Skip to main content

Helical Polymer–Metal Complexes: The Role of Metal Ions on the Helicity and the Supramolecular Architecture of Poly(phenylacetylene)s

Part of the Advances in Polymer Science book series (POLYMER,volume 262)

Abstract

New helical poly(phenylacetylene)s have been successfully designed and synthesised and their properties checked. The new polymers behave as sensors of metal cation valences and/or the polar and donor character of solvents. In the presence of metal salts, poly(phenylacetylene)s form helical polymer–metal complexes (HPMCs) that, in the case of α-methoxyphenylacetic acid (MPA)-containing poly(phenylacetylene), has led to a new family of nanospheres made by complexation between the polymer and divalent metal ions. These HPMC nanostructures present properties such as: (1) their diameter can be tuned to different sizes, (2) the helicity of the polymeric material can be tuned to either of the two helical senses, and (3) they can encapsulate a number of inorganic and organic substances. These polymers also display phenomena such as helical inversion, chiral amplification and axial chirality selection, making them versatile materials.

Keywords

  • Chiral amplification
  • Helical inversion
  • Helical polymer-metal complexes
  • Metal cations
  • Methoxyphenylacetic acid
  • Nanospheres
  • Poly(phenylacetylene)s

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/12_2013_260
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-03719-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10

References

  1. Lam JWY, Tang BZ (2005) Acc Chem Res 38:745–754

    CrossRef  CAS  Google Scholar 

  2. Yashima E, Maeda K, Lida H, Furusho Y, Nagai K (2009) Chem Rev 109:6102–6211

    CrossRef  CAS  Google Scholar 

  3. Simionescu CI, Percec V, Dumitrescu S (1977) J Polym Sci Polym Chem Ed 15:2497–2509

    CrossRef  CAS  Google Scholar 

  4. Rudick JG, Percec V (2008) Acc Chem Res 41:1641–1652

    CrossRef  CAS  Google Scholar 

  5. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Chem Rev 109:6275–6540

    CrossRef  CAS  Google Scholar 

  6. Okoshi K, Sakurai S, Ohsawa JK, Yashima E (2006) Angew Chem Int Ed 45:8173–8176

    CrossRef  CAS  Google Scholar 

  7. Seco JM, Quiñoá E, Riguera R (2004) Chem Rev 104:17–118

    CrossRef  CAS  Google Scholar 

  8. Seco JM, Quiñoá E, Riguera R (2012) Chem Rev 112:4603–4641

    CrossRef  CAS  Google Scholar 

  9. Louzao I, Seco JM, Quiñoá E, Riguera R (2010) Angew Chem Int Ed 49:1430–1433

    CrossRef  CAS  Google Scholar 

  10. Latypov S, Seco JM, Quiñoá E, Riguera R (1995) J Org Chem 60:1538–1545

    CrossRef  CAS  Google Scholar 

  11. Seco JM, Latypov S, Quiñoá E, Riguera R (1997) J Org Chem 62:7569–7574

    CrossRef  CAS  Google Scholar 

  12. López B, Quiñoá E, Riguera R (1999) J Am Chem Soc 121:9724–9725

    CrossRef  Google Scholar 

  13. García R, Seco JM, Vázquez S, Quiñoá E, Riguera R (2006) J Org Chem 71:1119–1130

    CrossRef  Google Scholar 

  14. Freire F, Seco JM, Quiñoá E, Riguera R (2011) Angew Chem Int Ed 50:11692–11696

    CrossRef  CAS  Google Scholar 

  15. Percec V, Rudick JG, Peterca M, Wagner M, Obata M, Mitchell CM, Cho W-D, Balagurusamy VSK, Heiney PA (2005) J Am Chem Soc 127:15257–15264

    CrossRef  CAS  Google Scholar 

  16. Percec V, Aqad E, Peterca M, Rudick JG, Lemon L, Ronda JC, De BB, Heiney PA, Meijer EW (2006) J Am Chem Soc 128:16365–16372

    CrossRef  CAS  Google Scholar 

  17. Motoshige A, Mawatari Y, Yoshida Y, Seki C, Matsuyama H, Tabata M (2012) J Polym Sci A Polym Chem 50:3008–3015

    CrossRef  CAS  Google Scholar 

  18. Liu L, Namikoshi T, Zang Y, Aoki T, Hadano S, Abe Y, Wasuzu I, Tsutsuba T, Teraguchi M, Kaneko T (2013) J Am Chem Soc 135:602–605

    CrossRef  CAS  Google Scholar 

  19. Yashima E, Maeda K, Nishimura T (2004) Chem Eur J 10:42–51

    CrossRef  CAS  Google Scholar 

  20. Freire F, Seco JM, Quiñoá E, Riguera R (2012) J Am Chem Soc 134:19374–19383

    CrossRef  CAS  Google Scholar 

  21. Leiras S, Freire F, Seco JM, Quiñoá E, Riguera R (2013) Chem Sci 4:2735–2743

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Riguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Freire, F., Seco, J.M., Quiñoá, E., Riguera, R. (2013). Helical Polymer–Metal Complexes: The Role of Metal Ions on the Helicity and the Supramolecular Architecture of Poly(phenylacetylene)s. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_260

Download citation