode-fouling films during ferrocene electrochemistry. J Electroanal Chem 456:217–221Google Scholar
  159. 159.
    Tonhauser C, Alkan A, Schömer M, Dingels C, Ritz S, Mailänder V, Frey H, Wurm FR (2013) Ferrocenyl glycidyl ether: a versatile ferrocene monomer for copolymerization with ethylene oxide to water-soluble, thermoresponsive copolymers. Macromolecules 46:647–655Google Scholar
  160. 160.
    Bruna S, Gonzalez-Vadillo AM, Nieto D, Pastor CJ, Cuadrado I (2012) Redox-active macrocyclic and linear oligo-carbosiloxanes prepared via hydrosilylation from 1,3-divinyl-1,3-dimethyl-1,3-diferrocenyldisiloxane. Macromolecules 45:781–793Google Scholar
  161. 161.
    Mazurowski M, Gallei M, Li J, Didzoleit H, Stühn B, Rehahn M (2012) Redox-responsive polymer brushes grafted from polystyrene nanoparticles by means of surface initiated atom transfer radical polymerization. Macromolecules 45:8970–8981Google Scholar
  162. 162.
    Hardy CG, Ren L, Tamboue TC, Tang C (2011) Side-chain ferrocene-containing (meth)acrylate polymers: synthesis and properties. J Polym Sci Part A Polym Chem 49:1409–1420Google Scholar
  163. 163.
    Droulia M, Anastasaki A, Rokotas A, Pitsikalis M, Paraskevopoulou P (2011) Statistical copolymers of methyl methacrylate and 2-methacryloyloxyethyl ferrocenecarboxylate: monomer reactivity ratios, thermal and electrochemical properties. J Polym Sci Part A Polym Chem 49:3080–3089Google Scholar
  164. 164.
    Parab K, Jakle F (2009) Synthesis, characterization, and anion binding of redox-active triarylborane polymers. Macromolecules 42:4002–4007Google Scholar
  165. 165.
    Zamora M, Bruna S, Alonso B, Cuadrado I (2011) Polysiloxanes bearing pendant redox-active dendritic wedges containing ferrocenyl and (η6-aryl)tricarbonylchromium moieties. Macromolecules 44:7994–8007Google Scholar
  166. 166.
    Wang X-S, Winnik MA, Manners I (2004) Swellable, redox-active shell-crosslinked organometallic nanotubes. Angew Chem Int Ed 43:3703–3707Google Scholar
  167. 167.
    Garcia Armada MP, Losada J, Lopez-Villanueva FJ, Frey H, Alonso B, Casado CM (2008) Electrochemical and bioelectrocatalytical properties of novel block-copolymers containing interacting ferrocenyl units. J Organomet Chem 693:2803–2811Google Scholar
  168. 168.
    Chen T, Wang L, Jiang G, Wang J, Dong X, Wang X, Zhou J, Wang C, Wang W (2005) Electrochemical behavior of poly(ferrocenyldimethylsilane-b-dimethylsiloxane) films. J Phys Chem B 109:4624–4630Google Scholar
  169. 169.
    Mao X, Rutledge GC, Hatton TA (2013) Polyvinylferrocene for noncovalent dispersion and redox-controlled precipitation of carbon nanotubes in nonaqueous media. Langmuir 29:9626–9634Google Scholar
  170. 170.
    Ritter H, Mondrzik BE, Rehahn M, Gallei M (2010) Free radical homopolymerization of a vinylferrocene/cyclodextrin complex in water. Beilstein J Org Chem 6:60Google Scholar
  171. 171.
    Zuo F, Luo C, Ding X, Zheng Z, Cheng X, Peng Y (2008) Redox-responsive inclusion complexation between β-cyclodextrin and ferrocene-functionalized poly(N-isopropylacrylamide) and its effect on the solution properties of this polymer. Supramol Chem 20:559–564Google Scholar
  172. 172.
    Salmon A, Jutzi P (2001) Water soluble ferrocenyl and polyferrocenyl compounds: synthesis and electrochemistry. J Organomet Chem 637–639:595–608Google Scholar
  173. 173.
    Xiao A, Li Z, Zhou S, Zheng Q, Shen Y, Chen Z, Zheng W, Hao A (2012) Synthesis, electrochemical behaviors and anion recognition of a novel star-[polystyrene-b-poly(ferrocenyloxy ethyl acrylate)]6 with hexafunctional cyclotriphosphazene core. Polym Plast Technol Eng 51:521–525Google Scholar
  174. 174.
    Martos-Maldonado MC, Casas-Solvas JM, Quesada-Soriano I, Garcia-Fuentes L, Vargas-Berenguel A (2013) Poly(amido amine)-based mannose-glycodendrimers as multielectron redox probes for improving lectin sensing. Langmuir 29:1318–1326Google Scholar
  175. 175.
    Elbert J, Mersini J, Vilbrandt N, Lederle C, Kraska M, Gallei M, Stuehn B, Plenio H, Rehahn M (2013) Reversible activity modulation of surface-attached grubbs second generation type catalysts using redox-responsive polymers. Macromolecules 46:4255–4267Google Scholar
  176. 176.
    Kobayashi N, Anson FC (1997) Effects of adsorption and association with multiply charged counterions on the electrochemical responses of an electroactive polyelectrolyte. J Electroanal Chem 421:99–104Google Scholar
  177. 177.
    Hatozaki O, Anson FC (1997) Intramolecular electron transfer within a water-soluble, ferrocene-labeled polyacrylate. J Electroanal Chem 420:195–199Google Scholar
  178. 178.
    Zhou N, Zhang Z, Zhu J, Cheng Z, Zhu X (2009) RAFT polymerization of styrene mediated by ferrocenyl-containing RAFT agent and properties of the polymer derived from ferrocene. Macromolecules 42:3898–3905Google Scholar
  179. 179.
    Ren L, Zhang J, Hardy CG, Doxie D, Fleming B, Tang C (2012) Preparation of cobaltocenium-labeled polymers by atom transfer radical polymerization. Macromolecules 45:2267–2275Google Scholar
  180. 180.
    Ren L, Hardy CG, Tang S, Doxie DB, Hamidi N, Tang C (2010) Preparation of side-chain 18-e cobaltocenium-containing acrylate monomers and polymers. Macromolecules 43:9304–9310Google Scholar
  181. 181.
    Gilroy JB, Patra SK, Mitchels JM, Winnik MA, Manners I (2011) Main-chain heterobimetallic block copolymers: synthesis and self-assembly of polyferrocenylsilane-b-poly(cobaltoceniumethylene). Angew Chem Int Ed 50:5851–5855Google Scholar
  182. 182.
    Zhang J, Ren L, Hardy CG, Tang C (2012) Cobaltocenium-containing methacrylate homopolymers, block copolymers, and heterobimetallic polymers via RAFT polymerization. Macromolecules 45:6857–6863Google Scholar
  183. 183.
    Mayer UFJ, Gilroy JB, O’Hare D, Manners I (2009) Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes. J Am Chem Soc 131:10382–10383Google Scholar
  184. 184.
    Feng C, Shen Z, Yang D, Li Y, Hu J, Lu G, Huang X (2009) Synthesis of well-defined amphiphilic graft copolymer bearing poly(2-acryloyloxyethyl ferrocenecarboxylate) side chains via successive SET-LRP and ATRP. J Polym Sci Part A Polym Chem 47:4346–4357Google Scholar
  185. 185.
    Zhai S, Shang J, Yang D, Wang S, Hu J, Lu G, Huang X (2012) Successive SET-LRP and ATRP synthesis of ferrocene-based PPEGMEA-g-PAEFC well-defined amphiphilic graft copolymer. J Polym Sci Part A Polym Chem 50:811–820Google Scholar
  186. 186.
    Xiao Z-P, Cai Z-H, Liang H, Lu J (2010) Amphiphilic block copolymers with aldehyde and ferrocene-functionalized hydrophobic block and their redox-responsive micelles. J Mater Chem 20:8375–8381Google Scholar
  187. 187.
    Kutnyánszky E, Hempenius MA, Vancso JG (2014) Polymer bottlebrushes with a redox responsive backbone feel the heat: synthesis and characterization of dual responsive poly(ferrocenylsilane)s with PNIPAM side chains. Polym Chem 5:771–783Google Scholar
  188. 188.
    de Denus CR, Baker P, Toner J, McKevitt S, Todd EK, Abd-El-Aziz AS (2003) Electrochemical investigations of oligomers and polymers containing ruthenium- and iron-arene complexes. Macromol Symp 196:113–123Google Scholar
  189. 189.
    Abd-El-Aziz AS (2002) Monomers, oligomers and polymers containing arenes with pendent transition metal moieties. Coord Chem Rev 233–234:177–191Google Scholar
  190. 190.
    Hoogenboom R, Schubert US (2006) The use of (metallo)supramolecular initiators for living/controlled polymerization techniques. Chem Soc Rev 35:622–629Google Scholar
  191. 191.
    Schubert US, Eschbaumer C (2002) Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers. Angew Chem Int Ed 41:2892–2926Google Scholar
  192. 192.
    Lehn J-M (2010) Dynamers: dynamic molecular and supramolecular polymers. Aust J Chem 63:611–623Google Scholar
  193. 193.
    Happ B, Winter A, Hager MD, Schubert US (2012) Photogenerated avenues in macromolecules containing Re(I), Ru(II), Os(II), and Ir(III) metal complexes of pyridine-based ligands. Chem Soc Rev 41:2222–2255Google Scholar
  194. 194.
    Magdesieva TV, Nikitin OM, Yakimansky AV, Goikhman MY, Podeshvo IV (2011) New heterobimetallic Cu(I)-Pd(II)-containing polymer complexes: electrochemical synthesis and application in catalysis. Electrochim Acta 56:3666–3672Google Scholar
  195. 195.
    Ueki T, Shibayama M, Yoshida R (2013) Self-oscillating micelles. Chem Commun 49:6947–6949Google Scholar
  196. 196.
    Yoshida R, Takahashi T, Yamaguchi T, Ichijo H (1996) Self-oscillating gel. J Am Chem Soc 118:5134–5135Google Scholar
  197. 197.
    Breul AM, Schäfer J, Friebe C, Schlütter F, Paulus RM, Festag G, Hager MD, Winter A, Dietzek B, Popp J, Schubert US (2012) Synthesis and characterization of poly(methyl methacrylate) backbone polymers containing side-chain pendant ruthenium(II) bis-terpyridine complexes with an elongated conjugated system. Macromol Chem Phys 213:808–819Google Scholar
  198. 198.
    Brennan JL, Keyes TE, Forster RJ (2011) Electrochemical properties of ruthenium metallopolymer: monolayer-protected gold cluster nanocomposites. J Electroanal Chem 662:30–35Google Scholar
  199. 199.
    Leech D, Forster RJ, Smyth MR, Vos JG (1991) Effect of composition of polymer backbone on spectroscopic and electrochemical properties of ruthenium(II) bis(2,2′-bipyridyl)-containing 4-vinylpyridine/styrene copolymers. J Mater Chem 1:629–635Google Scholar
  200. 200.
    Wang L, Puodziukynaite E, Vary RP, Grumstrup EM, Walczak RM, Zolotarskaya OY, Schanze KS, Reynolds JR, Papanikolas JM (2012) Competition between ultrafast energy flow and electron transfer in a Ru(II)-loaded polyfluorene light-harvesting polymer. J Phys Chem Lett 3:2453–2457Google Scholar
  201. 201.
    Trouillet L, De Nicola A, Guillerez S (2000) Synthesis and characterization of a new soluble, structurally well-defined conjugated polymer alternating regioregularly alkylated thiophene oligomer and 2,2′-bipyridine units: metal-free form and Ru(II) complex. Chem Mater 12:1611–1621Google Scholar
  202. 202.
    Manca P, Scanu R, Zucca A, Sanna G, Spano N, Pilo MI (2013) Electropolymerization of a Ru(II)-terpyridine complex ethynyl-terthiophene functionalized originating different metallopolymers. Polymer 54:3504–3509Google Scholar
  203. 203.
    Martre A, Laguitton-Pasquier H, Deronzier A, Harriman A (2003) Preparation and properties of a soluble polypyrrole-polypyridyl-ruthenium(II)-viologen dyad. J Phys Chem B 107:2684–2692Google Scholar
  204. 204.
    Qin Y, Cui C, Jäkle F (2008) Tris(1-pyrazolyl)borate (scorpionate) functionalized polymers as scaffolds for metallopolymers. Macromolecules 41:2972–2974Google Scholar
  205. 205.
    Lin W, Zheng Y, Zhang J, Wan X (2011) Fabrication of core-shell nanostructures from near-infrared electrochromic amphiphilic diblock copolymers containing pendant dinuclear ruthenium group through assembly and their optical, electrochemical, and electrooptical properties. Macromolecules 44:5146–5154Google Scholar
  206. 206.
    Zhou G, He J, Harruna II, Geckeler KE (2008) Fullerene and ruthenium dual end-functionalized thermosensitive polymers: synthesis, characterization, electrochemical properties, and self-assembly. J Mater Chem 18:5492–5501Google Scholar
  207. 207.
    Marin V, Holder E, Hoogenboom R, Schubert US (2004) Mixed iridium(III) and ruthenium(II) polypyridyl complexes containing poly(ε-caprolactone)-bipyridine macroligands. J Polym Sci Part A Polym Chem 42:4153–4160Google Scholar
  208. 208.
    Takada K, Storrier GD, Goldsmith JI, Abruna HD (2001) Electrochemical and adsorption properties of PAMAM dendrimers surface-functionalized with polypyridyl cobalt complexes. J Phys Chem B 105:2404–2411Google Scholar
  209. 209.
    Farah AA, Pietro WJ (2004) Telechelic poly(ε-caprolactones) with tethered mixed ligand ruthenium(II) chromophores. Can J Chem 82:595–607Google Scholar
  210. 210.
    Gasnier A, Royal G, Terech P (2009) Metallo-supramolecular gels based on a multitopic cyclam bis-terpyridine platform. Langmuir 25:8751–8762Google Scholar
  211. 211.
    Gasnier A, Barbe J-M, Bucher C, Duboc C, Moutet J-C, Saint-Aman E, Terech P, Royal G (2010) Soluble heterometallic coordination polymers based on a bis-terpyridine-functionalized dioxocyclam ligand. Inorg Chem 49:2592–2599Google Scholar
  212. 212.
    Gasnier A, Barbe J-M, Bucher C, Denat F, Moutet J-C, Saint-Aman E, Terech P, Royal G (2008) Acid–base-driven interconversion between a mononuclear complex and supramolecular coordination polymers in a terpyridine-functionalized dioxocyclam ligand. Inorg Chem 47:1862–1864Google Scholar
  213. 213.
    Gasnier A, Bucher C, Moutet J-C, Royal G, Saint-Aman E, Terech P (2011) Redox-responsive metallo-supramolecular polymers and gels containing bis-terpyridine appended cyclam ligand. Macromol Symp 304:87–92Google Scholar
  214. 214.
    Sato T, Higuchi M (2013) An alternately introduced heterometallo-supramolecular polymer: synthesis and solid-state emission switching by electrochemical redox. Chem Commun 49:5256–5258Google Scholar
  215. 215.
    Barron JA, Glazier S, Bernhard S, Takada K, Houston PL, Abruna HD (2003) Photophysics and redox behavior of chiral transition metal polymers. Inorg Chem 42:1448–1455Google Scholar
  216. 216.
    Hjelm J, Constable EC, Figgemeier E, Hagfeldt A, Handel R, Housecroft CE, Mukhtar E, Schofield E (2002) A rod-like polymer containing {Ru(terpy)2} units prepared by electrochemical coupling of pendant thienyl moieties. Chem Commun 2002(3):284–285Google Scholar
  217. 217.
    Newkome GR, He E, Godinez LA, Baker GR (2000) Electroactive metallomacromolecules via tetrabis(2,2′:6′,2″-terpyridine)ruthenium(II) complexes: dendritic nanonetworks toward constitutional isomers and neutral species without external counterions. J Am Chem Soc 122:9993–10006Google Scholar
  218. 218.
    Storrier GD, Takada K, Abruna HD (1999) Synthesis, characterization, electrochemistry, and EQCM studies of polyamidoamine dendrimers surface-functionalized with polypyridyl metal complexes. Langmuir 15:872–884Google Scholar
  219. 219.
    Farah AA, Pietro WJ (1999) Synthesis and characterization of partially crosslinked poly(N-vinylcarbazole-vinyl alcohol) copolymers with polypyridyl Ru(II) luminophores. Potential materials for electroluminescence. Polym Bull 43:135–142Google Scholar
  220. 220.
    Li B, Fu Y, Han Y, Bo Z (2006) Synthesis and optical properties of dendronized porphyrin polymers. Macromol Rapid Commun 27:1355–1361Google Scholar
  221. 221.
    Hijazi I, Jousselme B, Jegou P, Filoramo A, Campidelli S (2012) Formation of linear and hyperbranched porphyrin polymers on carbon nanotubes via a CuAAC “grafting from” approach. J Mater Chem 22:20936–20942Google Scholar
  222. 222.
    Schappacher M, Deffieux A (2011) Reversible switching between linear and ring polystyrenes bearing porphyrin end groups. J Am Chem Soc 133:1630–1633Google Scholar
  223. 223.
    Schappacher M, Deffieux A (2011) Reversible switching between linear and ring poly(EO)s bearing iron tetraphenylporphyrin ends triggered by solvent, pH, or redox stimuli. Macromolecules 44:4503–4510Google Scholar
  224. 224.
    Kaya I, Aydin A (2009) Synthesis and characterization of chelate polymers containing etheric diphenyl ring in the backbone: thermal, optical, electrochemical, and morphological properties. Polym Adv Technol 22:951–961Google Scholar
  225. 225.
    de Hatten X, Asil D, Friend RH, Nitschke JR (2012) Aqueous self-assembly of an electroluminescent double-helical metallopolymer. J Am Chem Soc 134:19170–19178Google Scholar
  226. 226.
    Liang G, Wu Q, Qin W, Bao S, Zhu F, Wu Q (2013) Poly(benzyl-l-glutamate) decorated with cyanoferrate complex: synthesis, characterization and electrochemical properties. Polym Chem 4:3821–3828Google Scholar
  227. 227.
    Bao S, Ni H, Wu Q, Gao H, Liang G, Zhu F, Wu Q (2014) Waterborne redox-active helix-coil-helix triblock metallopolymers: synthesis, disassembly and electrochemical behaviors. Polymer 55:2205–2212Google Scholar
  228. 228.
    Kulesza PJ, Dickinson EV, Williams ME, Hendrickson SM, Malik MA, Miecznikowski K, Murray RW (2001) Electron self-exchange dynamics of hexacyanoferrate in redox polyether hybrid molten salts containing polyether-tailed counterions. J Phys Chem B 105:5833–5838Google Scholar
  229. 229.
    Schanze KS, Shelton AH (2009) Functional polyelectrolytes. Langmuir 25:13698–13702Google Scholar
  230. 230.
    Ohyanagi M, Anson FC (1989) Electrochemical behavior of electroactive counterions in solutions of polyelectrolytes. J Phys Chem 93:8377–8382Google Scholar
  231. 231.
    Ohyanagi M, Anson FC (1989) Electrodeposition of polyelectrolyte-metal complexes. J Electroanal Chem Interfacial Electrochem 258:469–477Google Scholar
  232. 232.
    Kobayashi J, Anson FC (1991) Association of electroactive counterions with polyelectrolytes. 2. Comparison of electrostatic and coordinative bonding to a mixed polycation-polypyridine. J Phys Chem 95:2595–2601Google Scholar
  233. 233.
    Liang J, Elliot MC, Cammarata V (2009) Polyallylammonium ferrocyanide films for trace water detection in halogenated solvents. Electroanalysis 21:2542–2548Google Scholar
  234. 234.
    Spruijt E, Choi E-Y, Huck WTS (2008) Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions. Langmuir 24:11253–11260Google Scholar
  235. 235.
    Plamper FA, Murtomäki L, Walther A, Kontturi K, Tenhu H (2009) e-Micellization: electrochemical, reversible switching of polymer aggregation. Macromolecules 42:7254–7257Google Scholar
  236. 236.
    Noftle RE, Pletcher D (1990) An interpretation of the formal potential for the ferricyanide/ferrocyanide couple as a function of solvent composition. J Electroanal Chem Interfacial Electrochem 293:273–277Google Scholar
  237. 237.
    Grieshaber D, Vörös J, Zambelli T, Ball V, Schaaf P, Voegel J-C, Boulmedais F (2008) Swelling and contraction of ferrocyanide-containing polyelectrolyte multilayers upon application of an electric potential. Langmuir 24:13668–13676Google Scholar
  238. 238.
    Ball V, Hübsch E, Schweiss R, Voegel J-C, Schaaf P, Knoll W (2005) Interactions between multivalent ions and exponentially growing multilayers: dissolution and exchange processes. Langmuir 21:8526–8531Google Scholar
  239. 239.
    Hübsch E, Fleith G, Fatisson J, Labbe P, Voegel JC, Schaaf P, Ball V (2005) Multivalent ion/polyelectrolyte exchange processes in exponentially growing multilayers. Langmuir 21:3664–3669Google Scholar
  240. 240.
    Peng F, Li G, Liu X, Wu S, Tong Z (2008) Redox-responsive gel–sol/sol–gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. J Am Chem Soc 130:16166–16167Google Scholar
  241. 241.
    He S, Ren B, Liu X, Tong Z (2010) Reversible electrogelation in poly(acrylic acid) aqueous solutions triggered by redox reactions of counterions. Macromol Chem Phys 211:2497–2502Google Scholar
  242. 242.
    Ciszkowska M, Zeng L, Stejskal EO, Osteryoung JG (1995) Transport of thallium(I) counterion in polyelectrolyte solution determined by voltammetry with microelectrodes and by pulsed-field-gradient, spin-echo NMR. J Phys Chem 99:11764–11769Google Scholar
  243. 243.
    Hamlen RP, Kent CE, Sharer SN (1965) Electrolytically activated contractile polymer. Nature 206:1149–1150Google Scholar
  244. 244.
    Graf N, Albertini F, Petit T, Reimhult E, Vörös J, Zambelli T (2011) Electrochemically stimulated release from liposomes embedded in a polyelectrolyte multilayer. Adv Funct Mater 21:1666–1672Google Scholar
  245. 245.
    Doi M, Matsumoto M, Hirose Y (1992) Deformation of ionic polymer gels by electric fields. Macromolecules 25:5504–5511Google Scholar
  246. 246.
    Dunderdale GJ, Fairclough JPA (2013) Coupling pH-responsive polymer brushes to electricity: switching thickness and creating waves of swelling or collapse. Langmuir 29:3628–3635Google Scholar
  247. 247.
    Cho C, Jeon J-W, Lutkenhaus J, Zacharia NS (2013) Electric field induced morphological transitions in polyelectrolyte multilayers. ACS Appl Mater Interfaces 5:4930–4936Google Scholar
  248. 248.
    Yang L, Gomez-Casado A, Young JF, Nguyen HD, Cabanas-Danes J, Huskens J, Brunsveld L, Jonkheijm P (2012) Reversible and oriented immobilization of ferrocene-modified proteins. J Am Chem Soc 134:19199–19206Google Scholar
  249. 249.
    Nijhuis CA, Huskens J, Reinhoudt DN (2004) Binding control and stoichiometry of ferrocenyl dendrimers at a molecular printboard. J Am Chem Soc 126:12266–12267Google Scholar
  250. 250.
    Nijhuis CA, Sinha JK, Wittstock G, Huskens J, Ravoo BJ, Reinhoudt DN (2006) Controlling the supramolecular assembly of redox-active dendrimers at molecular printboards by scanning electrochemical microscopy. Langmuir 22:9770–9775Google Scholar
  251. 251.
    Olson MA, Braunschweig AB, Fang L, Ikeda T, Klajn R, Trabolsi A, Wesson PJ, Benitez D, Mirkin CA, Grzybowski BA, Stoddart JF (2009) A bistable poly[2]catenane forms nanosuperstructures. Angew Chem Int Ed 48:1792–1797Google Scholar
  252. 252.
    Yu Y, Heidel B, Parapugna TL, Wenderhold-Reeb S, Song B, Schoenherr H, Grininger M, Noell G (2013) The flavoprotein dodecin as a redox probe for electron transfer through DNA. Angew Chem Int Ed 52:4950–4953Google Scholar
  253. 253.
    Grininger M, Nöll G, Trawöger S, Sinner E-K, Oesterhelt D (2008) Electrochemical switching of the flavoprotein dodecin at gold surfaces modified by flavin-DNA hybrid linkers. Biointerphases 3:51–58Google Scholar
  254. 254.
    Tomatsu I, Hashidzume A, Harada A (2006) Redox-responsive hydrogel system using the molecular recognition of b-cyclodextrin. Macromol Rapid Commun 27:238–241Google Scholar
  255. 255.
    Zhu L, Shangguan Y, Sun Y, Ji J, Zheng Q (2010) Rheological properties of redox-responsive, associative ferrocene-modified branched poly(ethylene imine) and its modulation by beta-cyclodextrin and hydrogen peroxide. Soft Matter 6:5541–5546Google Scholar
  256. 256.
    Zhang W, Chen M, Diao G (2011) Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with beta-cyclodextrin polymer. Electrochim Acta 56:5129–5136Google Scholar
  257. 257.
    Knudsen B, Kergl BE, Paulsen H, Durnev V, Ritter H (2013) Noncovalent linkage of telechelic oligo(dimethylsiloxanes) via end group attachment of host-cyclodextrins and guest-adamantanes or guest-ferrocenes. J Polym Sci Part A Polym Chem 51:2472–2482Google Scholar
  258. 258.
    Yan Q, Feng A, Zhang H, Yin Y, Yuan J (2013) Redox-switchable supramolecular polymers for responsive self-healing nanofibers in water. Polym Chem 4:1216–1220Google Scholar
  259. 259.
    Dong R, Su Y, Yu S, Zhou Y, Lu Y, Zhu X (2013) A redox-responsive cationic supramolecular polymer constructed from small molecules as a promising gene vector. Chem Commun 49:9845–9847Google Scholar
  260. 260.
    Jorgensen T, Hansen TK, Becher J (1994) Tetrathiafulvalenes as building-blocks in supramolecular chemistry. Chem Soc Rev 23:41–51Google Scholar
  261. 261.
    Bryce MR (1985) Tetrathiafulvalenes (TTF) and their selenium and tellurium analogs (TSF and TTeF). Electron donors for organic metals. Aldrichimica Acta 18:73–77Google Scholar
  262. 262.
    Pudelski JK, Foucher DA, Honeyman CH, Macdonald PM, Manners I, Barlow S, O’Hare D (1996) Synthesis, characterization, and properties of high molecular weight poly(methylated ferrocenylsilanes) and their charge transfer polymer salts with tetracyanoethylene. Macromolecules 29:1894–1903Google Scholar
  263. 263.
    Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 10:197–209Google Scholar
  264. 264.
    Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes SP, Battaglia G (2012) Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chem Int Ed 51:11122–11125Google Scholar
  265. 265.
    Lin C, Zhu W, Yang H, An Q, Tao C-A, Li W, Cui J, Li Z, Li G (2011) Facile fabrication of stimuli-responsive polymer capsules with gated pores and tunable shell thickness and composite. Angew Chem Int Ed 50:4947–4951Google Scholar
  266. 266.
    Schwarz G, Maisch S, Ullrich S, Wagenhofer J, Kurth DG (2013) Electrorheological fluids based on metallo-supramolecular polyelectrolyte-silicate composites. ACS Appl Mater Interfaces 5:4031–4034Google Scholar
  267. 267.
    Zhang WL, Choi HJ, Seo Y (2013) Facile fabrication of chemically grafted graphene oxide-poly(glycidyl methacrylate) composite microspheres and their electrorheology. Macromol Chem Phys 214:1415–1422Google Scholar
  268. 268.
    Rider DA, Winnik MA, Manners I (2007) Redox-controlled micellization of organometallic block copolymers. Chem Commun 2007(43):4483–4485Google Scholar
  269. 269.
    Eloi J-C, Rider DA, Cambridge G, Whittell GR, Winnik MA, Manners I (2011) Stimulus-responsive self-assembly: reversible, redox-controlled micellization of polyferrocenylsilane diblock copolymers. J Am Chem Soc 133:8903–8913Google Scholar
  270. 270.
    Janczewski D, Song J, Csanyi E, Kiss L, Blazso P, Katona RL, Deli MA, Gros G, Xu J, Vancso GJ (2012) Organometallic polymeric carriers for redox triggered release of molecular payloads. J Mater Chem 22:6429–6435Google Scholar
  271. 271.
    Schmidt BVKJ, Elbert J, Barner-Kowollik C, Gallei M (2014) Individually addressable thermo- and redox-responsive block copolymers by combining anionic polymerization and RAFT protocols. Macromol Rapid Commun 35:708–714Google Scholar
  272. 272.
    Yan Y, Lan Y-R, de Keizer A, Drechsler M, Van As H, Cohen Stuart MA, Besseling NAM (2010) Redox responsive molecular assemblies based on metallic coordination polymers. Soft Matter 6:3244–3248Google Scholar
  273. 273.
    Zhao L, Yan Y, Huang J (2012) Redox-gated potential micellar carriers based on electrostatic assembly of soft coordination suprapolymers. Langmuir 28:5548–5554Google Scholar
  274. 274.
    Cho H, Bae J, Garripelli Vivek K, Anderson Joel M, Jun H-W, Jo S (2012) Redox-sensitive polymeric nanoparticles for drug delivery. Chem Commun 48:6043–6045Google Scholar
  275. 275.
    Ma N, Li Y, Xu H, Wang Z, Zhang X (2010) Dual redox responsive assemblies formed from diselenide block copolymers. J Am Chem Soc 132:442–443Google Scholar
  276. 276.
    Ren H, Wu Y, Ma N, Xu H, Zhang X (2012) Side-chain selenium-containing amphiphilic block copolymers: redox-controlled self-assembly and disassembly. Soft Matter 8:1460–1466Google Scholar
  277. 277.
    Miao X, Cao W, Zheng W, Wang J, Zhang X, Gao J, Yang C, Kong D, Xu H, Wang L, Yang Z (2013) Switchable catalytic activity: selenium-containing peptides with redox-controllable self-assembly properties. Angew Chem Int Ed Engl 52:7781–7785Google Scholar
  278. 278.
    Liu J, Pang Y, Zhu Z, Wang D, Li C, Huang W, Zhu X, Yan D (2013) Therapeutic nanocarriers with hydrogen peroxide-triggered drug release for cancer treatment. Biomacromolecules 14:1627–1636Google Scholar
  279. 279.
    Han P, Ma N, Ren H, Xu H, Li Z, Wang Z, Zhang X (2010) Oxidation-responsive micelles based on a selenium-containing polymeric superamphiphile. Langmuir 26:14414–14418Google Scholar
  280. 280.
    Ryu J-H, Roy R, Ventura J, Thayumanavan S (2010) Redox-sensitive disassembly of amphiphilic copolymer based micelles. Langmuir 26:7086–7092Google Scholar
  281. 281.
    Yuan W, Zou H, Guo W, Shen T, Ren J (2013) Supramolecular micelles with dual temperature and redox responses for multi-controlled drug release. Polym Chem 4:2658–2661Google Scholar
  282. 282.
    Wang Y, Wang H, Liu G, Liu X, Jin Q, Ji J (2013) Self-assembly of near-monodisperse redox-sensitive micelles from cholesterol-conjugated biomimetic copolymers. Macromol Biosci 13:1084–1091Google Scholar
  283. 283.
    Ping Y, Wu D, Kumar JN, Cheng W, Lay CL, Liu Y (2013) Redox-responsive hyperbranched poly(amido amine)s with tertiary amino cores for gene delivery. Biomacromolecules 14:2083–2094Google Scholar
  284. 284.
    Cerritelli S, Velluto D, Hubbell JA (2007) PEG-SS-PPS: reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules 8:1966–1972Google Scholar
  285. 285.
    Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131:4830–4838Google Scholar
  286. 286.
    Dong W-F, Kishimura A, Anraku Y, Chuanoi S, Kataoka K (2009) Monodispersed polymeric nanocapsules: spontaneous evolution and morphology transition from reducible hetero-PEG PICmicelles by controlled degradation. J Am Chem Soc 131:3804–3805Google Scholar
  287. 287.
    Wang K, Luo G-F, Liu Y, Li C, Cheng S-X, Zhuo R-X, Zhang X-Z (2012) Redox-sensitive shell cross-linked PEG-polypeptide hybrid micelles for controlled drug release. Polym Chem 3:1084–1090Google Scholar
  288. 288.
    Jiang G, Wang Y, Zhang R, Wang R, Wang X, Zhang M, Sun X, Bao S, Wang T, Wang S (2012) Preparation of redox-sensitive shell cross-linked nanoparticles for controlled release of bioactive agents. ACS Macro Lett 1:489–493Google Scholar
  289. 289.
    Bapat AP, Ray JG, Savin DA, Sumerlin BS (2013) Redox-responsive dynamic-covalent assemblies: stars and miktoarm stars. Macromolecules 46:2188–2198Google Scholar
  290. 290.
    Napoli A, Boerakker MJ, Tirelli N, Nolte RJM, Sommerdijk NAJM, Hubbell JA (2004) Glucose oxidase-based self-destructing polymeric vesicles. Langmuir 20:3487–3491Google Scholar
  291. 291.
    Wang H, Guo P, Han Y (2006) Synthesis and surface morphology of tetraaniline-block-poly(L-lactate) diblock oligomers. Macromol Rapid Commun 27:63–68Google Scholar
  292. 292.
    Jia X, Chen D, Jiang M (2006) Preparation of PEO-b-P2VPH+−S2O82- micelles in water and their reversible UCST and redox-responsive behavior. Chem Commun 2006(16):1736–1738Google Scholar
  293. 293.
    Power-Billard KN, Spontak RJ, Manners I (2004) Redox-active organometallic vesicles: aqueous self-assembly of a diblock copolymer with a hydrophilic polyferrocenylsilane polyelectrolyte block. Angew Chem Int Ed 43:1260–1264Google Scholar
  294. 294.
    Dahmane S, Lasia A, Zhao Y (2008) Electrochemically active block copolymer micelles containing coumarin moieties. Macromol Chem Phys 209:1065–1072Google Scholar
  295. 295.
    Yan Q, Yuan J, Cai Z, Xin Y, Kang Y, Yin Y (2010) Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J Am Chem Soc 132:9268–9270Google Scholar
  296. 296.
    Feng A, Yan Q, Zhang H, Peng L, Yuan J (2014) Electrochemical redox responsive polymeric micelles formed from amphiphilic supramolecular brushes. Chem Commun 50:4740–4742Google Scholar
  297. 297.
    Szillat F, Schmidt BVKJ, Hubert A, Barner-Kowollik C, Ritter H (2014) Redox-switchable supramolecular graft polymer formation via ferrocene–cyclodextrin assembly. Macromol Rapid Commun 35(14):1293–1300Google Scholar
  298. 298.
    Kim H, Jeong S-M, Park J-W (2011) Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod-coils. J Am Chem Soc 133:5206–5209Google Scholar
  299. 299.
    Yang Z, Wang X, Yang Y, Liao Y, Wei Y, Xie X (2010) Synthesis of electroactive tetraaniline-PEO-tetraaniline triblock copolymer and its self-assembled vesicle with acidity response. Langmuir 26:9386–9392Google Scholar
  300. 300.
    Hu J, Zhuang X, Huang L, Lang L, Chen X, Wei Y, Jing X (2008) pH/potential-responsive large aggregates from the spontaneous self-assembly of a triblock copolymer in water. Langmuir 24:13376–13382Google Scholar
  301. 301.
    Huang L, Hu J, Lang L, Chen X, Wei Y, Jing X (2007) Synthesis of a novel electroactive ABA triblock copolymer and its spontaneous self-assembly in water. Macromol Rapid Commun 28:1559–1566Google Scholar
  302. 302.
    Song L, Du B, Chen L, Deng M, Sun H, Pang X, Zhang P, Chen X (2013) Synthesis of electroactive and biodegradable multiblock copolymers based on poly(ester amide) and aniline pentamer. J Polym Sci Part A Polym Chem 51:4722–4731Google Scholar
  303. 303.
    Takeoka Y, Aoki T, Sanui K, Ogata N, Yokoyama M, Okano T, Sakurai Y, Watanabe M (1995) Electrochemical control of drug release from redox-active micelles. J Control Release 33:79–87Google Scholar
  304. 304.
    Saji T, Hoshino K, Aoyagui S (1985) Reversible formation and disruption of micelles by control of the redox state of the head group. J Am Chem Soc 107:6865–6868Google Scholar
  305. 305.
    Wang K, Guo D-S, Wang X, Liu Y (2011) Multistimuli responsive supramolecular vesicles based on the recognition of p-sulfonatocalixarene and its controllable release of doxorubicin. ACS Nano 5:2880–2894Google Scholar
  306. 306.
    Xing L-B, Yu S, Wang X-J, Wang G-X, Chen B, Zhang L-P, Tung C-H, Wu L-Z (2012) Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(II) terpyridyl complex with a ferrocene unit in water. Chem Commun 48:10886–10888Google Scholar
  307. 307.
    Sambe L, Stoffelbach F, Lyskawa J, Delattre F, Fournier D, Bouteiller L, Charleux B, Cooke G, Woisel P (2011) Host-guest modulation of the micellization of a tetrathiafulvalene-functionalized poly(N-isopropylacrylamide). Macromolecules 44:6532–6538Google Scholar
  308. 308.
    Zhang K-D, Zhou T-Y, Zhao X, Jiang X-K, Li Z-T (2012) Redox-responsive reverse vesicles self-assembled by pseudo[2]rotaxanes for tunable dye release. Langmuir 28:14839–14844Google Scholar
  309. 309.
    Zhang K-D, Zhao X, Wang G-T, Liu Y, Zhang Y, Lu H-J, Jiang X-K, Li Z-T (2011) Foldamer-tuned switching kinetics and metastability of [2]rotaxanes. Angew Chem Int Ed 50:9866–9870, S9866/9861-S9866/9816Google Scholar
  310. 310.
    Ouhib F, Desbief S, Lazzaroni R, Melinte S, Dutu CA, Jerome C, Detrembleur C (2013) Electrografting onto ITO substrates of poly(thiophene)-based micelles decorated by acrylate groups. Polym Chem F 4:4151–4161Google Scholar
  311. 311.
    Dutta K, Kundu PP (2013) Reversible assembly and disassembly of amphiphilic assemblies by electropolymerized polyaniline films: effects rendered by varying the electropolymerization potential. J Phys Chem B 117:7797–7805Google Scholar
  312. 312.
    Liu YD, Park BJ, Kim YH, Choi HJ (2011) Smart monodisperse polystyrene/polyaniline core-shell structured hybrid microspheres fabricated by a controlled releasing technique and their electro-responsive characteristics. J Mater Chem 21:17396–17402Google Scholar
  313. 313.
    Plamper FA, Gelissen AP, Timper J, Wolf A, Zezin AB, Richtering W, Tenhu H, Simon U, Mayer J, Borisov OV, Pergushov DV (2013) Spontaneous assembly of miktoarm stars into vesicular interpolyelectrolyte complexes. Macromol Rapid Commun 34:855–860Google Scholar
  314. 314.
    Xu W, Choi I, Plamper FA, Synatschke CV, Müller AHE, Tsukruk VV (2013) Nondestructive light-initiated tuning of layer-by-layer microcapsule permeability. ACS Nano 7:598–613Google Scholar
  315. 315.
    Zelikin AN, Quinn JF, Caruso F (2006) Disulfide cross-linked polymer capsules: en route to biodeconstructible systems. Biomacromolecules 7:27–30Google Scholar
  316. 316.
    Okahata Y, Ariga K, Seki T (1986) Redox-sensitive permeation from a capsule membrane grafted with viologen-containing polymers. J Chem Soc Chem Commun 1986(1):73–75Google Scholar
  317. 317.
    Okahata Y, Ariga K (1987) Functional capsule membranes. Part 28. A capsule membrane grafted with viologen-containing polymers as a reactor of electron-transfer catalysis in heterophases. J Chem Soc Perkin Trans 2:1003–1008Google Scholar
  318. 318.
    Okahata Y, Enna G (1988) Permeability-controllable membranes. 7. Electrochemical responsive gate membranes of a multibilayer film containing a viologen group as redox sites. J Phys Chem 92:4546–4551Google Scholar
  319. 319.
    Okahata Y, Enna G, Takenouchi K (1989) Permeability-controllable membranes. Part 8. Electrical redox sensitive permeation through a multibilayer-immobilized film containing a ferrocenyl group as a redox site. J Chem Soc Perkin Trans 2:835–843Google Scholar
  320. 320.
    Ma Y, Dong W-F, Hempenius MA, Möhwald H, Vancso GJ (2006) Redox-controlled molecular permeability of composite-wall microcapsules. Nat Mater 5:724–729Google Scholar
  321. 321.
    Scheid D, Lederle C, Vowinkel S, Schafer CG, Stuhn B, Gallei M (2014) Redox- and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films. J Mater Chem C 2:2583–2590Google Scholar
  322. 322.
    Staff RH, Gallei M, Mazurowski M, Rehahn M, Berger R, Landfester K, Crespy D (2012) Patchy nanocapsules of poly(vinylferrocene)-based block copolymers for redox-responsive release. ACS Nano 6:9042–9049Google Scholar
  323. 323.
    Lv L-P, Zhao Y, Vilbrandt N, Gallei M, Vimalanandan A, Rohwerder M, Landfester K, Crespy D (2013) Redox responsive release of hydrophobic self-healing agents from polyaniline capsules. J Am Chem Soc 135:14198–14205Google Scholar
  324. 324.
    Vimalanandan A, Lv L-P, Tran TH, Landfester K, Crespy D, Rohwerder M (2013) Redox-responsive self-healing for corrosion protection. Adv Mater 25:6980–6984Google Scholar
  325. 325.
    Wang H, Wang X, Winnik MA, Manners I (2008) Redox-mediated synthesis and encapsulation of inorganic nanoparticles in shell-cross-linked cylindrical polyferrocenylsilane block copolymer micelles. J Am Chem Soc 130:12921–12930Google Scholar
  326. 326.
    Graf N, Tanno A, Dochter A, Rothfuchs N, Vörös J, Zambelli T (2012) Electrochemically driven delivery to cells from vesicles embedded in polyelectrolyte multilayers. Soft Matter 8:3641–3648Google Scholar
  327. 327.
    Ge J, Neofytou E, Cahill TJ III, Beygui RE, Zare RN (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233Google Scholar
  328. 328.
    Hempenius MA, Cirmi C, Lo Savio F, Song J, Vancso GJ (2010) Poly(ferrocenylsilane) gels and hydrogels with redox-controlled actuation. Macromol Rapid Commun 31:772–783Google Scholar
  329. 329.
    De Luca V, Digiamberardino P, Di Pasquale G, Graziani S, Pollicino A, Umana E, Xibilia MG (2013) Ionic electroactive polymer metal composites: fabricating, modeling, and applications of postsilicon smart devices. J Polym Sci Part B Polym Phys 51:699–734Google Scholar
  330. 330.
    McDowell JJ, Zacharia NS, Puzzo D, Manners I, Ozin GA (2010) Electroactuation of alkoxysilane-functionalized polyferrocenylsilane microfibers. J Am Chem Soc 132:3236–3237Google Scholar
  331. 331.
    Piepenbrock M-OM, Lloyd GO, Clarke N, Steed JW (2010) Metal- and anion-binding supramolecular gels. Chem Rev 110:1960–2004Google Scholar
  332. 332.
    Gyarmati B, Vajna B, Nemethy A, Laszlo K, Szilagyi A (2013) Redox- and pH-responsive cysteamine-modified poly(aspartic acid) showing a reversible sol–gel transition. Macromol Biosci 13:633–640Google Scholar
  333. 333.
    Singh S, Topuz F, Hahn K, Albrecht K, Groll J (2013) Embedding of active proteins and living cells in redox-sensitive hydrogels and nanogels through enzymatic cross-linking. Angew Chem Int Ed Engl 52:3000–3003Google Scholar
  334. 334.
    Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E (2002) Ciliary motion actuator using self-oscillating gel. Sens Actuators, A 95:234–238Google Scholar
  335. 335.
    Maeda S, Hara Y, Yoshida R, Hashimoto S (2008) Peristaltic motion of polymer gels. Angew Chem Int Ed Engl 47:6690–6693Google Scholar
  336. 336.
    Murase Y, Hidaka M, Yoshida R (2010) Self-driven gel conveyer: autonomous transportation by peristaltic motion of self-oscillating gel. Sens Actuators B 149:272–283Google Scholar
  337. 337.
    Yoshida R (2010) Self-oscillating gels driven by the belousov-zhabotinsky reaction as novel smart materials. Adv Mater 22:3463–3483Google Scholar
  338. 338.
    Shiraki Y, Yoshida R (2012) Autonomous intestine-like motion of tubular self-oscillating gel. Angew Chem Int Ed Engl 51:6112–6116Google Scholar
  339. 339.
    Maeda S, Hara Y, Sakai T, Yoshida R, Hashimoto S (2007) Self-walking gel. Adv Mater 19:3480–3484Google Scholar
  340. 340.
    Dong Z-Q, Cao Y, Yuan Q-J, Wang Y-F, Li J-H, Li B-J, Zhang S (2013) Redox- and glucose-induced shape-memory polymers. Macromol Rapid Commun 34:867–872Google Scholar
  341. 341.
    Nakahata M, Takashima Y, Harada A (2014) Redox-responsive macroscopic gel assembly based on discrete dual interactions. Angew Chem Int Ed Engl 53:3617–3621Google Scholar
  342. 342.
    Akhoury A, Bromberg L, Hatton TA (2011) Redox-responsive gels with tunable hydrophobicity for controlled solubilization and release of organics. ACS Appl Mater Interfaces 3:1167–1174Google Scholar
  343. 343.
    Arsenault AC, Miguez H, Kitaev V, Ozin GA, Manners I (2003) A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-ink). Adv Mater 15:503–507Google Scholar
  344. 344.
    Arsenault AC, Puzzo DP, Manners I, Ozin GA (2007) Photonic-crystal full-color displays. Nat Photonics 1:468–472Google Scholar
  345. 345.
    Kulbaba K, MacLachlan MJ, Evans CEB, Manners L (2001) Organometallic gels: characterization and electrochemical studies of swellable, thermally crosslinked poly(ferrocenylsilane)s. Macromol Chem Phys 202:1768–1775Google Scholar
  346. 346.
    Puzzo DP, Arsenault AC, Manners I, Ozin GA (2009) Electroactive inverse opal: a single material for all colors. Angew Chem Int Ed 48:943–947Google Scholar
  347. 347.
    Liu J, Mao Y, Ge J (2013) Electric field tuning of magnetically assembled photonic crystals. J Mater Chem C 1:6129–6135Google Scholar
  348. 348.
    Lu Y, Meng C, Xia H, Zhang G, Wu C (2013) Fast electrically driven photonic crystal based on charged block copolymer. J Mater Chem C 1:6107–6111Google Scholar
  349. 349.
    Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C (2011) Self-assembled photonic structures. Adv Mater 23:30–69Google Scholar
  350. 350.
    Tatsuma T, Takada K, Matsui H, Oyama N (1994) A redox gel. Electrochemically controllable phase transition and thermally controllable electrochemistry. Macromolecules 27:6687–6689Google Scholar
  351. 351.
    Oyama N, Tatsuma T, Takahashi K (1993) Electrochemical characterization of a thermoresponsive N-isopropylacrylamide-vinylferrocene copolymer film by the use of quartz crystal oscillators. J Phys Chem 97:10504–10508Google Scholar
  352. 352.
    Du P, Liu J, Chen G, Jiang M (2011) Dual responsive supramolecular hydrogel with electrochemical activity. Langmuir 27:9602–9608Google Scholar
  353. 353.
    Nakahata M, Takashima Y, Yamaguchi H, Harada A (2011) Redox-responsive self-healing materials formed from host-guest polymers. Nat Commun 2:1521–1526Google Scholar
  354. 354.
    Chuo T-W, Wei T-C, Liu Y-L (2013) Electrically driven self-healing polymers based on reversible guest-host complexation of β-cyclodextrin and ferrocene. J Polym Sci Part A Polym Chem 51:3395–3403Google Scholar
  355. 355.
    Nakahata M, Takashima Y, Hashidzume A, Harada A (2013) Redox-generated mechanical motion of a supramolecular polymeric actuator based on host-guest interactions. Angew Chem Int Ed Engl 52:5731–5735Google Scholar
  356. 356.
    Hempenius MA, Cirmi C, Song J, Vancso GJ (2009) Synthesis of poly(ferrocenylsilane) polyelectrolyte hydrogels with redox controlled swelling. Macromolecules 42:2324–2326Google Scholar
  357. 357.
    Sui X, van Ingen L, Hempenius MA, Vancso GJ (2010) Preparation of a rapidly forming poly(ferrocenylsilane)-poly(ethylene glycol)-based hydrogel by a thiol-michael addition click reaction. Macromol Rapid Commun 31:2059–2063Google Scholar
  358. 358.
    Sui X, Feng X, Di Luca A, van Blitterswijk CA, Moroni L, Hempenius MA, Vancso GJ (2013) Poly(N-isopropylacrylamide)-poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications. Polym Chem 4:337–342Google Scholar
  359. 359.
    Liu Y, Hu J, Zhuang X, Zhang P, Wei Y, Wang X, Chen X (2012) Synthesis and characterization of novel biodegradable and electroactive hydrogel based on aniline oligomer and gelatin. Macromol Biosci 12:241–250Google Scholar
  360. 360.
    Li L, Ge J, Guo B, Ma PX (2014) In situ forming biodegradable electroactive hydrogels. Polym Chem 5:2880–2890Google Scholar
  361. 361.
    Ding F, Shi X, Jiang Z, Liu L, Cai J, Li Z, Chen S, Du Y (2013) Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J Mater Chem B 1:1729–1737Google Scholar
  362. 362.
    He J, Zhang A, Zhang Y, Guan Y (2011) Novel redox hydrogel by in situ gelation of chitosan as a result of template oxidative polymerization of hydroquinone. Macromolecules 44:2245–2252Google Scholar
  363. 363.
    Goswami SK, McAdam CJ, Lee AMM, Hanton LR, Moratti SC (2013) Linear electrochemical actuators with very large strains using carbon nanotube-redox gel composites. J Mater Chem A 1:3415–3420Google Scholar
  364. 364.
    Wu J, Ren Y, Sun J, Feng L (2013) Carbon nanotube-coated macroporous poly(N-isopropylacrylamide) hydrogel and its electrosensitivity. ACS Appl Mater Interfaces 5:3519–3523Google Scholar
  365. 365.
    Cui H, Cui L, Zhang P, Huang Y, Wei Y, Chen X (2014) In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair. Macromol Biosci 14:440–450Google Scholar
  366. 366.
    Cui H, Shao J, Wang Y, Zhang P, Chen X, Wei Y (2013) PLA-PEG-PLA and its electroactive tetraaniline copolymer as multi-interactive injectable hydrogels for tissue engineering. Biomacromolecules 14:1904–1912Google Scholar
  367. 367.
    Takada K, Tanaka N, Tatsuma T (2005) A redox actuator based on reversible formation of bond between poly(acrylic acid) gel and Cu2+ ion. J Electroanal Chem 585:120–127Google Scholar
  368. 368.
    Palleau E, Morales D, Dickey MD, Velev OD (2013) Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat Commun 4:2257Google Scholar
  369. 369.
    Takada K, Miyazaki T, Tanaka N, Tatsuma T (2006) Three-dimensional motion and transformation of a photoelectrochemical actuator. Chem Commun 2006(19):2024–2026Google Scholar
  370. 370.
    Tatsuma T, Takada K, Miyazaki T (2007) UV-light-induced swelling and visible-light-induced shrinking of a TiO2-containing redox gel. Adv Mater 19:1249–1251Google Scholar
  371. 371.
    Takada K, Iida T, Kawanishi Y, Yasui T, Yuchi A (2011) An electrochemical actuator based on reversible changes in volume of poly(acrylic acid) gel induced by quinone redox. Sens Actuators B 160:1586–1592Google Scholar
  372. 372.
    Kwon IC, Bae YH, Kim SW (1991) Electrically erodible polymer gel for controlled release of drugs. Nature 354:291–293Google Scholar
  373. 373.
    Calvo-Marzal P, Delaney MP, Auletta JT, Pan T, Perri NM, Weiland LM, Waldeck DH, Clark WW, Meyer TY (2012) Manipulating mechanical properties with electricity: electroplastic elastomer hydrogels. ACS Macro Lett 1:204–208Google Scholar
  374. 374.
    Chiarelli P, De Rossi D (2012) Polyelectrolyte intelligent gels: Design and applications. In: Ciferri A, Perico A (eds) Ionic interactions in natural and synthetic macromolecules. Wiley, Hoboken. doi: 10.1002/9781118165850.ch15Google Scholar
  375. 375.
    Shiga T (1997) Deformation and viscoelastic behavior of polymer gels in electric fields. Adv Polym Sci 134:131–163Google Scholar
  376. 376.
    Grodzinsky AJ, Shoenfeld NA (1977) Tensile forces induced in collagen by means of electromechanochemical transductive coupling. Polymer 18:435–443Google Scholar
  377. 377.
    Jin S, Gu J, Shi Y, Shao K, Yu X, Yue G (2013) Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur Polym J 49:1871–1880Google Scholar
  378. 378.
    Tanaka T, Nishio I, Sun ST, Ueno-Nishio S (1982) Collapse of gels in an electric field. Science 218:467–469Google Scholar
  379. 379.
    Grimshaw PE, Nussbaum JH, Grodzinsky AJ, Yarmush ML (1990) Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J Chem Phys 93:4462–4472Google Scholar
  380. 380.
    Fragala A, Enos J, LaConti A, Boyack J (1972) Electrochemical activation of a synthetic artificial muscle membrane. Electrochim Acta 17:1507–1522Google Scholar
  381. 381.
    Glazer PJ, van Erp M, Embrechts A, Lemay SG, Mendes E (2012) Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels. Soft Matter 8:4421–4426Google Scholar
  382. 382.
    O’Grady ML, Kuo P-L, Parker KK (2010) Optimization of electroactive hydrogel actuators. ACS Appl Mater Interfaces 2:343–346Google Scholar
  383. 383.
    Jackson N, Cordero N, Stam F (2013) 3-D interdigitated electrodes for uniform stimulation of electro-responsive hydrogels for biomedical applications. J Polym Sci Part B Polym Phys 51:1523–1528Google Scholar
  384. 384.
    Li H, Luo R, Lam KY (2009) Multiphysics modeling of electrochemomechanically smart microgels responsive to coupled pH/electric stimuli. Macromol Biosci 9:287–297Google Scholar
  385. 385.
    Osada Y, Okuzaki H, Hori H (1992) A polymer gel with electrically driven motility. Nature 355:242–244Google Scholar
  386. 386.
    Morales D, Palleau E, Dickey MD, Velev OD (2014) Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10:1337–1348Google Scholar
  387. 387.
    Miller AK, Li Z, Streletzky KA, Jamieson AM, Rowan SJ (2012) Redox-induced polymerisation/depolymerisation of metallo-supramolecular polymers. Polym Chem 3:3132–3138Google Scholar
  388. 388.
    Kojic N, Panzer MJ, Leisk GG, Raja WK, Kojic M, Kaplan DL (2012) Ion electrodiffusion governs silk electrogelation. Soft Matter 8:6897–6905Google Scholar
  389. 389.
    Nayak S, Lyon LA (2004) Ligand-functionalized core/shell microgels with permselective shells. Angew Chem Int Ed 43:6706–6709Google Scholar
  390. 390.
    Oh JK, Bencherif SA, Matyjaszewski K (2009) Atom transfer radical polymerization in inverse miniemulsion: a versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications. Polymer 50:4407–4423Google Scholar
  391. 391.
    Bajomo M, Steinke JHG, Bismarck A (2007) Inducing pH responsiveness via ultralow thiol content in polyacrylamide (micro)gels with labile crosslinks. J Phys Chem B 111:8655–8662Google Scholar
  392. 392.
    Syrett JA, Haddleton DM, Whittaker MR, Davis TP, Boyer C (2011) Functional, star polymeric molecular carriers, built from biodegradable microgel/nanogel cores. Chem Commun 47:1449–1451Google Scholar
  393. 393.
    Zhang J, Li C, Wang Y, Zhuo R-X, Zhang X-Z (2011) Controllable exploding microcapsules as drug carriers. Chem Commun 47:4457–4459Google Scholar
  394. 394.
    Wang Z-K, Wang L-H, Sun J-T, Han L-F, Hong C-Y (2013) In situ generation of bioreducible and acid labile nanogels/microgels simply via adding water into the polymerization system. Polym Chem 4:1694–1699Google Scholar
  395. 395.
    Gaulding JC, Smith MH, Hyatt JS, Fernandez-Nieves A, Lyon LA (2012) Reversible inter- and intra-microgel cross-linking using disulfides. Macromolecules 45:39–45Google Scholar
  396. 396.
    Hu X, Tong Z, Lyon LA (2010) Multicompartment core/shell microgels. J Am Chem Soc 132:11470–11472Google Scholar
  397. 397.
    Kulbaba K, Resendes R, Cheng A, Bartole A, Safa-Sefat A, Coombs N, Stover HDH, Greedan JE, Ozin GA, Manners I (2001) Polyferrocenylsilane and magnetic ceramic microspheres. Adv Mater 13:732–736Google Scholar
  398. 398.
    Kulbaba K, Cheng A, Bartole A, Greenberg S, Resendes R, Coombs N, Safa-Sefat A, Greedan JE, Stöver HDH, Ozin GA, Manners I (2002) Polyferrocenylsilane microspheres: synthesis, mechanism of formation, size and charge tunability, electrostatic self-assembly, and pyrolysis to spherical magnetic ceramic particles. J Am Chem Soc 124:12522–12534Google Scholar
  399. 399.
    Sui X, Shui L, Cui J, Xie Y, Song J, van den Berg A, Hempenius Mark A, Julius Vancso G (2014) Redox-responsive organometallic microgel particles prepared from poly(ferrocenylsilane)s generated using microfluidics. Chem Commun 50:3058–3060Google Scholar
  400. 400.
    Suzuki D, Yoshida R (2008) Temporal control of self-oscillation for microgels by cross-linking network structure. Macromolecules 41:5830–5838Google Scholar
  401. 401.
    Suzuki D, Taniguchi H, Yoshida R (2009) Autonomously oscillating viscosity in microgel dispersions. J Am Chem Soc 131:12058–12059Google Scholar
  402. 402.
    Okeyoshi K, Yoshida R (2009) Hydrogen generating gel systems induced by visible light. Soft Matter 5:4118–4123Google Scholar
  403. 403.
    Cook JP, Riley DJ (2012) Electrical switching of microgel swelling and collapse for display applications. J Polym Sci Part B Polym Phys 50:516–522Google Scholar
  404. 404.
    Sui X, Hempenius MA, Vancso GJ (2012) Redox-active cross-linkable poly(ionic liquid)s. J Am Chem Soc 134:4023–4025Google Scholar
  405. 405.
    Pinaud F, Russo L, Pinet S, Gosse I, Ravaine V, Sojic N (2013) Enhanced electrogenerated chemiluminescence in thermoresponsive microgels. J Am Chem Soc 135:5517–5520Google Scholar
  406. 406.
    Albery WJ, Hillman AR (1982) Modified electrodes. Annu Rep Prog Chem Sect C 78:377–437Google Scholar
  407. 407.
    Faulkner LR (1984) Chemical microstructures on electrodes. Chem Eng News 62:28–38, 43–25Google Scholar
  408. 408.
    Chidsey CED, Murray RW (1986) Electroactive polymers and macromolecular electronics. Science 231:25–31Google Scholar
  409. 409.
    Hillman AR (1987) Polymer modified electrodes: preparation and characterization. Electrochem Sci Technol Polym 1:103–239Google Scholar
  410. 410.
    Nöll T, Nöll G (2011) Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology. Chem Soc Rev 40:3564–3576Google Scholar
  411. 411.
    Bardini L, Ceccato M, Hinge M, Pedersen SU, Daasbjerg K, Marcaccio M, Paolucci F (2013) Electrochemical polymerization of allylamine copolymers. Langmuir 29:3791–3796Google Scholar
  412. 412.
    McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116Google Scholar
  413. 413.
    Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem Rev 92:711–738Google Scholar
  414. 414.
    Waltman RJ, Bargon J (1986) Electrically conducting polymers: a review of the electropolymerization reaction, of the effects of chemical structure on polymer film properties, and of applications towards technology. Can J Chem 64:76–95Google Scholar
  415. 415.
    Shirakawa H, MacDiarmid A, Heeger A (2003) Focus article: twenty-five years of conducting polymers. Chem Commun 2003(1):1–4Google Scholar
  416. 416.
    Wessling B (2010) New insight into organic metal polyaniline morphology and structure. Polymers 2:786–798Google Scholar
  417. 417.
    Patton DL, Taranekar P, Fulghum T, Advincula R (2008) Electrochemically active dendritic-linear block copolymers via raft polymerization: synthesis, characterization, and electrodeposition properties. Macromolecules 41:6703–6713Google Scholar
  418. 418.
    Li M, Zhang J, Nie H-J, Liao M, Sang L, Qiao W, Wang ZY, Ma Y, Zhong Y-W, Ariga K (2013) In situ switching layer-by-layer assembly: one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization. Chem Commun 49:6879–6881Google Scholar
  419. 419.
    Isaksson J, Tengstedt C, Fahlman M, Robinson N, Berggren M (2004) A solid-state organic electronic wettability switch. Adv Mater 16:316–320Google Scholar
  420. 420.
    Mugele F, Baret J-C (2005) Electrowetting: from basics to applications. J Phys Condens Matter 17:R705–R774Google Scholar
  421. 421.
    Verplanck N, Coffinier Y, Thomy V, Boukherroub R (2007) Wettability switching techniques on superhydrophobic surfaces. Nanoscale Res Lett 2:577–596Google Scholar
  422. 422.
    Ikeda T, Schmehl R, Denisevich P, Willman K, Murray RW (1982) Permeation of electroactive solutes through ultrathin polymeric films on electrode surfaces. J Am Chem Soc 104:2683–2691Google Scholar
  423. 423.
    Tagliazucchi M, Calvo EJ (2009) Electrochemically active polyelectrolyte-modified electrodes. Adv Electrochem Sci Eng 11:57–115Google Scholar
  424. 424.
    Maeda H, Sakamoto R, Nishihara H (2013) Metal complex oligomer and polymer wires on electrodes: tactical constructions and versatile functionalities. Polymer 54:4383–4403Google Scholar
  425. 425.
    Tokarev I, Orlov M, Katz E, Minko S (2007) An electrochemical gate based on a stimuli-responsive membrane associated with an electrode surface. J Phys Chem B 111:12141–12145Google Scholar
  426. 426.
    Claro PCDS, Coustet ME, Diaz C, Maza E, Cortizo MS, Requejo FG, Pietrasanta LI, Ceolin M, Azzaroni O (2013) Self-assembly of PBzMA-b-PDMAEMA diblock copolymer films at the air-water interface and deposition on solid substrates via Langmuir-Blodgett transfer. Soft Matter 9:10899–10912Google Scholar
  427. 427.
    Calvo A, Yameen B, Williams FJ, Soler-Illia GJAA, Azzaroni O (2009) Mesoporous films and polymer brushes helping each other to modulate ionic transport in nanoconfined environments. An interesting example of synergism in functional hybrid assemblies. J Am Chem Soc 131:10866–10868Google Scholar
  428. 428.
    Jaber JA, Schlenoff JB (2005) Polyelectrolyte multilayers with reversible thermal responsivity. Macromolecules 38:1300–1306Google Scholar
  429. 429.
    Dou Y, Han J, Wang T, Wei M, Evans DG, Duan X (2012) Temperature-controlled electrochemical switch based on layered double hydroxide/poly(N-Isopropylacrylamide) ultrathin films fabricated via layer-by-layer assembly. Langmuir 28:9535–9542Google Scholar
  430. 430.
    Liu A, Chen M, Qian D-J (2010) Electrochemical behaviors of nanoporous coordination polymer multilayers in hexacyanoferrate solution. Colloids Surf A 366:183–190Google Scholar
  431. 431.
    Lee CS, Bell JP (1995) Kinetic study of the aqueous electropolymerization of acrylamide, acrylonitrile and N, N’-methylene-bisacrylamide on an aluminum alloy cathode. J Mater Sci 30:3827–3833Google Scholar
  432. 432.
    Reuber J, Reinhardt H, Johannsmann D (2006) Formation of surface-attached responsive gel layers via electrochemically induced free-radical polymerization. Langmuir 22:3362–3367Google Scholar
  433. 433.
    Bünsow J, Johannsmann D (2008) Electrochemically produced responsive hydrogel films: influence of added salt on thickness and morphology. J Colloid Interface Sci 326:61–65Google Scholar
  434. 434.
    Bünsow J, Mänz M, Vana P, Johannsmann D (2010) Electrochemically induced RAFT polymerization of thermoresponsive hydrogel films: impact on film thickness and surface morphology. Macromol Chem Phys 211:761–767Google Scholar
  435. 435.
    Oyama N, Anson FC (1979) Polymeric ligands as anchoring groups for the attachment of metal complexes to graphite electrode surfaces. J Am Chem Soc 101:3450–3456Google Scholar
  436. 436.
    Shigehara K, Oyama N, Anson FC (1981) Evaluation of rate constants for redox self-exchange reactions from electrochemical measurements with rotating-disk electrodes coated with polyelectrolytes. Inorg Chem 20:518–522Google Scholar
  437. 437.
    Braun H, Storck W, Doblhofer K (1983) Thermodynamic aspects of redox reactions on electrodes coated with thin, ion exchanging polymer films. J Electrochem Soc 130:807–811Google Scholar
  438. 438.
    Niwa K, Doblhofer K (1986) The interrelation between the electrochemical behavior of a polymer-coated electrode and the ion exchange properties of the coating. Electrochim Acta 31:549–553Google Scholar
  439. 439.
    Doblhofer K, Armstrong RD (1988) Membrane-type coatings on electrodes. Electrochim Acta 33:453–460Google Scholar
  440. 440.
    Oh SM, Faulkner LR (1989) Electron transport dynamics in partially quaternized poly(4-vinylpyridine) thin films containing ferri/ferrocyanide. J Electroanal Chem Interfacial Electrochem 269:77–97Google Scholar
  441. 441.
    Lindholm B (1988) Chronocoulometric and rotating disk electrode determination of the charge propagation current through poly-4-vinylpyridine films containing hexachloroiridate anions. J Electroanal Chem Interfacial Electrochem 250:341–354Google Scholar
  442. 442.
    Kwak J, Anson FC (1992) Monitoring the ejection and incorporation of ferricyanide [Fe(CN)63-] and ferrocyanide [Fe(CN)64-] counterions at protonated poly(4-vinylpyridine) coatings on electrodes with the scanning electrochemical microscope. Anal Chem 64:250–256Google Scholar
  443. 443.
    Han J-H, Kim KB, Bae JH, Kim BJ, Kang CM, Kim HC, Chung TD (2011) Ion flow crossing over a polyelectrolyte diode on a microfluidic chip. Small 7:2629–2639Google Scholar
  444. 444.
    Doblhofer K, Lange R (1987) Hexachloroiridate(III/IV) on polymer-coated electrodes. Investigation of the membrane permeability and the charge-transport mechanism. J Electroanal Chem Interfacial Electrochem 229:239–247Google Scholar
  445. 445.
    Ybarra G, Moina C, Florit MI, Posadas D (2008) Current rectification by mediating electroactive polymers. Electrochim Acta 53:3955–3959Google Scholar
  446. 446.
    Salloum DS, Schlenoff JB (2004) Rectified ion currents through ultrathin polyelectrolyte complex: toward chemical transistors. Electrochem Solid State Lett 7:E45–E47Google Scholar
  447. 447.
    Braun H, Decker F, Doblhofer K, Sotobayashi H (1984) The redox-reaction hexacyanoferrate(III)/hexacyanoferrate(II) ([Fe(CN)6]3-/4-) on electrodes coated with fixed charge polymer films - observation of membrane permeability modulation by the electrode potential. Ber Bunsen Ges Phys Chem 88:345–350Google Scholar
  448. 448.
    Conklin SD, Heineman WR, Seliskar CJ (2005) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 18. Preparation and characterization of cross-linked quaternized poly(4-vinylpyridinium) films. Electroanalysis 17:1433–1440Google Scholar
  449. 449.
    Conklin SD, Heineman WR, Seliskar CJ (2007) Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 19. Preparation and characterization of films of quaternized poly(4-vinylpyridine)-silica. Electroanalysis 19:523–529Google Scholar
  450. 450.
    Pincus TYAPA (2011) Collapse of polyelectrolyte brushes in electric fields. EPL 95:48003Google Scholar
  451. 451.
    Wang K, Zangmeister RA, Levicky R (2008) Equilibrium electrostatics of responsive polyelectrolyte monolayers. J Am Chem Soc 131:318–326Google Scholar
  452. 452.
    Farina R, Laugel N, Pincus P, Tirrell M (2013) Brushes of strong polyelectrolytes in mixed mono- and tri-valent ionic media at fixed total ionic strengths. Soft Matter 9:10458–10472Google Scholar
  453. 453.
    Choi E-Y, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck WTS (2007) Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions. Langmuir 23:10389–10394Google Scholar
  454. 454.
    Combellas C, Kanoufi F, Sanjuan S, Slim C, Tran Y (2009) Electrochemical and spectroscopic investigation of counterions exchange in polyelectrolyte brushes. Langmuir 25:5360–5370Google Scholar
  455. 455.
    Yu B, Zhou F, Bo Y, Hou X, Liu W (2007) Electrochemical impedance spectroscopy of poly(1-ethyl 3-(2-methacryloyloxy ethyl) imidazolium chloride) brushes with locally generated Pd. Electrochem Commun 9:1749–1754Google Scholar
  456. 456.
    Shen G, Tercero N, Gaspar MA, Varughese B, Shepard K, Levicky R (2006) Charging behavior of single-stranded DNA polyelectrolyte brushes. J Am Chem Soc 128:8427–8433Google Scholar
  457. 457.
    Yu B, Hu H, Wang D, Huck WTS, Zhou F, Liu W (2009) Electrolyte-modulated electrochemistry and electrocatalysis on ferrocene-terminated polyelectrolyte brushes. J Mater Chem 19:8129–8134Google Scholar
  458. 458.
    Tam TK, Pita M, Trotsenko O, Motornov M, Tokarev I, Halamek J, Minko S, Katz E (2010) Reversible “closing” of an electrode interface functionalized with a polymer brush by an electrochemical signal. Langmuir 26:4506–4513Google Scholar
  459. 459.
    Thangamuthu R, Senthilkumar SM, Pillai KC (2006) Octacyanomolybdate-doped-poly(4-vinylpyridine) ionomer film electrode for the electrocatalytic oxidation of L-ascorbic acid. J Solid State Electrochem 11:126–133Google Scholar
  460. 460.
    To Thi Kim L, Debiemme-Chouvy C, Gabrielli C, Perrot H (2012) Redox switching of heteropolyanions entrapped in polypyrrole films investigated by ac electrogravimetry. Langmuir 28:13746–13757Google Scholar
  461. 461.
    Fandrich A, Buller J, Wischerhoff E, Laschewsky A, Lisdat F (2012) Electrochemical detection of the thermally induced phase transition of a thin stimuli-responsive polymer film. ChemPhysChem 13:2020–2023Google Scholar
  462. 462.
    Song S, Hu N (2010) Dual-switchable bioelectrocatalysis synergistically controlled by pH and perchlorate concentration based on poly(4-vinylpyridine) films. J Phys Chem B 114:11689–11695Google Scholar
  463. 463.
    Garcia TA, Gervasi CA, Rodriguez Presa MJ, Otamendi JI, Moya SE, Azzaroni O (2012) Molecular transport in thin thermoresponsive poly(N-isopropylacrylamide) brushes with varying grafting density. J Phys Chem C 116:13944–13953Google Scholar
  464. 464.
    Lange R, Doblhofer K, Storck W (1988) Europium(II/III) on poly(styrenesulfonate) coated electrodes of stable electrochemical performance. Electrochim Acta 33:385–388Google Scholar
  465. 465.
    Baughman RH (1996) Conducting polymer artificial muscles. Synth Met 78:339–353Google Scholar
  466. 466.
    Farhat TR, Schlenoff JB (2001) Ion transport and equilibria in polyelectrolyte multilayers. Langmuir 17:1184–1192Google Scholar
  467. 467.
    Cheng Y, Murtomäki L, Corn RM (2000) Electrochemical characterization of the ultrathin polypeptide film/1,2-dichloroethane liquid|liquid interface. J Electroanal Chem 483:88–94Google Scholar
  468. 468.
    Park M-K, Deng S, Advincula RC (2004) pH-sensitive bipolar ion-permselective ultrathin films. J Am Chem Soc 126:13723–13731Google Scholar
  469. 469.
    Boulmedais F, Tang CS, Keller B, Vörös J (2006) Controlled electrodissolution of polyelectrolyte multilayers: a platform technology towards the surface-initiated delivery of drugs. Adv Funct Mater 16:63–70Google Scholar
  470. 470.
    Pardo-Yissar V, Katz E, Lioubashevski O, Willner I (2001) Layered polyelectrolyte films on Au electrodes: characterization of electron-transfer features at the charged polymer interface and application for selective redox reactions. Langmuir 17:1110–1118Google Scholar
  471. 471.
    Ghostine RA, Schlenoff JB (2011) Ion diffusion coefficients through polyelectrolyte multilayers: temperature and charge dependence. Langmuir 27:8241–8247Google Scholar
  472. 472.
    Ghostine RA, Markarian MZ, Schlenoff JB (2013) Asymmetric growth in polyelectrolyte multilayers. J Am Chem Soc 135:7636–7646Google Scholar
  473. 473.
    Farhat TR, Schlenoff JB (2003) Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers. J Am Chem Soc 125:4627–4636Google Scholar
  474. 474.
    Han S, Lindholm-Sethson B (1999) Electrochemistry at ultrathin polyelectrolyte films self-assembled at planar gold electrodes. Electrochim Acta 45:845–853Google Scholar
  475. 475.
    El Haitami AE, Martel D, Ball V, Nguyen HC, Gonthier E, Labbe P, Voegel J-C, Schaaf P, Senger B, Boulmedais F (2009) Effect of the supporting electrolyte anion on the thickness of PSS/PAH multilayer films and on their permeability to an electroactive probe. Langmuir 25:2282–2289Google Scholar
  476. 476.
    Silva TH, Garcia-Morales V, Moura C, Manzanares JA, Silva F (2005) Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified gold electrodes: influence of supporting electrolyte and temperature. Langmuir 21:7461–7467Google Scholar
  477. 477.
    Zahn R, Boulmedais F, Vörös J, Schaaf P, Zambelli T (2010) Ion and solvent exchange processes in PGA/PAH polyelectrolyte multilayers containing ferrocyanide. J Phys Chem B 114:3759–3768Google Scholar
  478. 478.
    Zahn R, Coullerez G, Vörös J, Zambelli T (2012) Effect of polyelectrolyte interdiffusion on electron transport in redox-active polyelectrolyte multilayers. J Mater Chem 22:11073–11078Google Scholar
  479. 479.
    Roy X, Hui JKH, Rabnawaz M, Liu G, MacLachlan MJ (2011) Prussian blue nanocontainers: selectively permeable hollow metal-organic capsules from block ionomer emulsion-induced assembly. J Am Chem Soc 133:8420–8423Google Scholar
  480. 480.
    Laugel N, Boulmedais F, El Haitami AE, Rabu P, Rogez G, Voegel J-C, Schaaf P, Ball V (2009) Tunable synthesis of Prussian blue in exponentially growing polyelectrolyte multilayer films. Langmuir 25:14030–14036Google Scholar
  481. 481.
    Wood K, Zacharia NS, Schimidt DJ, Wrightman SN, Andaya BJ, Hammond PT (2008) Electroactive controlled release thin films. Proc Natl Acad Sci USA 105:2280–2285Google Scholar
  482. 482.
    DeLongchamp DM, Hammond PT (2004) High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv Funct Mater 14:224–232Google Scholar
  483. 483.
    Schmidt DJ, Cebeci FC, Kalcioglu ZI, Wyman SG, Ortiz C, Van Vliet KJ, Hammond PT (2009) Electrochemically controlled swelling and mechanical properties of a polymer nanocomposite. ACS Nano 3:2207–2216Google Scholar
  484. 484.
    Shariki S, Cox OTL, Tickell DA, Pereira Morais MP, van den Elsen JMH, James TD, Dale SEC, Bending S, Marken F (2012) Coil-by-coil assembly of poly[acrylamide-co-3-(methacryl-amido)-phenylboronic acid] with polydiallyldimethyl-ammonium to give alizarin red S responsive films. J Mater Chem 22:18999–19006Google Scholar
  485. 485.
    Gromova MS, Sigolaeva LV, Fastovets MA, Evtushenko EG, Babin IA, Pergushov DV, Amitonov SV, Eremenko AV, Kurochkin IN (2011) Improved adsorption of choline oxidase on a polyelectrolyte LBL film in the presence of iodide anions. Soft Matter 7:7404–7409Google Scholar
  486. 486.
    Chen J, Tran TO, Ray MT, Brunski DB, Keay JC, Hickey D, Johnson MB, Glatzhofer DT, Schmidtke DW (2013) Effect of surfactant type and redox polymer type on single-walled carbon nanotube modified electrodes. Langmuir 29:10586–10595Google Scholar
  487. 487.
    Sigolaeva LV, Pergushov DV, Synatschke CV, Wolf A, Dewald I, Kurochkin IN, Fery A, Müller AHE (2013) Co-assemblies of micelle-forming diblock copolymers and enzymes on graphite substrate for an improved design of biosensor systems. Soft Matter 9:2858–2868Google Scholar
  488. 488.
    Araque E, Villalonga R, Gamella M, Martinez-Ruiz P, Reviejo J, Pingarron JM (2013) Crumpled reduced graphene oxide-polyamidoamine dendrimer hybrid nanoparticles for the preparation of an electrochemical biosensor. J Mater Chem B 1:2289–2296Google Scholar
  489. 489.
    Fang Y, Wang E (2013) Electrochemical biosensors on platforms of graphene. Chem Commun 49:9526–9539Google Scholar
  490. 490.
    Cosnier S, Holzinger M (2011) Electrosynthesized polymers for biosensing. Chem Soc Rev 40:2146–2156Google Scholar
  491. 491.
    Tokue H, Oyaizu K, Sukegawa T, Nishide H (2014) TEMPO/viologen electrochemical heterojunction for diffusion-controlled redox mediation: a highly rectifying bilayer-sandwiched device based on cross-reaction at the interface between dissimilar redox polymers. ACS Appl Mater Interfaces 6:4043–4049Google Scholar
  492. 492.
    Kamogawa H, Katsuta S, Masato N (1982) Organic solid photochromism by photoreduction mechanism: thionine-reductant system. J Appl Polym Sci 27:1621–1628Google Scholar
  493. 493.
    Kamogawa H, Masui T, Amemiya S (1984) Organic solid photochromism by photoreduction mechanism: viologen embedded in solid polar aprotic polymer matrix. J Polym Sci Polym Chem Ed 22:383–390Google Scholar
  494. 494.
    Kamogawa H, Amemiya S (1985) Organic solid photochromism by photoreduction mechanism: polar aprotic viologen copolymers. J Polym Sci Polym Chem Ed 23:2413–2423Google Scholar
  495. 495.
    Kamogawa H, Sato S (1988) Organic solid photochromism by photoreduction mechanism: aryl viologens embedded in poly(N-vinyl-2-pyrrolidone). J Polym Sci Part A Polym Chem 26:653–656Google Scholar
  496. 496.
    Jain V, Yochum H, Wang H, Montazami R, Hurtado MAV, Mendoza-Galvan A, Gibson HW, Heflin JR (2008) Solid-state electrochromic devices via ionic self-assembled multilayers (ISAM) of a polyviologen. Macromol Chem Phys 209:150–157Google Scholar
  497. 497.
    Ko HC, Kim S, Lee H, Moon B (2005) Multicolored electrochromism of a poly{1,4-bis[2-(3,4-ethylenedioxy)thienyl]benzene} derivative bearing viologen functional groups. Adv Funct Mater 15:905–909Google Scholar
  498. 498.
    Krompiec M, Grudzka I, Filapek M, Skorka L, Krompiec S, Lapkowski M, Kania M, Danikiewicz W (2011) An electrochromic diquat-quaterthiophene alternating copolymer: a polythiophene with a viologen-like moiety in the main chain. Electrochim Acta 56:8108–8114Google Scholar
  499. 499.
    Goto H (2013) Crystal-liquid crystal ordered double layer electroactive polymer prepared with phase transition sequential polymerization, showing metallic electrochromism-bronze, silver, and gold. J Polym Sci Part A Polym Chem 51:3097–3102Google Scholar
  500. 500.
    Akahoshi H, Toshima S, Itaya K (1981) Electrochemical and spectroelectrochemical properties of polyviologen complex modified electrodes. J Phys Chem 85:818–822Google Scholar
  501. 501.
    Laurent D, Schlenoff JB (1997) Multilayer assemblies of redox polyelectrolytes. Langmuir 13:1552–1557Google Scholar
  502. 502.
    Stepp J, Schlenoff JB (1997) Electrochromism and electrocatalysis in viologen polyelectrolyte multilayers. J Electrochem Soc 144:L155–L157Google Scholar
  503. 503.
    Oyama N, Oki N, Ohno H, Ohnuki Y, Matsuda H, Tsuchida E (1983) Electrocatalytic reduction of oxygen by poly(viologen)-poly(sulfonate) complex coated on graphite electrodes. J Phys Chem 87:3642–3647Google Scholar
  504. 504.
    Schlenoff JB, Laurent D, Ly H, Stepp J (1998) Redox-active polyelectrolyte multilayers. Adv Mater 10:347–349Google Scholar
  505. 505.
    Schlenoff JB, Laurent D, Ly H, Stepp J (1998) Redox-active polyelectrolyte multilayers. Chem Eng Technol 21:757–759Google Scholar
  506. 506.
    Rochat S, Swager TM (2013) Water-soluble cationic conjugated polymers: response to electron-rich bioanalytes. J Am Chem Soc 135:17703–17706Google Scholar
  507. 507.
    Reisch A, Moussallem MD, Schlenoff JB (2011) Electrochemically addressed cross-links in polyelectrolyte multilayers: cyclic duravoltammetry. Langmuir 27:9418–9424Google Scholar
  508. 508.
    Takahashi S, Aikawa Y, Kudo T, Ono T, Kashiwagi Y, Anzai J-I (2014) Electrochemical decomposition of layer-by-layer thin films composed of TEMPO-modified poly(acrylic acid) and poly(ethyleneimine). Colloid Polym Sci 292:771–776Google Scholar
  509. 509.
    Mori M, Ishihara M, Okumura J, Yamaguchi K, Nakamae K (2003) Immobilization of viologen moieties on poly(acrylic acid)-grafted polyethylene surface. Sen’i Gakkaishi 59:260–265Google Scholar
  510. 510.
    Ng SW, Neoh KG, Wong YT, Sampanthar JT, Kang ET, Tan KL (2001) Surface graft copolymerization of viologens on polymeric substrates. Langmuir 17:1766–1772Google Scholar
  511. 511.
    Liu X, Neoh KG, Kang ET (2004) Synthesis and characterization of viologen-containing polyvinylidene fluoride redox-sensitive membranes. Surf Interface Anal 36:1037–1040Google Scholar
  512. 512.
    Liu X, Neoh KG, Kang ET (2003) Redox-sensitive microporous membranes prepared from poly(vinylidene fluoride) grafted with viologen-containing polymer side chains. Macromolecules 36:8361–8367Google Scholar
  513. 513.
    Shimomura M, Utsugi K, Horikoshi J, Okuyama K, Hatozaki O, Oyama N (1991) Two-dimensional ordering of viologen polymers fixed on charged surface of bilayer membranes: a peculiar odd-even effect on redox potential and absorption spectrum. Langmuir 7:760–765Google Scholar
  514. 514.
    Shimomura M, Utsugi K, Okuyama K (1986) Odd-even effect on absorption spectra of reduced viologen ionene polymers complexed with anionic bilayer membranes. J Chem Soc Chem Commun 1986(24):1805–1807Google Scholar
  515. 515.
    Sato K, Nakahodo T, Fujihara H (2011) Redox-active π-conjugated polymer nanotubes with viologen for encapsulation and release of fluorescent dye in the nanospace. Chem Commun 47:10067–10069Google Scholar
  516. 516.
    Pfeifer KB, Hughes RC, Jenkins MW, Schneider TW (1999) Viologen polymer-coated impedance sensors for midrange humidity levels and other volatile organic compounds. J Electrochem Soc 146:794–799Google Scholar
  517. 517.
    Willman KW, Murray RW (1982) Viologen homopolymer, polymer mixture and polymer bilayer films on electrodes. Electropolymerization, electrolysis, spectroelectrochemistry, trace analysis and photoreduction. J Electroanal Chem Interfacial Electrochem 133:211–231Google Scholar
  518. 518.
    Wang N, Damlin P, Esteban BM, Aaritalo T, Kankare J, Kvarnstrom C (2013) Electrochemical synthesis and characterization of copolyviologen films. Electrochim Acta 90:171–178Google Scholar
  519. 519.
    Kelaidopoulou A, Kokkinidis G, Coutouli-Argyropoulou E (1998) Electrochemical behavior of N-methyl-N-(3-indol-1-yl-propyl)-4,4′-bipyridinium. Anodic polymerization and redox properties of the viologen unit of monomer and polymer film. Electrochim Acta 43:987–997Google Scholar
  520. 520.
    Chang K-C, Lu H-I, Peng C-W, Lai M-C, Hsu S-C, Hsu M-H, Tsai Y-K, Chang C-H, Hung W-I, Wei Y, Yeh J-M (2013) Nanocasting technique to prepare lotus-leaf-like superhydrophobic electroactive polyimide as advanced anticorrosive coatings. ACS Appl Mater Interfaces 5:1460–1467Google Scholar
  521. 521.
    Yeh L-C, Huang T-C, Huang Y-P, Huang H-Y, Chen H-H, Yang T-I, Yeh J-M (2013) Synthesis electroactive polyurea with aniline-pentamer-based in the main chain and its application in electrochemical sensor. Electrochim Acta 94:300–306Google Scholar
  522. 522.
    Golriz AA, Kaule T, Untch MB, Kolman K, Berger R, Gutmann JS (2013) Redox active polymer brushes with phenothiazine moieties. ACS Appl Mater Interfaces 5:2485–2494Google Scholar
  523. 523.
    Inzelt G, Day RW, Kinstle JF, Chambers JQ (1983) Electrochemistry and electron spin resonance of tetracyanoquinodimethane modified electrodes. Evidence for mixed-valence radical anions in the reduction process. J Phys Chem 87:4592–4598Google Scholar
  524. 524.
    Inzelt G, Chambers JQ, Kinstle JF, Day RW (1984) Protonation equilibria and charge transport in electroactive tetracyanoquinodimethane polymer films. J Am Chem Soc 106:3396–3401Google Scholar
  525. 525.
    Inzelt G, Bacskai J, Chambers JQ, Day RW (1986) The effect of the counter ion concentration on the electrochemistry of tetracyanoquinodimethane polymer film electrodes. J Electroanal Chem Interfacial Electrochem 201:301–314Google Scholar
  526. 526.
    Inzelt G, Szabo L, Chambers JQ, Day RW (1988) Cyclic voltammetric and potentiometric behavior of tetracyanoquinodimethane polymer film electrodes. Effect of the nature and the concentration of the supporting electrolyte. J Electroanal Chem Interfacial Electrochem 242:265–275Google Scholar
  527. 527.
    Inzelt G, Horanyi G, Chambers JQ (1987) Radiotracer study of the sorption of counter- and co-ions in tetracyanoquinodimethane and poly(vinylferrocene) modified electrodes. Electrochim Acta 32:757–763Google Scholar
  528. 528.
    Joo P, Chambers JQ (1985) Solvent effects on the electrochemistry of tetracyanoquinodimethane polymer modified electrodes. J Electrochem Soc 132:1345–1350Google Scholar
  529. 529.
    Karimi H, Chambers JQ (1987) Electrochemistry of tetracyanoquinodimethane polymer-modified electrodes. Effect of polymer film composition on site-site interactions. J Electroanal Chem Interfacial Electrochem 217:313–329Google Scholar
  530. 530.
    Shelton RD, Chambers JQ, Schneider W (1991) Preconcentration and voltammetric determination of silver at TCNQ polymer film electrodes. J Electroanal Chem Interfacial Electrochem 305:217–228Google Scholar
  531. 531.
    Yzambart G, Fabre B, Camerel F, Roisnel T, Lorcy D (2012) Controlled grafting of tetrathiafulvalene (TTF) containing diacetylenic units on hydrogen-terminated silicon surfaces: from redox-active TTF monolayer to polymer films. J Phys Chem C 116:12093–12102Google Scholar
  532. 532.
    Tamaki T, Ito T, Yamaguchi T (2007) Immobilization of hydroquinone through a spacer to polymer grafted on carbon black for a high-surface-area biofuel cell electrode. J Phys Chem B 111:10312–10319Google Scholar
  533. 533.
    Novak P, Müller K, Santhanam KSV, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281Google Scholar
  534. 534.
    Nishide H, Iwasa S, Pu Y-J, Suga T, Nakahara K, Satoh M (2004) Organic radical battery: nitroxide polymers as a cathode-active material. Electrochim Acta 50:827–831Google Scholar
  535. 535.
    Hung M-K, Wang Y-H, Lin C-H, Lin H-C, Lee J-T (2012) Synthesis and electrochemical behaviour of nitroxide polymer brush thin-film electrodes for organic radical batteries. J Mater Chem 22:1570–1577Google Scholar
  536. 536.
    Chae IS, Koyano M, Sukegawa T, Oyaizu K, Nishide H (2013) Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li + host material in a Li-ion battery. J Mater Chem A 1:9608–9611Google Scholar
  537. 537.
    Cao L, Sadaf S, Beladi-Mousavi SM, Walder L (2013) PolyTEMPO and polyviologen on carbon nanotubes: syntheses, structures and organic battery applications. Eur Polym J 49:1923–1934Google Scholar
  538. 538.
    Hyakutake T, Park JY, Yonekuta Y, Oyaizu K, Nishide H, Advincula R (2010) Nanolithographic patterning via electrochemical oxidation of stable poly(nitroxide radical)s to poly(oxoammonium salt)s. J Mater Chem 20:9616–9618Google Scholar
  539. 539.
    Shi P, Amb CM, Dyer AL, Reynolds JR (2012) Fast switching water processable electrochromic polymers. ACS Appl Mater Interfaces 4:6512–6521Google Scholar
  540. 540.
    Welterlich I, Charov O, Tieke B (2012) Deeply colored polymers containing 1,3,4,6-tetraarylpyrrolo[3,2-b]pyrrole-2,5-dione (IsoDPP) units in the main chain. Macromolecules 45:4511–4519Google Scholar
  541. 541.
    Akpinar HZ, Udum YA, Toppare L (2013) Spray-processable thiazolothiazole-based copolymers with altered donor groups and their electrochromic properties. J Polym Sci Part A Polym Chem 51:3901–3906Google Scholar
  542. 542.
    Guo B, Finne-Wistrand A, Albertsson A-C (2012) Electroactive hydrophilic polylactide surface by covalent modification with tetraaniline. Macromolecules 45:652–659Google Scholar
  543. 543.
    Huang L-T, Yen H-J, Liou G-S (2011) Substituent effect on electrochemical and electrochromic behaviors of ambipolar aromatic polyimides based on aniline derivatives. Macromolecules 44:9595–9610Google Scholar
  544. 544.
    Maier A, Tieke B (2012) Coordinative layer-by-layer assembly of electrochromic thin films based on metal ion complexes of terpyridine-substituted polyaniline derivatives. J Phys Chem B 116:925–934Google Scholar
  545. 545.
    Weinberger DA, Higgins TB, Mirkin CA, Liable-Sands LM, Rheingold AL (1999) Terthienyl-based redox-switchable hemilabile ligands: transition metal polymeric complexes with electrochemically tunable or switchable coordination environments? Angew Chem Int Ed 38:2565–2568Google Scholar
  546. 546.
    Laslau C, Williams DE, Wright BE, Travas-Sejdic J (2011) Measuring the ionic flux of an electrochemically actuated conducting polymer using modified scanning ion conductance microscopy. J Am Chem Soc 133:5748–5751Google Scholar
  547. 547.
    Ma M, Guo L, Anderson DG, Langer R (2013) Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339:186–189Google Scholar
  548. 548.
    Li J, Aoki K (1998) Electrochemical gelation of poly(3-hexylthiophene) film. J Electroanal Chem 453:107–112Google Scholar
  549. 549.
    Tatsuma T, Hioki Y, Oyama N (1995) Dependence of swelling behavior and electrochemical activity of water-soluble polythiophene films on the nature of the electrolyte. J Electroanal Chem 396:371–376Google Scholar
  550. 550.
    Homma T, Kondo M, Kuwahara T, Shimomura M (2012) Electrochemical polymerization of aniline in the presence of poly(acrylic acid) and characterization of the resulting films. Polymer 53:223–228Google Scholar
  551. 551.
    Zhang K, Tieke B, Forgie JC, Vilela F, Skabara PJ (2012) Donor-acceptor conjugated polymers based on p- and o-benzodifuranone and thiophene derivatives: electrochemical preparation and optical and electronic properties. Macromolecules 45:743–750Google Scholar
  552. 552.
    Vorotyntsev MA, Konev DV, Devillers CH, Bezverkhyy I, Heintz O (2010) Magnesium(II) polyporphine: the first electron-conducting polymer with directly linked unsubstituted porphyrin units obtained by electrooxidation at a very low potential. Electrochim Acta 55:6703–6714Google Scholar
  553. 553.
    Chen J, Wagner P, Tong L, Wallace GG, Officer DL, Swiegers GF (2012) A porphyrin-doped polymer catalyzes selective, light-assisted water oxidation in seawater. Angew Chem Int Ed 51:1907–1910Google Scholar
  554. 554.
    Moteki S, Sykes AG (1998) Synthetic and electrochemical studies of anthraquinone-substituted poly(pyrrole) films. J Electroanal Chem 447:91–95Google Scholar
  555. 555.
    Li M, Ishihara S, Akada M, Liao M, Sang L, Hill JP, Krishnan V, Ma Y, Ariga K (2011) Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. J Am Chem Soc 133:7348–7351Google Scholar
  556. 556.
    Gelmi A, Higgins MJ, Wallace GG (2013) Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers. Small 9:393–401Google Scholar
  557. 557.
    Maynor BW, Filocamo SF, Grinstaff MW, Liu J (2002) Direct-writing of polymer nanostructures: poly(thiophene) nanowires on semiconducting and insulating surfaces. J Am Chem Soc 124:522–523Google Scholar
  558. 558.
    Huang K, Anne A, Bahri MA, Demaille C (2013) Probing individual redox PEGylated gold nanoparticles by electrochemical-atomic force microscopy. ACS Nano 7:4151–4163Google Scholar
  559. 559.
    Kang K, Lee S, Kim R, Choi IS, Nam Y (2012) Electrochemically driven, electrode-addressable formation of functionalized polydopamine films for neural interfaces. Angew Chem Int Ed 51:13101–13104Google Scholar
  560. 560.
    Corona-Avendano S, Ramirez-Silva MT, Romero-Romo M, Rojas-Hernandez A, Palomar-Pardave M (2013) Influence of the HClO4 concentration on the β-CD electropolimerization over a carbon paste electrode and on dopamine’s electrochemical response. Electrochim Acta 89:854–860Google Scholar
  561. 561.
    Kaneto K, Sonoda Y, Takashima W (2000) Direct measurement and mechanism of electro-chemomechanical expansion and contraction in polypyrrole films. Jpn J Appl Phys Part 1(39):5918–5922Google Scholar
  562. 562.
    Sonoda Y, Takashima W, Kaneto K (2001) Characteristics of soft actuators based on polypyrrole films. Synth Met 119:267–268Google Scholar
  563. 563.
    Smela E, Gadegaard N (1999) Surprising volume change in PPy/DBS. An atomic force microscopy study. Adv Mater 11:953–957Google Scholar
  564. 564.
    Strover LT, Malmstrom J, Laita O, Reynisson J, Aydemir N, Nieuwoudt MK, Williams DE, Dunbar PR, Brimble MA, Travas-Sejdic J (2013) A new precursor for conducting polymer-based brush interfaces with electroactivity in aqueous solution. Polymer 54:1305–1317Google Scholar
  565. 565.
    Malmstrom J, Nieuwoudt MK, Strover LT, Hackett A, Laita O, Brimble MA, Williams DE, Travas-Sejdic J (2013) Grafting from poly(3,4-ethylenedioxythiophene): a simple route to versatile electrically addressable surfaces. Macromolecules 46:4955–4965Google Scholar
  566. 566.
    Pei Y, Travas-Sejdic J, Williams DE (2012) Reversible electrochemical switching of polymer brushes grafted onto conducting polymer films. Langmuir 28:8072–8083Google Scholar
  567. 567.
    Pei Y, Travas-Sedjic J, Williams DE (2012) Electrochemical switching of conformation of random polyampholyte brushes grafted onto polypyrrole. Langmuir 28:13241–13248Google Scholar
  568. 568.
    Hansen TS, Daugaard AE, Hvilsted S, Larsen NB (2009) Spatially selective functionalization of conducting polymers by “electroclick” chemistry. Adv Mater 21:4483–4486Google Scholar
  569. 569.
    Hansen TS, Lind JU, Daugaard AE, Hvilsted S, Andresen TL, Larsen NB (2010) Complex surface concentration gradients by stenciled “electro click chemistry”. Langmuir 26:16171–16177Google Scholar
  570. 570.
    Inagi S, Nagai H, Tomita I, Fuchigami T (2013) Parallel polymer reactions of a polyfluorene derivative by electrochemical oxidation and reduction. Angew Chem Int Ed 52:6616–6619Google Scholar
  571. 571.
    Abidian MR, Kim D-H, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18:405–409Google Scholar
  572. 572.
    Weaver CL, LaRosa JM, Luo X, Cui XT (2014) Electrically controlled drug delivery from graphene oxide nanocomposite films. ACS Nano 8:1834–1843Google Scholar
  573. 573.
    Svirskis D, Travas-Sejdic J, Rodgers A, Garg S (2010) Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release 146:6–15Google Scholar
  574. 574.
    Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31:2701–2716Google Scholar
  575. 575.
    Green RA, Baek S, Poole-Warren LA, Martens PJ (2010) Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater 11:014107Google Scholar
  576. 576.
    Daum P, Murray RW (1979) Chemically modified electrodes. Part XXII. Solvent effects on the electrochemistry of thin films of plasma polymerized vinylferrocene. J Electroanal Chem Interfacial Electrochem 103:289–294Google Scholar
  577. 577.
    Daum P, Murray RW (1981) Charge-transfer diffusion rates and activity relationships during oxidation and reduction of plasma-polymerized vinylferrocene films. J Phys Chem 85:389–396Google Scholar
  578. 578.
    Akhoury A, Bromberg L, Hatton TA (2013) Interplay of electron hopping and bounded diffusion during charge transport in redox polymer electrodes. J Phys Chem B 117:333–342Google Scholar
  579. 579.
    Anne AS, Demaille C, Moiroux J (2002) Terminal attachment of polyethylene glycol (PEG) chains to a gold electrode surface. Cyclic voltammetry applied to the quantitative characterization of the flexibility of the attached PEG chains and of their penetration by mobile PEG chains. Macromolecules 35:5578–5586Google Scholar
  580. 580.
    Anne A, Bahri MA, Chovin A, Demaille C, Taofifenua C (2014) Probing the conformation and 2D-distribution of pyrene-terminated redox-labeled poly(ethylene glycol) chains end-adsorbed on HOPG using cyclic voltammetry and atomic force electrochemical microscopy. Phys Chem Chem Phys 16:4642–4652Google Scholar
  581. 581.
    Kim B-Y, Ratcliff EL, Armstrong NR, Kowalewski T, Pyun J (2010) Ferrocene functional polymer brushes on indium tin oxide via surface-initiated atom transfer radical polymerization. Langmuir 26:2083–2092Google Scholar
  582. 582.
    Sakakiyama T, Ohkita H, Ohoka M, Ito S, Tsujii Y, Fukuda T (2005) Fabrication and electrochemical properties of high-density graft films with ferrocene moieties on ITO substrates. Chem Lett 34:1366–1367Google Scholar
  583. 583.
    Xu LQ, Wan D, Gong HF, Neoh K-G, Kang E-T, Fu GD (2010) One-pot preparation of ferrocene-functionalized polymer brushes on gold substrates by combined surface-initiated atom transfer radical polymerization and “click chemistry”. Langmuir 26:15376–15382Google Scholar
  584. 584.
    Peter M, Hempenius MA, Kooij ES, Jenkins TA, Roser SJ, Knoll W, Vancso GJ (2004) Electrochemically induced morphology and volume changes in surface-grafted poly(ferrocenyldimethylsilane) monolayers. Langmuir 20:891–897Google Scholar
  585. 585.
    Kutner W, Doblhofer K (1992) Simultaneous cyclic voltammetry and electrochemical quartz-crystal microbalance study at polymer film-modified electrodes of molecular inclusion of ferrocene by β-cyclodextrin polymer and carboxymethylated β-cyclodextrin polymer as well as ferrocenecarboxylic acid by β-cyclodextrin polymer. J Electroanal Chem 326:139–160Google Scholar
  586. 586.
    Hempenius MA, Peter M, Robins NS, Kooij ES, Vancso GJ (2002) Water-soluble poly(ferrocenylsilanes) for supramolecular assemblies by layer-by-layer deposition. Langmuir 18:7629–7634Google Scholar
  587. 587.
    Song J, Janczewski D, Ma Y, van Ingen L, Ee Sim C, Goh Q, Xu J, Vancso GJ (2013) Electrochemically controlled release of molecular guests from redox responsive polymeric multilayers and devices. Eur Polym J 49:2477–2484Google Scholar
  588. 588.
    Song J, Janczewski D, Ma Y, Hempenius M, Xu J, Vancso GJ (2013) Redox-controlled release of molecular payloads from multilayered organometallic polyelectrolyte films. J Mater Chem B 1:828–834Google Scholar
  589. 589.
    Sun Y-X, Ren K-F, Wang J-L, Chang G-X, Ji J (2013) Electrochemically controlled stiffness of multilayers for manipulation of cell adhesion. ACS Appl Mater Interfaces 5:4597–4602Google Scholar
  590. 590.
    Sun Y-X, Ren K-F, Zhao Y-X, Liu X-S, Chang G-X, Ji J (2013) Construction of redox-active multilayer film for electrochemically controlled release. Langmuir 29:11163–11168Google Scholar
  591. 591.
    Song J, Janczewski D, Ma Y, Hempenius M, Xu J, Vancso GJ (2013) Disassembly of redox responsive poly(ferrocenylsilane) multilayers: the effect of blocking layers, supporting electrolyte and polyion molar mass. J Colloid Interface Sci 405:256–261Google Scholar
  592. 592.
    Feng X, Cumurcu A, Sui X, Song J, Hempenius MA, Vancso GJ (2013) Covalent layer-by-layer assembly of redox-active polymer multilayers. Langmuir 29:7257–7265Google Scholar
  593. 593.
    Aoki A, Miyashita T (1999) A structural effect on electrochemical behavior of hetero-deposited redox polymer Langmuir-Blodgett films containing ferrocene and tris(bipyridine)ruthenium derivatives. J Electroanal Chem 473:125–131Google Scholar
  594. 594.
    Aoki A, Miyashita T (1996) Electrochemical behavior of hetero-deposited redox polymer Langmuir-Blodgett films with ferrocene and tris(bipyridine)ruthenium derivatives. Chem Lett 25(7):563–564Google Scholar
  595. 595.
    Denisevich P, Willman KW, Murray RW (1981) Unidirectional current flow and charge state trapping at redox polymer interfaces on bilayer electrodes: principles, experimental demonstration, and theory. J Am Chem Soc 103:4727–4737Google Scholar
  596. 596.
    Matsui J, Shimada T, Miyashita T (2011) Electrochemical charging and photochemical discharging in heterodeposited polymer nanosheet assembly. J Mater Chem 21:17498–17504Google Scholar
  597. 597.
    Cheng Z, Ren B, Zhao D, Liu X, Tong Z (2009) Novel thermotropic liquid crystalline and redox-active complexes of ionically self-assembled poly(ferrocenylsilane) and dendritic amphiphiles. Macromolecules 42:2762–2766Google Scholar
  598. 598.
    Li F, Pandey B, Ito T (2012) Linker-based control of electron propagation through ferrocene moieties covalently anchored onto insulator-based nanopores derived from a polystyrene-poly(methylmethacrylate) diblock copolymer. Langmuir 28:16496–16500Google Scholar
  599. 599.
    Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A (2014) Thin films: polymer-modified mesoporous silica thin films for redox-mediated selective membrane gating. Adv Funct Mater 24:1493Google Scholar
  600. 600.
    Meredith MT, Hickey DP, Redemann JP, Schmidtke DW, Glatzhofer DT (2013) Effects of ferrocene methylation on ferrocene-modified linear poly(ethylenimine) bioanodes. Electrochim Acta 92:226–235Google Scholar
  601. 601.
    Meredith MT, Kao D-Y, Hickey D, Schmidtke DW, Glatzhofer DT (2011) High current density ferrocene-modified linear poly(ethylenimine) bioanodes and their use in biofuel cells. J Electrochem Soc 158:B166–B174Google Scholar
  602. 602.
    Bunte C, Rühe J (2009) Photochemical generation of ferrocene-based redox-polymer networks. Macromol Rapid Commun 30:1817–1822Google Scholar
  603. 603.
    Zhang S, Yang W, Niu Y, Sun C (2004) Multilayered construction of glucose oxidase and poly(allylamine)ferrocene on gold electrodes by means of layer-by-layer covalent attachment. Sens Actuators B 101:387–393Google Scholar
  604. 604.
    Cass AEG, Davis G, Francis GD, Hill HAO, Aston WJ, Higgins IJ, Plotkin EV, Scott LDL, Turner APF (1984) Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal Chem 56:667–671Google Scholar
  605. 605.
    Patel H, Li X, Karan HI (2003) Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems-a preliminary report. Biosens Bioelectron 18:1073–1076Google Scholar
  606. 606.
    Gülce A, Gülce H (2005) Polyvinylferrocenium modified Pt electrode for anaerobic glucose monitoring. J Biochem Biophys Methods 62:81–92Google Scholar
  607. 607.
    Zhang ZB, Yuan SJ, Zhu XL, Neoh KG, Kang ET (2010) Enzyme-mediated amperometric biosensors prepared via successive surface-initiated atom-transfer radical polymerization. Biosens Bioelectron 25:1102–1108Google Scholar
  608. 608.
    Nagel B, Warsinke A, Katterle M (2007) Enzyme activity control by responsive redoxpolymers. Langmuir 23:6807–6811Google Scholar
  609. 609.
    Saito T, Watanabe M (1998) Characterization of poly(vinylferrocene-co-2-hydroxyethyl methacrylate) for use as electron mediator in enzymic glucose sensor. React Funct Polym 37:263–269Google Scholar
  610. 610.
    Saito T, Watanabe M (1999) Electron transfer reaction from glucose oxidase to an electrode via redox copolymers. Polym J 31:1149–1154Google Scholar
  611. 611.
    Deng S, Lei J, Liu Y, Huang Y, Ju H (2013) A ferrocenyl-terminated dendrimer as an efficient quencher via electron and energy transfer for cathodic electrochemiluminescent bioanalysis. Chem Commun 49:2106–2108Google Scholar
  612. 612.
    Song J, Vancso GJ (2011) Responsive organometallic polymer grafts: electrochemical switching of surface properties and current mediation behavior. Langmuir 27:6822–6829Google Scholar
  613. 613.
    Zeng Q, McNally A, Keyes TE, Forster RJ (2008) Redox induced switching dynamics of a three colour electrochromic metallopolymer film. Electrochim Acta 53:7033–7038Google Scholar
  614. 614.
    Lu Y (2010) Preparation of novel polypyridyl ruthenium complex polymers with high sensitivity for electrogenerated chemiluminescence via copolymerization. Photochem Photobiol Sci 9:392–397Google Scholar
  615. 615.
    Abruna HD, Bard AJ (1982) Electrogenerated chemiluminescence. 40. A chemiluminescent polymer based on the tris(4-vinyl-4′-methyl-2,2′-bipyridyl)ruthenium(II) system. J Am Chem Soc 104:2641–2642Google Scholar
  616. 616.
    Tagliazucchi M, Calvo EJ (2010) Charge transport in redox polyelectrolyte multilayer films: the dramatic effects of outmost layer and solution ionic strength. ChemPhysChem 11:2957–2968Google Scholar
  617. 617.
    Cassidy JF, Vos JG (1987) Polymer-modified electrodes. Part V. The use of hydrodynamically modulated rotating-disk electrodes in the study of the mediated oxidation of hexacyanoferrate(4-) at ruthenium-containing polymer-modified electrodes. J Electroanal Chem Interfacial Electrochem 218:341–345Google Scholar
  618. 618.
    Cassidy JF, Vos JG (1988) Polymer modified electrodes. VI. Nonstationary processes at polymer-coated rotating disk electrodes. A study of [Ru(bpy)2Cl(PVP)5]Cl films as three-dimensional mediators. J Electrochem Soc 135:863–868Google Scholar
  619. 619.
    Cassidy JF, Ross AG, Vos JG (1986) An electrochemical study of the oxidation of ferrocyanide mediated by electrodes modified with ruthenium-containing polymers. Anal Chem Symp Ser 25:269–276Google Scholar
  620. 620.
    Ikeda T, Leidner CR, Murray RW (1982) Kinetics of electron transfer reactions of metal complexes at impermeable redox active polymeric films on electrode surfaces and charge transport within the polymer film. J Electroanal Chem Interfacial Electrochem 138:343–365Google Scholar
  621. 621.
    Leidner CR, Murray RW (1984) Electron-transfer reactions of iron, ruthenium, and osmium bipyridine and phenanthroline complexes at polymer/solution interfaces. J Am Chem Soc 106:1606–1614Google Scholar
  622. 622.
    Kang H, Liu R, Sun H, Zhen J, Li Q, Huang Y (2012) Osmium bipyridine-containing redox polymers based on cellulose and their reversible redox activity. J Phys Chem B 116:55–62Google Scholar
  623. 623.
    Xue C, Luo F-T, Chen J, Liu H (2006) Synthesis and biosensing application of highly water-soluble and cross-linkable poly(p-phenyleneethynylene) containing osmium(II) complex and aldehyde groups. Anal Chim Acta 569:27–34Google Scholar
  624. 624.
    Forzani ES, Perez MA, Teijelo ML, Calvo EJ (2002) Redox driven swelling of layer-by-layer enzyme-polyelectrolyte multilayers. Langmuir 18:9867–9873Google Scholar
  625. 625.
    Tagliazucchi M, Grumelli D, Calvo EJ (2006) Nanostructured modified electrodes: role of ions and solvent flux in redox active polyelectrolyte multilayer films. Phys Chem Chem Phys 8:5086–5095Google Scholar
  626. 626.
    Calvo EJ, Forzani E, Otero M (2002) Gravimetric and viscoelastic changes during the oxidation-reduction of layer-by-layer self assembled enzyme multilayers wired by an Os-containing poly(allylamine) polymer. J Electroanal Chem 538–539:231–241Google Scholar
  627. 627.
    Grumelli DE, Garay F, Barbero CA, Calvo EJ (2006) Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte. J Phys Chem B 110:15345–15352Google Scholar
  628. 628.
    Tagliazucchi M, Calvo EJ, Szleifer I (2008) Molecular theory of chemically modified electrodes by redox polyelectrolytes under equilibrium conditions: comparison with experiment. J Phys Chem C 112:458–471Google Scholar
  629. 629.
    Tagliazucchi M, Williams FJ, Calvo EJ (2007) Effect of acid–base equilibria on the Donnan potential of layer-by-layer redox polyelectrolyte multilayers. J Phys Chem B 111:8105–8113Google Scholar
  630. 630.
    Tagliazucchi M, Calvo EJ, Szleifer I (2008) Redox and acid–base coupling in ultrathin polyelectrolyte films. Langmuir 24:2869–2877Google Scholar
  631. 631.
    Geraty S, Vos JG (1984) Polymer modified electrodes. Part III. Characterization, electrochemical and photochemical properties of ruthenium containing poly(N-vinylimidazole) coatings. J Electroanal Chem Interfacial Electrochem 176:389–393Google Scholar
  632. 632.
    Brown KL, Hou X, Banks O, Krueger KA, Hinson J, Peaslee GF, DeYoung PA, Alger SM, Benzer J, Neils TL (2011) Characterization of tris (5-amino-1,10-phenanthroline) ruthenium(II/III) polymer films using cyclic voltammetry and Rutherford backscattering spectrometry. Int J Chem 3:12–19Google Scholar
  633. 633.
    Paulson SC, Sapp SA, Elliott CM (2001) Electrochemical and spectroelectrochemical investigations into the nature of charge-trapping in electrochemically-generated homopolymer films of tris(4-vinyl-4′-methyl-2,2′-bipyridine)ruthenium(II). J Phys Chem B 105:8718–8724Google Scholar
  634. 634.
    Chiericato G, Silva APS (2008) Spectroelectrochemistry and investigation of charge transport mechanisms of iron poly(pyridyl) redox polymers. Polyhedron 27:1860–1866Google Scholar
  635. 635.
    Chardon-Noblat S, Cripps GH, Deronzier A, Field JS, Gouws S, Haines RJ, Southway F (2001) Synthesis, structure, and physicochemical characterizations of a new cationic ruthenium(I)-ruthenium(I) tetracarbonyl bipyridine dimer precursor for the electrochemical synthesis of an organometallic ruthenium(0) polymer. Organometallics 20:1668–1675Google Scholar
  636. 636.
    Saito M, Endo A, Shimizu K, Sato GP (2000) Electrochemical polymerization of tetraphenylporphyrinatoruthenium(II) complexes with diaza compounds as axial ligands. Electrochim Acta 45:3021–3028Google Scholar
  637. 637.
    Venkatanarayanan A, Spehar-Deleze A-M, Dennany L, Pellegrin Y, Keyes TE, Forster RJ (2008) Ruthenium aminophenanthroline metallopolymer films electropolymerized from an ionic liquid: deposition and electrochemical and photonic properties. Langmuir 24:11233–11238Google Scholar
  638. 638.
    Tedim J, Freire C, Hillman AR (2009) Modulation of electroactive polymer film dynamics by metal ion complexation and redox switching. Soft Matter 5:2603–2613Google Scholar
  639. 639.
    Magdesieva TV, Dolganov AV, Yakimansky AV, Goikhman MY, Podeshvo IV, Kudryavtsev VV (2008) New Cu(I) complexes with biquinolyl-containing polymer ligands as electrocatalysts for O2 activation in the oxidation of alcohols. Electrochim Acta 53:3960–3972Google Scholar
  640. 640.
    Magdesieva TV, Dolganov AV, Yakimansky AV, Goikhman MY, Podeshvo IV (2009) New Cu(I) complexes with 2,2′-biquinolyl and 2,2′-quinolyl-pyridine containing polymer ligands as electrocatalysts for O2 activation in the oxidation of aliphatic amines. Electrochim Acta 54:1444–1451Google Scholar
  641. 641.
    Ge Y, Lilienthal RR, Smith DK (1996) Electrochemically-controlled hydrogen bonding. Selective recognition of urea and amide derivatives by simple redox-dependent receptors. J Am Chem Soc 118:3976–3977Google Scholar
  642. 642.
    Ge Y, Miller L, Ouimet T, Smith DK (2000) Electrochemically controlled hydrogen bonding. o-Quinones as simple redox-dependent receptors for arylureas. J Org Chem 65:8831–8838Google Scholar
  643. 643.
    Bu J, Lilienthal ND, Woods JE, Nohrden CE, Hoang KT, Truong D, Smith DK (2005) Electrochemically controlled hydrogen bonding. Nitrobenzenes as simple redox-dependent receptors for arylureas. J Am Chem Soc 127:6423–6429Google Scholar
  644. 644.
    Chan-Leonor C, Martin SL, Smith DK (2005) Electrochemically controlled hydrogen bonding. Redox-dependent formation of a 2:1 diarylurea/dinitrobenzene2- complex. J Org Chem 70:10817–10822Google Scholar
  645. 645.
    Woods JE, Ge Y, Smith DK (2008) Electrochemically controlled hydrogen bonding. Electrolyte effects in an oxidation-based arylurea-amide system. J Am Chem Soc 130:10070–10071Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany

Personalised recommendations