Recent Advances on Fibrous Clay-Based Nanocomposites

  • Eduardo Ruiz-HitzkyEmail author
  • Margarita Darder
  • Ana C. S. Alcântara
  • Bernd Wicklein
  • Pilar Aranda
Part of the Advances in Polymer Science book series (POLYMER, volume 267)


This review critically introduces recent results on nanocomposite materials derived from the fibrous clay silicates sepiolite and palygorskite and combined with diverse types of polymers, from typical thermoplastics to biopolymers such as polysaccharides, proteins, lipids, and nucleic acids. First, the main features of both silicates are described, emphasizing the structural and textural characteristics that determine the interaction mechanisms with organic compounds and particularly with polymers, which define the final properties of the resulting materials. The crucial role of the clay–silicate interface governing the terminal properties of the nanocomposites is especially considered. Second, this work reports and discusses different experimental approaches and preparative procedures adopted for the nanofabrication and conformation (powders, films, monoliths, foams, etc.) of nanocomposites, comparing in certain cases with analogous materials derived from layered clays instead of sepiolite or palygorskite. Selected examples of fibrous clay-based nanocomposites are discussed to show the broad versatility of these materials in application fields as diverse as structural materials, conducting nanocomposites, biomaterials, environmental remediation, and sensor devices.


Bionanocomposites Bioplastics Biopolymers Clays DNA Nanocomposites Organoclays Palygorskite Phospholipids Polymers Polysaccharides Proteins Sepiolite 



This work was supported by the CICYT, Spain (project MAT2012-31759) and the EU COST Action MP1202. BW acknowledges the Swedish strategic foundation (SSF) (grant RMA11-0065). ACSA acknowledges the CNPq, Brazil (grant 406184/2013-5).


  1. 1.
    Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inclusion Phenom 5:473–482Google Scholar
  2. 2.
    Fukushima Y, Okada A, Kawasumi M, Kurauchi T, Kamigaito O (1988) Swelling behavior of montmorillonite by poly-6-amide. Clay Miner 23:27–34Google Scholar
  3. 3.
    LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29Google Scholar
  4. 4.
    Pinnavaia TJ, Beall G (2000) Polymer-clay nanocomposites. Wiley, New YorkGoogle Scholar
  5. 5.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mat Sci Eng R 28:1–63Google Scholar
  6. 6.
    Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641Google Scholar
  7. 7.
    Ruiz-Hitzky E, Van Meerbeek A (2006) Clay mineral- and organoclay–polymer nanocomposite. In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science. Development in clay science. Elsevier, Amsterdam, pp 583–621Google Scholar
  8. 8.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204Google Scholar
  9. 9.
    Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198Google Scholar
  10. 10.
    Lambert J-F, Bergaya F (2013) Smectite-polymer nanocomposites (CPN). In: Bergaya F, Lagaly G (eds) Handbook of clay science, 2nd edn. Elsevier, Amsterdam, pp 679–706Google Scholar
  11. 11.
    Fukushima K, Tabuani D, Camino G (2009) Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater Sci Eng C Biomimetic Supramol Syst 29:1433–1441Google Scholar
  12. 12.
    Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater 19:1309–1319Google Scholar
  13. 13.
    Ruiz-Hitzky E, Aranda P, Alvarez A, Santarén J, Esteban-Cubillo A (2011) Advanced materials and new applications of sepiolite and palygorskite. In: Galán E, Singer A (eds) Developments in palygorskite-sepiolite research. A new outlook on these nanomaterials. Elsevier, Oxford, pp 393–452Google Scholar
  14. 14.
    Ruiz-Hitzky E, Aranda P, Darder M, Fernandes FM (2013) Fibrous clay mineral–polymer nanocomposites. In: Bergaya F, Lagaly G (eds) Handbook of clay science. Part A: fundamentals, 2nd edn. Elsevier, Amsterdam, pp 721–741Google Scholar
  15. 15.
    Ruiz-Hitzky E, Darder M, Fernandes FM, Wicklein B, Alcantara ACS, Aranda P (2013) Fibrous clays based bionanocomposites. Prog Polym Sci 38:1392–1414Google Scholar
  16. 16.
    Fernandes FM, Vazquez L, Ruiz-Hitzky E, Carnicero A, Castro M (2014) Elastic properties of natural single nanofibres. RSC Adv 4:11225–11231Google Scholar
  17. 17.
    Ruiz-Hitzky E (2001) Molecular access to intracrystalline tunnels of sepiolite. J Mater Chem 11:86–91Google Scholar
  18. 18.
    Van Olphen H (1977) In: An introduction to clay colloid chemistry. For clay technologists, geologists and soil scientists, 2nd edn. Wiley, New York, pp 254–259Google Scholar
  19. 19.
    Ruiz-Hitzky E, Darder M, Aranda P (2008) An introduction to bio-nanohybrid materials. In: Ruiz-Hitzky E, Ariga K, Lvov YM (eds) Bio-inorganic hybrid nanomaterials, strategies, syntheses, characterization and applications. Wiley-VCH, Weinheim, pp 1–40Google Scholar
  20. 20.
    Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G (2010) Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 20:9306–9321Google Scholar
  21. 21.
    Fernandes FM, Darder M, Ruiz AI, Aranda P, Ruiz-Hitzky E (2011) Gelatine-based bio-nanocomposites. In: Mittal V (ed) Nanocomposites with biodegradable polymers. Synthesis, properties, and future perspectives. Oxford University Press, New York, pp 209–233Google Scholar
  22. 22.
    Ahlrichs JL, Serna C, Serratosa JM (1975) Structural hydroxyls in sepiolites. Clays Clay Miner 23:119–124Google Scholar
  23. 23.
    Brauner K, Pressinger A (1956) Struktur und entstehung des sepioliths. Miner Petrol 6:120–140Google Scholar
  24. 24.
    Bradley WF (1940) The structural scheme of attapulgite. Am Miner 25:405–410Google Scholar
  25. 25.
    Santarén J, Sanz J, Ruiz-Hitzky E (1990) Structural fluorine in sepiolite. Clay Miner 38:63–68Google Scholar
  26. 26.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276Google Scholar
  27. 27.
    López-Galindo A, Viseras C, Aguzzi C, Cerezo P (2011) Pharmaceutical and cosmetic uses of fibrous clays. In: Galan E, Singer A (eds) Developments in palygorskite-sepiolite research. A new outlook on these nanomaterials. Elsevier, Oxford, pp 299–324Google Scholar
  28. 28.
    International Agency for Research on Cancer (1997) Coal dust and para-aramid fibrils. In: IARC monographs on the evaluation of carcinogenic risks to humans, silica, some silicates, vol 68. World Health Organization, Lyon, pp 267–282Google Scholar
  29. 29.
    Ruiz-Hitzky E (2004) Organic-Inorganic materials: from intercalation chemistry to devices. In: Gómez-Romero P, Sanchez C (eds) Functional hybrid materials. Wiley-VCH, Weinheim, pp 15–49Google Scholar
  30. 30.
    Vanscoyoc GE, Serna CJ, Ahlrichs JL (1979) Structural-changes in palygorskite during dehydration and dehydroxylation. Am Miner 64:215–223Google Scholar
  31. 31.
    Inagaki S, Fukushima Y, Doi H, Kamigaito O (1990) Pore-size distribution and adsorption selectivity of sepiolite. Clay Miner 25:99–105Google Scholar
  32. 32.
    Kuang WX, Facey GA, Detellier C, Casal B, Serratosa JM, Ruiz-Hitzky E (2003) Nanostructured hybrid materials formed by sequestration of pyridine molecules in the tunnels of sepiolite. Chem Mater 15:4956–4967Google Scholar
  33. 33.
    Kuang WX, Facey GA, Detellier C (2006) Organo-mineral nanohybrids. Incorporation, coordination and structuration role of acetone molecules in the tunnels of sepiolite. J Mater Chem 16:179–185Google Scholar
  34. 34.
    Ruiz-Hitzky E, Aranda P, Serratosa JM (2004) Clay–organic interactions: organoclay complexes and polymer clay nanocomposites. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Marcel Dekker, New York, pp 91–154Google Scholar
  35. 35.
    Sánchez del Río M, Doménech A, Doménech-Carbó MT, Vázquez de Agredos Pascual ML, Suárez M, García-Romero E (2011) The Maya blue pigment. In: Galán E, Singer A (eds) Developments in palygorskite–sepiolite research. A new outlook on these nanomaterials. Elsevier, Oxford, pp 453–481Google Scholar
  36. 36.
    van Olphen H (1966) Maya blue – a clay–organic pigment. Science 154:645–646Google Scholar
  37. 37.
    Kleber R, Masschelein-Kleiner L, Thissen J (1967) Étude et identification du ‘Bleu Maya’. Stud Conserv 12:41–56Google Scholar
  38. 38.
    Hubbard B, Kuang WX, Moser A, Facey GA, Detellier C (2003) Structural study of Maya Blue: textural, thermal and solid state multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays Clay Miner 51:318–326Google Scholar
  39. 39.
    Sanchez del Rio M, Boccaleri E, Milanesio M, Croce G, van Beek W, Tsiantos C, Chyssikos GD, Gionis V, Kacandes GH, Suarez M, Garcia-Romero E (2009) A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite-indigo to produce Maya blue. J Mater Sci 44:5524–5536Google Scholar
  40. 40.
    Aznar AJ, Casal B, Ruiz-Hitzky E, Lopez-Arbeloa I, Lopez-Arbeloa F, Santaren J, Alvarez A (1992) Adsorption of methylene-blue on sepiolite gels – spectroscopic and rheological studies. Clay Miner 27:101–108Google Scholar
  41. 41.
    Rytwo G, Nir S, Margulies L, Casal B, Merino J, Ruiz-Hitzky E, Serratosa JM (1998) Adsorption of monovalent organic cations on sepiolite: experimental results and model calculations. Clays Clay Miner 46:340–348Google Scholar
  42. 42.
    Gándara F, Miyagawa K, Aranda P, Ruiz-Hitzky E, Camblor M (2009) On the Mayas’ track: confinement of organic dyes into inorganic solids. In: Ruiz-Hitzky EPA (ed) Jornada Científica Conmemorativa 50 Aniversario de la SEA. FER Fotocomposición S.A., Madrid, pp 72–73Google Scholar
  43. 43.
    Volle N, Challier L, Burr A, Giulieri F, Pagnotta S, Chaze A-M (2011) Maya Blue as natural coloring fillers in a multi-scale polymer-clay nanocomposite. Compos Sci Technol 71:1685–1691Google Scholar
  44. 44.
    Inagaki S, Fukushima Y, Miyata M (1995) Inclusion polymerization of isoprene in the channels of sepiolite. Res Chem Intermed 21:167–180Google Scholar
  45. 45.
    Sandi G, Carrado KA, Winans RE, Johnson CS, Csencsits R (1999) Carbons for lithium battery applications prepared using sepiolite as an inorganic template. J Electrochem Soc 146:3644–3648Google Scholar
  46. 46.
    Fernández-Saavedra R, Aranda P, Ruiz-Hitzky E (2004) Templated synthesis of carbon nanofibers from polyacrylonitrile using sepiolite. Adv Funct Mater 14:77–82Google Scholar
  47. 47.
    Alvarez A, Santaren J, Perez-Castells R, Casal B, Ruiz-Hitzky E, Levitz P (1987) Surfactant adsorption and rheological behavior of surface modified sepiolite. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference Denver, 1985. The Clay Minerals Society, Bloomington, pp 370–374Google Scholar
  48. 48.
    Li ZH, Willms CA, Kniola K (2003) Removal of anionic contaminants using surfactant-modified palygorskite and sepiolite. Clays Clay Miner 51:445–451Google Scholar
  49. 49.
    García N, Guzmán J, Benito E, Esteban-Cubillo A, Aguilar E, Santarén J, Tiemblo P (2011) Surface modification of sepiolite in aqueous gels by using methoxysilanes and its impact on the nanofiber dispersion ability. Langmuir 27:3952–3959Google Scholar
  50. 50.
    Wicklein B, Darder M, Aranda P, Ruiz-Hitzky E (2010) Bio-organoclays based on phospholipids as immobilization hosts for biological species. Langmuir 26:5217–5225Google Scholar
  51. 51.
    Shen L, Lin YJ, Du QG, Zhong W, Yang YL (2005) Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer 46:5758–5766Google Scholar
  52. 52.
    Xie SB, Zhang SM, Wang FS, Yang MS, Seguela R, Lefebvre JM (2007) Preparation, structure and thermomechanical properties of nylon-6 nanocomposites with lamella-type and fiber-type sepiolite. Compos Sci Technol 67:2334–2341Google Scholar
  53. 53.
    García-López D, Fernández JF, Merino JC, Pastor JM (2013) Influence of organic modifier characteristic on the mechanical properties of polyamide 6/organosepiolite nanocomposites. Compos Part B Eng 45:459–465Google Scholar
  54. 54.
    Tsai FC, Li P, Liu ZW, Feng G, Zhu P, Wang CK, Chen KN, Huang CY, Yeh JT (2012) Drawing and ultimate tenacity properties of polyamide 6/attapulgite composite fibers. J Appl Polym Sci 126:1906–1916Google Scholar
  55. 55.
    García N, Hoyos M, Guzmán J, Tiemblo P (2009) Comparing the effect of nanofillers as thermal stabilizers in low density polyethylene. Polym Degrad Stab 94:39–48Google Scholar
  56. 56.
    Gao J, Zhang Q, Wang K, Fu Q, Chen Y, Chen H, Huang H, Rego JM (2012) Effect of shearing on the orientation, crystallization and mechanical properties of HDPE/attapulgite nanocomposites. Compos Part A Appl S 43:562–569Google Scholar
  57. 57.
    Shafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723Google Scholar
  58. 58.
    Carrero A, van Grieken R, Suarez I, Paredes B (2012) Development of a new synthetic method based on in situ strategies for polyethylene/clay composites. J Appl Polym Sci 126:987–997Google Scholar
  59. 59.
    Gul R, Islam A, Yasin T, Mir S (2011) Flame-retardant synergism of sepiolite and magnesium hydroxide in a linear low-density polyethylene composite. J Appl Polym Sci 121:2772–2777Google Scholar
  60. 60.
    Shafiq M, Yasin T (2012) Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite. Radiat Phys Chem 81:52–56Google Scholar
  61. 61.
    Tiemblo P, Benito E, Garcia N, Esteban-Cubillo A, Pina-Zapardiel R, Pecharroman C (2012) Multiscale gold and silver plasmonic plastics by melt compounding. RSC Adv 2:915–919Google Scholar
  62. 62.
    Chen J, Chen J, Zhu S, Cao Y, Li H (2011) Mechanical properties, morphology, and crystal structure of polypropylene/chemically modified attapulgite nanocomposites. J Appl Polym Sci 121:899–908Google Scholar
  63. 63.
    He M, Cao WC, Wang LJ, Wilkie CA (2013) Synergistic effects of organo-sepiolite and zinc borate on the fire retardancy of polypropylene. Polym Adv Technol 24:1081–1088Google Scholar
  64. 64.
    Hapuarachchi TD, Peijs T, Bilotti E (2013) Thermal degradation and flammability behavior of polypropylene/clay/carbon nanotube composite systems. Polym Adv Technol 24:331–338Google Scholar
  65. 65.
    Fernández-García L, Pecharromán C, Esteban-Cubillo A, Tiemblo P, García N, Menéndez JL (2013) Magneto-optical Faraday activity in transparent FeCo-sepiolite/polystyrene nanocomposites. J Nanopart Res 15:1–6Google Scholar
  66. 66.
    Zhong W, Liu P, Wang A (2012) Facile approach to magnetic attapulgite-Fe3O4/polystyrene tri-component nanocomposite. Mater Lett 85:11–13Google Scholar
  67. 67.
    Chen F, Lou D, Yang J, Zhong M (2011) Mechanical and thermal properties of attapulgite clay reinforced polymethylmethacrylate nanocomposites. Polym Adv Technol 22:1912–1918Google Scholar
  68. 68.
    Huang N, Chen Z, Liu H, Wang J (2012) Thermal stability and degradation kinetics of poly(methyl methacrylate)/sepiolite nanocomposites by direct melt compounding. J Macromol Sci Part B 52:521–529Google Scholar
  69. 69.
    Liu Y, Liu P, Su Z (2008) Morphological characterization of attapulgite/poly(methyl methacrylate) particles prepared by soapless emulsion polymerization. Polym Int 57:306–310Google Scholar
  70. 70.
    Zhang H, Li C, Zang L, Luo J, Guo J (2012) Preparation of bead–string shaped attapulgite/poly(methyl methacrylate) particles by soapless emulsion polymerization based on uv irradiation in the presence of iron(III). J Macromol Sci Part A 49:154–159Google Scholar
  71. 71.
    Wang J, Wang Q, Zheng Y, Wang A (2013) Synthesis and oil absorption of poly(butylmethacrylate)/organo-attapulgite nanocomposite by suspended emulsion polymerization. Polym Compos 34:274–281Google Scholar
  72. 72.
    Wang Y, Chen D (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interface Sci 372:245–251Google Scholar
  73. 73.
    Wang Y, Dong A, Yuan Z, Chen D (2012) Fabrication and characterization of temperature-, pH- and magnetic-field-sensitive organic/inorganic hybrid poly (ethylene glycol)-based hydrogels. Colloid Surf A 415:68–76Google Scholar
  74. 74.
    Yuan Z, Wang Y, Chen D (2014) Preparation and characterization of thermo-, pH-, and magnetic-field-responsive organic/inorganic hybrid microgels based on poly(ethylene glycol). J Mater Sci 49:3287–3296Google Scholar
  75. 75.
    Zhao L, Liu P, Liang G, Gu A, Yuan L, Guan Q (2014) The origin of the curing behavior, mechanical and thermal properties of surface functionalized attapulgite/bismaleimide/diallylbisphenol composites. Appl Surf Sci 288:435–443Google Scholar
  76. 76.
    Nohales A, Solar L, Porcar I, Vallo CI, Gomez CM (2006) Morphology, flexural, and thermal properties of sepiolite modified epoxy resins with different curing agents. Eur Polym J 42:3093–3101Google Scholar
  77. 77.
    Foix D, Rodríguez MT, Ferrando F, Ramis X, Serra A (2012) Combined use of sepiolite and a hyperbranched polyester in the modification of epoxy/anhydride coatings: a study of the curing process and the final properties. Prog Org Coat 75:364–372Google Scholar
  78. 78.
    Verge P, Fouquet T, Barrère C, Toniazzo V, Ruch D, Bomfim JAS (2013) Organomodification of sepiolite clay using bio-sourced surfactants: compatibilization and dispersion into epoxy thermosets for properties enhancement. Compos Sci Technol 79:126–132Google Scholar
  79. 79.
    Nohales A, López D, Culebras M, Gómez CM (2013) Rheological study of gel phenomena during epoxide network formation in the presence of sepiolite. Polym Int 62:397–405Google Scholar
  80. 80.
    Gomez-Aviles A, Aranda P, Fernandes FM, Belver C, Ruiz-Hitzky E (2013) Silica-sepiolite nanoarchitectures. J Nanosci Nanotechnol 13:2897–2907Google Scholar
  81. 81.
    Wang R, Li Z, Wang Y, Liu W, Deng L, Jiao W, Yang F (2013) Effects of modified attapulgite on the properties of attapulgite/epoxy nanocomposites. Polym Compos 34:22–31Google Scholar
  82. 82.
    Wang R, Li Z, Liu W, Jiao W, Hao L, Yang F (2013) Attapulgite–graphene oxide hybrids as thermal and mechanical reinforcements for epoxy composites. Compos Sci Technol 87:29–35Google Scholar
  83. 83.
    Chen H, Zheng M, Sun H, Jia Q (2007) Characterization and properties of sepiolite/polyurethane nanocomposites. Mater Sci Eng a-Struct Mater Propert Microstruct Process 445:725–730Google Scholar
  84. 84.
    Wang C-H, Auad ML, Marcovich NE, Nutt S (2008) Synthesis and characterization of organically modified attapulgite/polyurethane nanocomposites. J Appl Polym Sci 109:2562–2570Google Scholar
  85. 85.
    Lei Z, Yang Q, Wu S, Song X (2009) Reinforcement of polyurethane/epoxy interpenetrating network nanocomposites with an organically modified palygorskite. J Appl Polym Sci 111:3150–3162Google Scholar
  86. 86.
    Xu B, Huang WM, Pei YT, Chen ZG, Kraft A, Reuben R, De Hosson JTM, Fu YQ (2009) Mechanical properties of attapulgite clay reinforced polyurethane shape-memory nanocomposites. Eur Polym J 45:1904–1911Google Scholar
  87. 87.
    Chen H, Lu H, Zhou Y, Zheng M, Ke C, Zeng D (2012) Study on thermal properties of polyurethane nanocomposites based on organo-sepiolite. Polym Degrad Stab 97:242–247Google Scholar
  88. 88.
    Peng L, Zhou L, Li Y, Pan F, Zhang S (2011) Synthesis and properties of waterborne polyurethane/attapulgite nanocomposites. Compos Sci Technol 71:1280–1285Google Scholar
  89. 89.
    Bao Y, Li Q, Xue P, Wang J, Wu C (2012) Effect of electrostatic heterocoagulation of PVM/MA grafted carbon black and attapulgite nanorods on electrical and mechanical behaviors of waterborne polyurethane nanocomposites. Colloid Polym Sci 290:1527–1536Google Scholar
  90. 90.
    Alkan M, Benlikaya R (2009) Poly(vinyl alcohol) nanocomposites with sepiolite and heat-treated sepiolites. J Appl Polym Sci 112:3764–3774Google Scholar
  91. 91.
    Killeen D, Frydrych M, Chen B (2012) Porous poly(vinyl alcohol)/sepiolite bone scaffolds: preparation, structure and mechanical properties. Mater Sci Eng C Biomimetic Supramol Syst 32:749–757Google Scholar
  92. 92.
    Li A, Wang AQ, Chen JM (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J Appl Polym Sci 92:1596–1603Google Scholar
  93. 93.
    Zhang FQ, Guo ZJ, Gao H, Li YC, Ren L, Shi L, Wang LX (2005) Synthesis and properties of sepiolite/poly (acrylic acid-co-acrylamide) nanocomposites. Polym Bull 55:419–428Google Scholar
  94. 94.
    Li A, Wang A, Chen J (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviors of superabsorbent composites in saline solutions and hydrophilic solvent–water mixtures. J Appl Polym Sci 94:1869–1876Google Scholar
  95. 95.
    Chen J, Ding S, Jin Y, Wu J (2013) Semidry synthesis of the poly(acrylic acid)/palygorskite superabsorbent with high-percentage clay via a freeze–thaw–extrusion process. J Appl Polym Sci 128:1779–1784Google Scholar
  96. 96.
    Zhu L, Liu P, Wang A (2014) High clay-content attapulgite/poly(acrylic acid) nanocomposite hydrogel via surface-initiated redox radical polymerization with modified attapulgite nanorods as initiator and cross-linker. Ind Eng Chem Res 53:2067–2071Google Scholar
  97. 97.
    Liu P, Jiang L, Zhu L, Wang A (2014) Novel approach for attapulgite/poly(acrylic acid) (ATP/PAA) nanocomposite microgels as selective adsorbent for Pb(II) ion. React Funct Polym 74:72–80Google Scholar
  98. 98.
    Gao G, Du G, Cheng Y, Fu J (2014) Tough nanocomposite double network hydrogels reinforced with clay nanorods through covalent bonding and reversible chain adsorption. J Mater Chem B 2:1539–1548Google Scholar
  99. 99.
    Liu P, Jiang L, Zhu L, Wang A (2014) Novel covalently cross-linked attapulgite/poly(acrylic acid-co-acrylamide) hybrid hydrogels by inverse suspension polymerization: Synthesis optimization and evaluation as adsorbents for toxic heavy metals. Ind Eng Chem Res 53:4277–4285Google Scholar
  100. 100.
    Ekici S, Isikver Y, Saraydin D (2006) Poly(acrylamide-sepiolite) composite hydrogels: preparation, swelling and dye adsorption properties. Polym Bull 57:231–241Google Scholar
  101. 101.
    An J, Wang W, Wang A (2012) Preparation and swelling behavior of a pH-responsive psyllium-g-poly(acrylic acid)/attapulgite superabsorbent nanocomposite. Int J Polym Mater Polymeric Biomater 61:906–918Google Scholar
  102. 102.
    Wicklein B, Darder M, Aranda P, Ruiz-Hitzky E (2011) Phospholipid–sepiolite biomimetic interfaces for the immobilization of enzymes. ACS Appl Mater Interfaces 3:4339–4348Google Scholar
  103. 103.
    Ojijo V, Ray SS (2013) Processing strategies in bionanocomposites. Prog Polym Sci 38:1543–1589Google Scholar
  104. 104.
    Russo P, Cammarano S, Bilotti E, Peijs T, Cerruti P, Acierno D (2014) Physical properties of poly lactic acid/clay nanocomposite films: effect of filler content and annealing treatment. J Appl Polym Sci 131. doi: 10.1002/app.39798
  105. 105.
    Jiang Y, Han S, Zhang S, Li J, Huang G, Bi Y, Chai Q (2014) Improved properties by hydrogen bonding interaction of poly(lactic acid)/palygorskite nanocomposites for agricultural products packaging. Polym Compos 35:468–476Google Scholar
  106. 106.
    Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L (2010) Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polym Degrad Stab 95:2049–2056Google Scholar
  107. 107.
    Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Camino G (2011) Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polym Degrad Stab 96:2120–2129Google Scholar
  108. 108.
    da Silva Moreira Thire RM, Arruda LC, Barreto LS (2011) Morphology and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/attapulgite nanocomposites. Mater Res Ibero Am J Mater 14:340–344Google Scholar
  109. 109.
    Qi Z, Ye H, Xu J, Peng J, Chen J, Guo B (2013) Synthesis and characterizations of attapulgite reinforced branched poly(butylene succinate) nanocomposites. Colloid Surf A 436:26–33Google Scholar
  110. 110.
    Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89Google Scholar
  111. 111.
    Lynch DL, Wright LM, Cotnoir LJ (1957) Breakdown of cellulose dextrin and gelatin in presence of an attapulgite. Nature 179:1131Google Scholar
  112. 112.
    Chang SH, Ryan ME, Gupta RK (1991) Competitive adsorption of water-soluble polymers on attapulgite clay. J Appl Polym Sci 43:1293–1299Google Scholar
  113. 113.
    Darder M, Lopez-Blanco M, Aranda P, Aznar AJ, Bravo J, Ruiz-Hitzky E (2006) Microfibrous chitosan-sepiolite nanocomposites. Chem Mater 18:1602–1610Google Scholar
  114. 114.
    Chivrac F, Pollet E, Schmutz M, Averous L (2010) Starch nano-biocomposites based on needle-like sepiolite clays. Carbohydr Polym 80:145–153Google Scholar
  115. 115.
    Martínez-Frías P (2008) Estudio de la viabilidad del bio-nanocomposite quitosano-sepiolita como membrana para procesos de separación de gases. Thesis, Autonomous University of Madrid, MadridGoogle Scholar
  116. 116.
    Huang D, Mu B, Wang A (2012) Preparation and properties of chitosan/poly (vinyl alcohol) nanocomposite films reinforced with rod-like sepiolite. Mater Lett 86:69–72Google Scholar
  117. 117.
    Huang D, Wang W, Xu J, Wang A (2012) Mechanical and water resistance properties of chitosan/poly(vinyl alcohol) films reinforced with attapulgite dispersed by high-pressure homogenization. Chem Eng J 210:166–172Google Scholar
  118. 118.
    Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66Google Scholar
  119. 119.
    Lan W, Liu C-F, Yue F-X, Sun R-C, Kennedy JF (2011) Ultrasound-assisted dissolution of cellulose in ionic liquid. Carbohydr Polym 86:672–677Google Scholar
  120. 120.
    Soheilmoghaddam M, Wahit MU, Yussuf AA, Al-Saleh MA, Whye WT (2014) Characterization of bio regenerated cellulose/sepiolite nanocomposite films prepared via ionic liquid. Polym Test 33:121–130Google Scholar
  121. 121.
    Ebringerová A, Heinze T (2000) Xylan and xylan derivatives – biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556Google Scholar
  122. 122.
    Sárossy Z, Blomfeldt TOJ, Hedenqvist MS, Koch CB, Ray SS, Plackett D (2012) Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical, and barrier properties. ACS Appl Mater Interfaces 4:3378–3386Google Scholar
  123. 123.
    Ünlü CH, Günister E, Atıcı O (2009) Synthesis and characterization of NaMt biocomposites with corn cob xylan in aqueous media. Carbohydr Polym 76:585–592Google Scholar
  124. 124.
    Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  125. 125.
    Deville S, Saiz E, Nalla RK, Tomsia AP (2006) Freezing as a path to build complex composites. Science 311:515–518Google Scholar
  126. 126.
    Nieto-Suarez M, Palmisano G, Ferrer ML, Concepcion Gutierrez M, Yurdakal S, Augugliaro V, Pagliaro M, del Monte F (2009) Self-assembled titania-silica-sepiolite based nanocomposites for water decontamination. J Mater Chem 19:2070–2075Google Scholar
  127. 127.
    Ruiz-Hitzky E, Aranda P, Darder M, Fernandes FM, Matos CRS (2010) Espumas rigidas de tipo composite basadas en biopolímeros combinados con arcillas fibrosas y su método de preparación. Patent WO 2010081918 A1Google Scholar
  128. 128.
    Darder M, Aranda P, Ferrer ML, Gutiérrez MC, del Monte F, Ruiz-Hitzky E (2011) Progress in bionanocomposite and bioinspired foams. Adv Mater 23:5262–5267Google Scholar
  129. 129.
    Darder M, Matos CRS, Aranda P, Ruiz-Hitzky E (2010) Sepiolite-based nanocomposites foams. In: Proceedings of the SEA-CSSJ-CMS trilateral meeting on clays. Sevilla, pp 357–358. (
  130. 130.
    Ruiz-Hitzky E, Darder M, Aranda P, Ariga K (2010) Advances in biomimetic and nanostructured biohybrid materials. Adv Mater 22:323–336Google Scholar
  131. 131.
    Okamoto M (2008) Biodegradable polymer-based nanocomposites: nanostructure control and nanocomposite foaming with the aim of producing nano-cellular plastics. In: Ruiz-Hitzky E, Ariga K, Lvov YM (eds) Bio-inorganic hybrid nanomaterials. Strategies, syntheses, characterization and applications. Wiley-VCH, Weinheim, pp 271–312Google Scholar
  132. 132.
    Chen M, Chen BQ, Evans JRG (2005) Novel thermoplastic starch-clay nanocomposite foams. Nanotechnology 16:2334–2337Google Scholar
  133. 133.
    Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environment Manag 90:2313–2342Google Scholar
  134. 134.
    Cohen E, Joseph T (2009) Photostabilization of Beauveria bassiana conidia using anionic dyes. Appl Clay Sci 42:569–574Google Scholar
  135. 135.
    Deng Y, Wang L, Hu X, Liu B, Wei Z, Yang S, Sun C (2012) Highly efficient removal of tannic acid from aqueous solution by chitosan-coated attapulgite. Chem Eng J 181:300–306Google Scholar
  136. 136.
    Pang C, Liu Y, Cao X, Hua R, Wang C, Li C (2010) Adsorptive removal of uranium from aqueous solution using chitosan-coated attapulgite. J Radioanal Nucl Chem 286:185–193Google Scholar
  137. 137.
    Zou X, Pan J, Ou H, Wang X, Guan W, Li C, Yan Y, Duan Y (2011) Adsorptive removal of Cr(III) and Fe(III) from aqueous solution by chitosan/attapulgite composites: equilibrium, thermodynamics and kinetics. Chem Eng J 167:112–121Google Scholar
  138. 138.
    Rytwo G, Lavi R, Rytwo Y, Monchase H, Dultz S, Koenig TN (2013) Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites. Sci Total Environ 442:134–142Google Scholar
  139. 139.
    Pan G, Zou H, Chen H, Yuan XZ (2006) Removal of harmful cyanobacterial blooms in Taihu Lake using local soils. III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ Pollution 141:206–212Google Scholar
  140. 140.
    Peng Y, Chen D, Ji J, Kong Y, Wan H, Yao C (2013) Chitosan-modified palygorskite: preparation, characterization and reactive dye removal. Appl Clay Sci 74:81–86Google Scholar
  141. 141.
    Li C, Pan J, Zou X, Gao J, Xie J, Yongsheng Y (2011) Synthesis and applications of novel attapulgite-supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions. Int J Environ Anal Chem 91:1035–1049Google Scholar
  142. 142.
    Wu J, Chen J (2013) Adsorption characteristics of tannic acid onto the novel protonated palygorskite/chitosan resin microspheres. J Appl Polym Sci 127:1765–1771Google Scholar
  143. 143.
    Alcântara ACS, Darder M, Aranda P, Ruiz-Hitzky E (2014) Polysaccharide–fibrous clay bionanocomposites. Appl Clay Sci (in press) doi: 10.1016/j.clay.2014.02.018
  144. 144.
    Zhou X, Liu Q, Ying G, Cui Y (2012) Chlorpyrifos-loaded attapulgite/sodium alginate hybrid microsphere and its release properties. In: Ji HB, Chen Y, Chen SZ (eds) Advanced materials and processes II, Advance materials research, vol 557–559. Trans Tech Publications, Zurich, pp 1528–1532Google Scholar
  145. 145.
    Alcantara ACS, Darder M, Aranda P, Tateyama S, Okajima MK, Kaneko T, Ogawa M, Ruiz-Hitzky E (2014) Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. J Mater Chem A 2:1391–1399Google Scholar
  146. 146.
    Mu B, Kang Y, Wang A (2013) Preparation of a polyelectrolyte-coated magnetic attapulgite composite for the adsorption of precious metals. J Mater Chem A 1:4804–4811Google Scholar
  147. 147.
    Wang W, Wang F, Kang Y, Wang A (2013) Facile self-assembly of Au nanoparticles on a magnetic attapulgite/Fe3O4 composite for fast catalytic decoloration of dye. RSC Adv 3:11515–11520Google Scholar
  148. 148.
    Wang W, Zheng Y, Wang A (2008) Syntheses and properties of superabsorbent composites based on natural guar gum and attapulgite. Polym Adv Technol 19:1852–1859Google Scholar
  149. 149.
    Yang H, Peng Z, Zhou Y, Zhao F, Zhang J, Cao X, Hu Z (2011) Preparation and performances of a novel intelligent humidity control composite material. Energy Build 43:386–392Google Scholar
  150. 150.
    Liu Y, Wang WB, Wang AG (2010) Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 259:258–264Google Scholar
  151. 151.
    Mahdavinia GR, Asgari A (2013) Synthesis of kappa-carrageenan-g-poly(acrylamide)/sepiolite nanocomposite hydrogels and adsorption of cationic dye. Polym Bull 70:2451–2470Google Scholar
  152. 152.
    Zheng Y, Zhang J, Wang A (2009) Fast removal of ammonium nitrogen from aqueous solution using chitosan-g-poly(acrylic acid)/attapulgite composite. Chem Eng J 155:215–222Google Scholar
  153. 153.
    Wang L, Zhang J, Wang A (2011) Fast removal of methylene blue from aqueous solution by adsorption onto chitosan-g-poly (acrylic acid)/attapulgite composite. Desalination 266:33–39Google Scholar
  154. 154.
    Wang X, Wang A (2010) Adsorption characteristics of chitosan-g-poly(acrylic acid)/attapulgite hydrogel composite for Hg(II) ions from aqueous solution. Sep Sci Technol 45:2086–2094Google Scholar
  155. 155.
    Ni B, Liu M, Lue S, Xie L, Wang Y (2010) Multifunctional slow-release organic–inorganic compound fertilizer. J Agric Food Chem 58:12373–12378Google Scholar
  156. 156.
    Kievit FM, Zhang M (2011) Cancer therapy: cancer nanotheranostics: improving imaging and therapy by targeted delivery across biological barriers. Adv Mater 23:H217–H247Google Scholar
  157. 157.
    Doane TL, Burda C (2012) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 41:2885–2911Google Scholar
  158. 158.
    Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT, Yang YY (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63:1228–1246Google Scholar
  159. 159.
    Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer-clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026Google Scholar
  160. 160.
    Salcedo I, Aguzzi C, Sandri G, Bonferoni MC, Mori M, Cerezo P, Sanchez R, Viseras C, Caramella C (2012) In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: a new drug delivery. Appl Clay Sci 55:131–137Google Scholar
  161. 161.
    Wang Q, Zhang JP, Wang AQ (2009) Preparation and characterization of a novel pH-sensitive chitosan-g-poly (acrylic acid)/attapulgite/sodium alginate composite hydrogel bead for controlled release of diclofenac sodium. Carbohydr Polym 78:731–737Google Scholar
  162. 162.
    Wang Q, Wu J, Wang W, Wang A (2011) Preparation, characterization and drug-release behaviors of crosslinked chitosan/attapulgite hybrid microspheres by a facile spray-drying technique. J Biomater Nanobiotechnol 2:250–257Google Scholar
  163. 163.
    Wang Q, Wang W, Wu J, Wang A (2012) Effect of attapulgite contents on release behaviors of a pH sensitive carboxymethyl cellulose-g-poly(acrylic acid)/attapulgite/sodium alginate composite hydrogel bead containing diclofenac. J Appl Polym Sci 124:4424–4432Google Scholar
  164. 164.
    Amorij J-P, Hinrichs WLJ, Frijlink HW, Wilschut JC, Huckriede A (2010) Needle-free influenza vaccination. Lancet Infect Dis 10:699–711Google Scholar
  165. 165.
    Ruiz-Hitzky E, Darder M, Aranda P, Martin del Burgo MÁ, del Real G (2009) Bionanocomposites as new carriers for influenza vaccines. Adv Mater 21:4167–4171Google Scholar
  166. 166.
    Clapp T, Siebert P, Chen D, Jones Braun L (2011) Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci 100:388–401Google Scholar
  167. 167.
    Wicklein B, Martín del Burgo MÁ, Yuste M, Darder M, Escrig Llavata C, Aranda P, Ortín J, del Real G, Ruiz-Hitzky E (2012) Lipid-based bio-nanohybrids for functional stabilisation of influenza vaccines. Eur J Inorg Chem 2012:5186–5191Google Scholar
  168. 168.
    Avérous L, Pollet E (2012) Green nano-biocomposites. In: Avérous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, London, pp 1–11Google Scholar
  169. 169.
    Fernandes FM, Ruiz AI, Darder M, Aranda P, Ruiz-Hitzky E (2009) Gelatin-clay bio-nanocomposites: structural and functional properties as advanced materials. J Nanosci Nanotechnol 9:221–229Google Scholar
  170. 170.
    Fernandes FM, Manjubala I, Ruiz-Hitzky E (2011) Gelatin renaturation and the interfacial role of fillers in bionanocomposites. PCCP 13:4901–4910Google Scholar
  171. 171.
    Su D, Wang C, Cai S, Mu C, Li D, Lin W (2012) Influence of palygorskite on the structure and thermal stability of collagen. Appl Clay Sci 62–63:41–46Google Scholar
  172. 172.
    Gimenez B, Gomez-Guillen MC, Lopez-Caballero ME, Gomez-Estaca J, Montero P (2012) Role of sepiolite in the release of active compounds from gelatin-egg white films. Food Hydrocoll 27:475–486Google Scholar
  173. 173.
    Mangavel C, Rossignol N, Perronnet A, Barbot J, Popineau Y, Gueguen J (2004) Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. Biomacromolecules 5:1596–1601Google Scholar
  174. 174.
    Yuan Q, Lu W, Pan Y (2010) Structure and properties of biodegradable wheat gluten/attapulgite nanocomposite sheets. Polym Degrad Stab 95:1581–1587Google Scholar
  175. 175.
    Ruiz Hitzky E, Aranda P, Darder M, and Alcântara ACS (2010) Materiales composites basados en biohíbridos zeína-arcilla, su procedimiento de obtención y usos de estos materiales. Patent WO 2010146216 A1Google Scholar
  176. 176.
    Alcântara ACS, Darder M, Aranda P, Ruiz Hitzky E (2012) Zein–fibrous clays biohybrid materials. Eur J Inorg Chem 2012:5216–5224Google Scholar
  177. 177.
    Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2011) Zein-clay biohybrids as nanofillers of alginate based bionanocomposites. Abstr Pap Am Chem Soc 241:114–115Google Scholar
  178. 178.
    Carretero MI, Pozo M (2009) Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Appl Clay Sci 46:73–80Google Scholar
  179. 179.
    Carretero MI, Pozo M (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries: part II. Active ingredients. Appl Clay Sci 47:171–181Google Scholar
  180. 180.
    da Silva MLD, Fortes AC, Tome AD, da Silva EC, de Freitas RM, Soares-Sobrinho JL, Leite CMD, Soares MFD (2013) The effect of natural and organophilic palygorskite on skin wound healing in rats. Braz J Pharm Sci 49:729–736Google Scholar
  181. 181.
    Perez-Castells R, Alvarez A, Gavilanes J, Lizarbe MA, Martinez Del Pozo A, Olmo N, Santaren J (1987) Adsorption of collagen by sepiolite. In: Schultz LG, van Olphen H, Mumpton FA (eds) Proceedings of the international clay conference Denver, 1985. The Clay Minerals Society, Bloomington, pp 359–362Google Scholar
  182. 182.
    Lizarbe MA, Olmo N, Gavilanes JG (1987) Adhesion and spreading of fibroblasts on sepiolite collagen complexes. J Biomed Mater Res 21:137–144Google Scholar
  183. 183.
    Herrera JI, Olmo N, Turnay J, Sicilia A, Bascones A, Gavilanes JG, Lizarbe MA (1995) Implantation of sepiolite-collagen complexes in surgically created rat calvaria defects. Biomaterials 16:625–631Google Scholar
  184. 184.
    Olmo N, Turnay J, Herrera JI, Gavilanes JG, Lizarbe MA (1996) Kinetics of in vivo degradation of sepiolite-collagen complexes: effect of glutaraldehyde treatment. J Biomed Mater Res 30:77–84Google Scholar
  185. 185.
    Frydrych M, Wan C, Stengler R, O'Kelly KU, Chen B (2011) Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J Mater Chem 21:9103–9111Google Scholar
  186. 186.
    Li W-Z, Li G-F, Wang J-L (2013) Core-shell assembly of natural polymers for adjusting release performance of diclofenac. Int J Polym Mater Polym Biomater 62:358–361Google Scholar
  187. 187.
    de Fuentes IE, Viseras CA, Ubiali D, Terreni M, Alcántara AR (2001) Different phyllosilicates as supports for lipase immobilisation. J Mol Catal B Enzym 11:657–663Google Scholar
  188. 188.
    Prodanovic RM, Simic MB, Vujcic ZM (2003) Immobilization of periodate oxidized invertase by adsorption on sepiolite. J Serb Chem Soc 68:819–824Google Scholar
  189. 189.
    Cengiz S, Çavaş L, Yurdakoç K (2012) Bentonite and sepiolite as supporting media: immobilization of catalase. Appl Clay Sci 65–66:114–120Google Scholar
  190. 190.
    Zhao Q, Hou Y, Gong G-H, Yu M-A, Jiang L, Liao F (2010) Characterization of alcohol dehydrogenase from permeabilized Brewer’s yeast cells immobilized on the derived attapulgite nanofibers. Appl Biochem Biotechnol 160:2287–2299Google Scholar
  191. 191.
    Caballero V, Bautista FM, Campelo JM, Luna D, Marinas JM, Romero AA, Hidalgo JM, Luque R, Macario A, Giordano G (2009) Sustainable preparation of a novel glycerol-free biofuel by using pig pancreatic lipase: partial 1,3-regiospecific alcoholysis of sunflower oil. Process Biochem 44:334–342Google Scholar
  192. 192.
    Chen J, Jin Y (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169:249–254Google Scholar
  193. 193.
    Xu J, Han W, Yin Q, Song J, Zhong H (2009) Direct electron transfer of glucose oxidase and glucose biosensor based on nano-structural attapulgite clay matrix. Chin J Chem 27:2197–2202Google Scholar
  194. 194.
    Regina de Oliveira T, Grawe GF, Moccelini SK, Terezo AJ, Castilho M (2014) Enzymatic biosensors based on inga-cipo peroxidase immobilised on sepiolite for TBHQ quantification. Analyst 139:2214–2220Google Scholar
  195. 195.
    Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22:43–51Google Scholar
  196. 196.
    Abbate C, Arena M, Baglieri A, Gennari M (2009) Effects of organoclays on soil eubacterial community assessed by molecular approaches. J Hazard Mater 168:466–472Google Scholar
  197. 197.
    Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7:12–20Google Scholar
  198. 198.
    Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654Google Scholar
  199. 199.
    Lu JR, Zhao XB, Yaseen M (2007) Biomimetic amphiphiles: biosurfactants. Curr Opin Colloid Interface Sci 12:60–67Google Scholar
  200. 200.
    Carnero Ruiz C (ed) (2008) Sugar-based surfactants. Fundamentals and applications. Surfactant Science, vol 143. CRC/Taylor & Francis, Boca RatonGoogle Scholar
  201. 201.
    Koutsopoulos S, Kaiser L, Eriksson HM, Zhang S (2012) Designer peptide surfactants stabilize diverse functional membrane proteins. Chem Soc Rev 41:1721–1728Google Scholar
  202. 202.
    Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, and Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:1–96Google Scholar
  203. 203.
    Sun T, Qing G (2011) Biomimetic smart interface materials for biological applications. Adv Mater 23:H57–H77Google Scholar
  204. 204.
    Zhang X, Zhao N, Liang S, Lu X, Li X, Xie Q, Zhang X, Xu J (2008) Facile creation of biomimetic systems at the interface and in bulk. Adv Mater 20:2938–2946Google Scholar
  205. 205.
    Mark K, Park J, Bauer S, Schmuki P (2010) Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 339:131–153Google Scholar
  206. 206.
    Ruiz-Hitzky E, Darder M, Wicklein B, Fernandes FM, Castro-Smirnov FA, del Burgo MAM, del Real G, and Aranda P (2012) Advanced biohybrid materials based on nanoclays for biomedical applications. In: Choi SH, Choy JH, Lee U, Varadan VK (eds) Nanosystems in engineering and medicine, vol 8548. SPIE-Int Soc Optical Engineering, BellinghamGoogle Scholar
  207. 207.
    Wicklein B (2011) Bio-nanohybrid materials based on clays and phospholipids. Thesis, Autonomous University of Madrid, MadridGoogle Scholar
  208. 208.
    Plant AL (1999) Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir 15:5128–5135Google Scholar
  209. 209.
    Hubbard JB, Silin V, Plant AL (1998) Self assembly driven by hydrophobic interactions at alkanethiol monolayers: mechanism of formation of hybrid bilayer membranes. Biophys Chem 75:163–176Google Scholar
  210. 210.
    Hosseini A, Barile CJ, Devadoss A, Eberspacher TA, Decreau RA, Collman JP (2011) Hybrid bilayer membrane: a platform to study the role of proton flux on the efficiency of oxygen reduction by a molecular electrocatalyst. J Am Chem Soc 133:11100–11102Google Scholar
  211. 211.
    Xie H, Jiang K, Zhan W (2011) A modular molecular photovoltaic system based on phospholipid/alkanethiol hybrid bilayers: photocurrent generation and modulation. PCCP 13:17712–17721Google Scholar
  212. 212.
    Zhou Q, Somasundaran P (2009) Synergistic adsorption of mixtures of cationic gemini and nonionic sugar-based surfactant on silica. J Colloid Interface Sci 331:288–294Google Scholar
  213. 213.
    Persson CM, Claesson PM, Lunkenheimer K (2002) Interfacial behavior of n-decyl-β-d-maltopyranoside on hydrophobic interfaces and the effect of small amounts of surface-active impurities. J Colloid Interface Sci 251:182–192Google Scholar
  214. 214.
    Hederos M, Konradsson P, Liedberg B (2005) Synthesis and self-assembly of galactose-terminated alkanethiols and their ability to resist proteins. Langmuir 21:2971–2980Google Scholar
  215. 215.
    Fyrner T, Lee H-H, Mangone A, Ekblad T, Pettitt ME, Callow ME, Callow JA, Conlan SL, Mutton R, Clare AS, Konradsson P, Liedberg B, Ederth T (2011) Saccharide-functionalized alkanethiols for fouling-resistant self-assembled monolayers: synthesis, monolayer properties, and antifouling behavior. Langmuir 27:15034–15047Google Scholar
  216. 216.
    Stubbs GW, Smith HG, Litman BJ (1976) Alkyl glucosides as effective solubilizing agents for bovine rhodopsin – comparison with several commonly used detergents. Biochim Biophys Acta 426:46–56Google Scholar
  217. 217.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397Google Scholar
  218. 218.
    Mukherjee D, May M, Khomami B (2011) Detergent–protein interactions in aqueous buffer suspensions of Photosystem I (PS I). J Colloid Interface Sci 358:477–484Google Scholar
  219. 219.
    Goldblatt L (1977) Mycotoxins-past, present and future. J Am Oil Chem Soc 54:A302–A309Google Scholar
  220. 220.
    Jaynes WF, Zartman RE, Hudnall WH (2007) Aflatoxin B1 adsorption by clays from water and corn meal. Appl Clay Sci 36:197–205Google Scholar
  221. 221.
    Moran TM, Park H, Fernandez-Sesma A, Schulman JL (1999) Th2 responses to inactivated influenza virus can be converted to Th1 responses and facilitate recovery from heterosubtypic virus infection. J Infect Dis 180:579–585Google Scholar
  222. 222.
    Wicklein B, Aranda P, Ruiz-Hitzky E, Darder M (2013) Hierarchically structured bioactive foams based on polyvinyl alcohol-sepiolite nanocomposites. J Mater Chem B 1:2911–2920Google Scholar
  223. 223.
    Paget E, Monrozier LJ, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer. FEMS Microbiol Lett 97:31–39Google Scholar
  224. 224.
    Yoshida N (2007) Discovery and application of the Yoshida effect: nano-sized acicular materials enable penetration of bacterial cells by sliding friction force. Recent Patents Biotechnol 1:194–201Google Scholar
  225. 225.
    Yoshida N, Ide K (2008) Plasmid DNA is released from nanosized acicular material surface by low molecular weight oligonucleotides: exogenous plasmid acquisition mechanism for penetration intermediates based on the Yoshida effect. Appl Microbiol Biotechnol 80:813–821Google Scholar
  226. 226.
    Yoshida N, Sato M (2009) Plasmid uptake by bacteria: a comparison of methods and efficiencies. Appl Microbiol Biotechnol 83:791–798Google Scholar
  227. 227.
    Wilharm G, Lepka D, Faber F, Hofmann J, Kerrinnes T, Skiebe E (2010) A simple and rapid method of bacterial transformation. J Microbiol Methods 80:215–216Google Scholar
  228. 228.
    Bellmann B, Muhle H, Ernst H (1997) Investigations on health-related properties of two sepiolite samples. Environ Health Perspect 105:1049–1052Google Scholar
  229. 229.
    Ruiz-Hitzky E, Aranda P (1990) Polymer-salt intercalation complexes in layer silicates. Adv Mater 2:545–547Google Scholar
  230. 230.
    Mehrotra V, Giannelis EP (1991) Metal-insulator molecular multilayers of electroactive polymers – intercalation of polyaniline in mica-type layered silicates. Solid State Commun 77:155–158Google Scholar
  231. 231.
    Mehrotra V, Giannelis EP (1992) Nanometer scale multilayers of electroactive polymers – intercalation of polypyrrole in mica-type silicates. Solid State Ionics 51:115–122Google Scholar
  232. 232.
    Aranda P, Ruiz-Hitzky E (1992) Poly(ethylene oxide)-silicate intercalation materials. Chem Mater 4:1395–1403Google Scholar
  233. 233.
    Ruiz-Hitzky E (1993) Conducting polymers intercalated in layered solids. Adv Mater 5:334–340Google Scholar
  234. 234.
    Ruiz-Hitzky E, Aranda P, Casal B, Galvan JC (1995) Nanocomposite materials with controlled ion mobility. Adv Mater 7:180–184Google Scholar
  235. 235.
    Vaia RA, Vasudevan S, Krawiec W, Scanlon LG, Giannelis EP (1995) New polymer electrolyte nanocomposites - melt intercalation of poly(ethylene oxide) in mica-type silicates. Adv Mater 7:154–156Google Scholar
  236. 236.
    Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35Google Scholar
  237. 237.
    Aranda P, Darder M, Fernandez-Saavedra R, Lopez-Blanco M, Ruiz-Hitzky E (2006) Relevance of polymer- and biopolymer-clay nanocomposites in electrochemical and electroanalytical applications. Thin Solid Films 495:104–112Google Scholar
  238. 238.
    Letaief S, Aranda P, Fernandez-Saavedra R, Margeson JC, Detellier C, Ruiz-Hitzky E (2008) Poly(3,4-ethylenedioxythiophene)-clay nanocomposites. J Mater Chem 18:2227–2233Google Scholar
  239. 239.
    Aranda P, Mosqueda Y, Perez-Cappe E, Ruiz-Hitzky E (2003) Electrical characterization of poly(ethylene oxide) – clay nanocomposites prepared by microwave irradiation. J Polym Sci Part B Polym Phys 41:3249–3263Google Scholar
  240. 240.
    Kitayama Y, Katoh H, Kodama T, Abe J (1997) Polymerization of pyrrole in intracrystalline tunnels of sepiolite. Appl Surf Sci 121:331–334Google Scholar
  241. 241.
    Chang Y, Liu Z, Fu Z, Wang C, Dai Y, Peng R, Hu X (2014) Preparation and characterization of one-dimensional core-shell sepiolite/polypyrrole nanocomposites and effect of organic modification on the electrochemical properties. Ind Eng Chem Res 53:38–47Google Scholar
  242. 242.
    Wang Y, Liu P, Yang C, Mu B, Wang A (2013) Improving capacitance performance of attapulgite/polypyrrole composites by introducing rhodamine B. Electrochim Acta 89:422–428Google Scholar
  243. 243.
    Yao C, Xu Y, Kong Y, Liu W, Wang W, Wang Z, Wang Y, Ji J (2012) Polypyrrole/palygorskite nanocomposite: a new chromate collector. Appl Clay Sci 67–68:32–35Google Scholar
  244. 244.
    Shao L, Qiu J, Lei L, Wu X (2012) Properties and structural investigation of one-dimensional SAM-ATP/PANI nanofibers and nanotubes. Synth Met 162:2322–2328Google Scholar
  245. 245.
    Marins JA, Giulieri F, Soares BG, Bossis G (2013) Hybrid polyaniline-coated sepiolite nanofibers for electrorheological fluid applications. Synth Met 185:9–16Google Scholar
  246. 246.
    Mejia A, Garcia N, Guzman J, Tiemblo P (2013) Confinement and nucleation effects in poly(ethylene oxide) melt-compounded with neat and coated sepiolite nanofibers: modulation of the structure and semicrystalline morphology. Eur Polym J 49:118–129Google Scholar
  247. 247.
    Beauger C, Lainé G, Burr A, Taguet A, Otazaghine B, Rigacci A (2013) Nafion®–sepiolite composite membranes for improved proton exchange membrane fuel cell performance. J Memb Sci 430:167–179Google Scholar
  248. 248.
    Wen S, Gong C, Shu Y-C, Tsai F-C, Yeh J-T (2012) Sulfonated poly(ether sulfone)/phosphotungstic acid/attapulgite composite membranes for direct methanol fuel cells. J Appl Polym Sci 123:646–656Google Scholar
  249. 249.
    Fernandez-Saavedra R, Aranda P, Carrado KA, Sandi G, Seifert S, Ruiz-Hitzky E (2009) Template synthesis of nanostructured carbonaceous materials for application in electrochemical devices. Curr Nanosci 5:506–513Google Scholar
  250. 250.
    Fernández-Saavedra R, Darder M, Gómez-Avilés A, Aranda P, Ruiz-Hitzky E (2008) Polymer-clay nanocomposites as precursors of nanostructured carbon materials for electrochemical devices: templating effect of clays. J Nanosci Nanotechnol 8:1741–1750Google Scholar
  251. 251.
    Ruiz-Hitzky E, Darder M, Fernandes FM, Zatile E, Palomares FJ, Aranda P (2011) Supported graphene from natural resources: easy preparation and applications. Adv Mater 23:5250–5255Google Scholar
  252. 252.
    Ruiz-Garcia C, Darder M, Aranda P, Ruiz-Hitzky E (2014) Toward a green way for the chemical production of supported graphenes using porous solids. J Mater Chem A 2:2009–2017Google Scholar
  253. 253.
    Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2010) Multifunctional materials based on graphene-like/sepiolite nanocomposites. Appl Clay Sci 47:203–211Google Scholar
  254. 254.
    Ruiz-Garcia C, Jimenez R, Perez-Carvajal J, Berenguer-Murcia A, Darder M, Aranda P, Cazorla-Amoros D, Ruiz-Hitzky E (2014) Graphene-clay based nanomaterials for clean energy storage. Sci Adv Mater 6:151–158Google Scholar
  255. 255.
    Gómez-Avilés A, Darder M, Aranda P, Ruiz-Hitzky E (2007) Functionalized carbon-silicates from caramel-sepiolite nanocomposites. Angew Chem Int Ed 46:923–925Google Scholar
  256. 256.
    Ruiz-Hitzky E, Fernandes FM (2011) Composición de material carbonoso obtenible por carbonización de un biopolímero soportado sobre arcilla. Patent ES-P201130835Google Scholar
  257. 257.
    Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forro L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys a-Mater Sci Process 69:255–260Google Scholar
  258. 258.
    Bilotti E, Zhang H, Deng H, Zhang R, Fu Q, Peijs T (2013) Controlling the dynamic percolation of carbon nanotube based conductive polymer composites by addition of secondary nanofillers: the effect on electrical conductivity and tuneable sensing behaviour. Compos Sci Technol 74:85–90Google Scholar
  259. 259.
    Fernandes FM, Ruiz-Hitzky E (2014) Assembling nanotubes and nanofibres: cooperativeness in sepiolite-carbon nanotube materials. Carbon 72:296–303Google Scholar
  260. 260.
    Ruiz-Hitzky E and Fernandes FM (2011) Use of fibrous clays as coadjuvants to improve the dispersion and colloidal stability of filamentous carbon materials in hydrophilic media. Patent WO 2011070208 A1Google Scholar
  261. 261.
    Wang Z, Liang Z, Wang B, Zhang C, Kramer L (2004) Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos Part A Appl S 35:1225–1232Google Scholar
  262. 262.
    Vohrer U, Kolaric I, Haque MH, Roth S, Detlaff-Weglikowska U (2004) Carbon nanotube sheets for the use as artificial muscles. Carbon 42:1159–1164Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Eduardo Ruiz-Hitzky
    • 1
    Email author
  • Margarita Darder
    • 1
  • Ana C. S. Alcântara
    • 2
  • Bernd Wicklein
    • 3
  • Pilar Aranda
    • 1
  1. 1.Instituto de Ciencia de Materiales de Madrid, CSICMadridSpain
  2. 2.Department of ChemistryFederal University of Rio Grande do Norte, UFRNNatal-RNBrazil
  3. 3.Arrhenius LaboratoryStockholm UniversityStockholmSweden

Personalised recommendations