Skip to main content

Design and Applications of Multiscale Organic–Inorganic Hybrid Materials Derived from Block Copolymer Self-Assembly

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

Block copolymer (BCP) self-assembly (SA) is a useful tool for designing materials with tunable nanostructure as well as controllable multiscale, hierarchical structure. A combination of BCP SA with inorganic materials results in functional hybrid materials with ordered structures down to the nanoscale, thereby exploiting both the advantageous features of structure tunability from BCP SA and functionality from inorganic materials. Rather than a comprehensive review of the entire field of hybrid materials, this overview summarizes a variety of BCP-derived synthetic approaches developed over the last 10–15 years, with emphasis on work by the Wiesner group at Cornell University on hybrid materials with structural characteristics on multiple length scales. This encompasses hybrids with thermodynamic equilibrium-type BCP nanostructures, controlled nonequilibrium-type structure formation processes leading to structural asymmetries, as well as formation of hierarchical BCP materials with control over nanoscale and macroscale structures. Besides the development of wet-chemical methodologies for their synthesis, this overview also features some promising first applications of such materials. Results suggest that BCP SA directed synthetic approaches may provide routes to cost-effective and large-scale materials fabrication potentially useful for both, new materials discovery and study of fundamental structure – property correlations as well as exploration of the materials in a number of today’s most pressing applications including water filtration and energy conversion and storage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1D:

One dimensional

2D:

Two dimensional

3D:

Three dimensional

BCC:

Body-centered cubic

BCP:

Block copolymer

CASH:

Combined assembly by soft and hard

CPS:

Close-packed spheres, referring to face-centered or hexagonally close-packed spheres

DIS:

Disordered phase

GYR:

Gyroid

HEX:

Hexagonal cylinder

LAM:

Lamellar phases

NIPS:

Nonsolvent-induced phase separation

NiSi:

Nickel silicide

o-:

Oligomeric

PEO:

Poly(ethylene oxide)

PI:

Poly(isoprene)

PS:

Poly(styrene)

SA:

Self-assembly

SIM2PLE:

Spinodal-decomposition-induced macro and mesophase separation plus extraction by rinsing

SNIPS:

Self-assembly and nonsolvent-induced phase separation

ssDSSC:

Solid-state dye-sensitized solar cell

TEM:

Transmission electron microscope

References

  1. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  2. Antonietti M (2013) Macromol Chem Phys 214:130. doi:10.1002/macp.201200589

    Article  CAS  Google Scholar 

  3. Wu C (2013) Macromol Chem Phys 214:132. doi:10.1002/macp.201200417

    Article  CAS  Google Scholar 

  4. Rurack K, Martínez-Máñez R, Wiley InterScience (Online service) (2010) The supramolecular chemistry of organic-inorganic hybrid materials. Wiley, Hoboken

    Google Scholar 

  5. Tyler CA, Morse DC (2005) Phys Rev Lett 94:208302

    Article  Google Scholar 

  6. Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon and Oxford University Press, New York

    Google Scholar 

  7. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Science 336:434. doi:10.1126/science.1215368

    Article  CAS  Google Scholar 

  8. Ott H, Abetz V, Altstaedt V (2001) Macromolecules 34:2121. doi:10.1021/ma0017079

    Article  CAS  Google Scholar 

  9. Toombes GES, Mahajan S, Weyland M, Jain A, Du P, Kamperman M, Gruner SM, Muller DA, Wiesner U (2008) Macromolecules 41:852. doi:10.1021/ma071004s

    Article  CAS  Google Scholar 

  10. Li Z, Sai H, Warren SC, Kamperman M, Arora H, Gruner SM, Wiesner U (2009) Chem Mater 21:5578. doi:10.1021/cm9020673

    Article  CAS  Google Scholar 

  11. Warren SC, DiSalvo FJ, Wiesner U (2007) Nat Mater 6:156

    Article  CAS  Google Scholar 

  12. Bita I, Yang JKW, Jung YS, Ross CA, Thomas EL, Berggren KK (2008) Science 321:939. doi:10.1126/science.1159352

    Article  CAS  Google Scholar 

  13. Park S, Lee DH, Xu J, Kim B, Hong SW, Jeong U, Xu T, Russell TP (2009) Science 323:1030. doi:10.1126/science.1168108

    Article  CAS  Google Scholar 

  14. Garcia BC, Kamperman M, Ulrich R, Jain A, Gruner SM, Wiesner U (2009) Chem Mater 21:5397. doi:10.1021/cm901885c

    Article  CAS  Google Scholar 

  15. Hur K, Francescato Y, Giannini V, Maier SA, Hennig RG, Wiesner U (2011) Angew Chem Int Ed 50:11985. doi:10.1002/anie.201104888

    Article  CAS  Google Scholar 

  16. Maldovan M, Urbas AM, Yufa N, Carter WC, Thomas EL (2002) Phys Rev B 65:165123

    Article  Google Scholar 

  17. Cho BK, Jain A, Gruner SM, Wiesner U (2004) Science 305:1598. doi:10.1126/science.1100872

    Article  CAS  Google Scholar 

  18. Cochran EW, Garcia-Cervera CJ, Fredrickson GH (2006) Macromolecules 39:2449. doi:10.1021/ma0527707

    Article  CAS  Google Scholar 

  19. Saranathan V, Osuji CO, Mochrie SGJ, Noh H, Narayanan S, Sandy A, Dufresne ER, Prum RO (2010) Proc Natl Acad Sci 107:11676. doi:10.1073/pnas.0909616107

    Article  CAS  Google Scholar 

  20. Almsherqi Z, Margadant F, Deng Y (2012) Interface Focus 2:539. doi:10.1098/rsfs.2011.0120

    Article  Google Scholar 

  21. Grin Y, Wedig U, von Schnering HG (1995) Angew Chem Int Ed Engl 34:1204. doi:10.1002/anie.199512041

    Article  CAS  Google Scholar 

  22. Sorenson GP, Coppage KL, Mahanthappa MK (2011) J Am Chem Soc 133:14928. doi:10.1021/ja2063555

    Article  CAS  Google Scholar 

  23. Jain A, Toombes GES, Hall LM, Mahajan S, Garcia CBW, Probst W, Gruner SM, Wiesner U (2005) Angew Chem Int Ed 44:1226. doi:10.1002/anie.200461156

    Article  CAS  Google Scholar 

  24. Chu C-Y, Lin W-F, Tsai J-C, Lai C-S, Lo S-C, Chen H-L, Hashimoto T (2012) Macromolecules 45:2471. doi:10.1021/ma202057g

    Article  CAS  Google Scholar 

  25. Wohlgemuth M, Yufa N, Hoffman J, Thomas EL (2001) Macromolecules 34:6083. doi:10.1021/ma0019499

    Article  CAS  Google Scholar 

  26. Gòz`dz` W, Holyst R (1996) Macromol Theory Simulations 5:321. doi:10.1002/mats.1996.040050212

    Article  Google Scholar 

  27. Karcher H (1989) Manuscripta Mathematica 64:291. doi:10.1007/bf01165824

    Article  Google Scholar 

  28. Lidin S, Larsson S (1990) J Chem Soc Faraday Trans 86:769. doi:10.1039/ft9908600769

    Article  CAS  Google Scholar 

  29. Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS (2004) Macromolecules 37:8325. doi:10.1021/ma048762s

    Article  CAS  Google Scholar 

  30. Tyler CA, Qin J, Bates FS, Morse DC (2007) Macromolecules 40:4654. doi:10.1021/ma062778w

    Article  CAS  Google Scholar 

  31. Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K, Takenaka M (2009) Macromolecules 42:5266. doi:10.1021/ma900205s

    Article  CAS  Google Scholar 

  32. Ho R-M, Chiang Y-W, Tsai C-C, Lin C-C, Ko B-T, Huang B-H (2004) J Am Chem Soc 126:2704. doi:10.1021/ja039627i

    Article  CAS  Google Scholar 

  33. Lee S, Bluemle MJ, Bates FS (2010) Science 330:349. doi:10.1126/science.1195552

    Article  CAS  Google Scholar 

  34. Hayashida K, Dotera T, Takano A, Matsushita Y (2007) Phys Rev Lett 98:195502

    Article  Google Scholar 

  35. Man W, Megens M, Steinhardt PJ, Chaikin PM (2005) Nature 436:993

    Article  CAS  Google Scholar 

  36. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K (2012) Chem Rev 112:3959. doi:10.1021/cr200440z

    Article  CAS  Google Scholar 

  37. Crossland EJW, Kamperman M, Nedelcu M, Ducati C, Wiesner U, Smilgies DM, Toombes GES, Hillmyer MA, Ludwigs S, Steiner U, Snaith HJ (2009) Nano Lett 9:2807. doi:10.1021/nl803174p

    Article  CAS  Google Scholar 

  38. Vignolini S, Yufa NA, Cunha PS, Guldin S, Rushkin I, Stefik M, Hur K, Wiesner U, Baumberg JJ, Steiner U (2012) Adv Mater 24:OP23. doi:10.1002/adma.201103610

    Article  CAS  Google Scholar 

  39. Zalusky AS, Olayo-Valles R, Wolf JH, Hillmyer MA (2002) J Am Chem Soc 124:12761. doi:10.1021/ja0278584

    Article  CAS  Google Scholar 

  40. Ulrich R, Chesne AD, Templin M, Wiesner U (1999) Adv Mater 11:141. doi:10.1002/(sici)1521-4095(199902)11:2<141::aid-adma141>3.0.co;2-r

    Article  CAS  Google Scholar 

  41. Thompson RB, Ginzburg VV, Matsen MW, Balazs AC (2001) Science 292:2469. doi:10.1126/science.1060585

    Article  CAS  Google Scholar 

  42. Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U (2008) Science 320:1748. doi:10.1126/science.1159950

    Article  CAS  Google Scholar 

  43. Lee J, Christopher Orilall M, Warren SC, Kamperman M, DiSalvo FJ, Wiesner U (2008) Nat Mater 7:222. doi:10.1038/nmat2111

    Article  CAS  Google Scholar 

  44. Arora H, Du P, Tan KW, Hyun JK, Grazul J, Xin HL, Muller DA, Thompson MO, Wiesner U (2010) Science 330:214. doi:10.1126/science.1193369

    Article  CAS  Google Scholar 

  45. Peinemann KV, Abetz V, Simon PF (2007) Nat Mater 6:992. doi:10.1038/nmat2038

    Article  CAS  Google Scholar 

  46. Dorin RM, Marques DS, Sai H, Vainio U, Phillip WA, Peinemann K-V, Nunes SP, Wiesner U (2012) ACS Macro Lett 1:614. doi:10.1021/mz300100b

  47. Phillip WA, Mika Dorin R, Werner J, Hoek EMV, Wiesner U, Elimelech M (2011) Nano Lett 11:2892. doi:10.1021/nl2013554

    Article  CAS  Google Scholar 

  48. Sai H, Tan KW, Hur K, Asenath-Smith E, Hovden R, Jiang Y, Riccio M, Muller D, Elser V, Estroff LA, Gruner SM, Wiesner U (2013) Science 341:530 doi:10.1126/science.1238159

    Google Scholar 

  49. Templin M, Franck A, Du Chesne A, Leist H, Zhang Y, Ulrich R, Schädler V, Wiesner U (1997) Science 278:1795. doi:10.1126/science.278.5344.1795

    Article  CAS  Google Scholar 

  50. Martínez-Veracoechea FJ, Escobedo FA (2009) Macromolecules 42:1775. doi:10.1021/ma802427a

    Article  Google Scholar 

  51. Stefik M, Lee J, Wiesner U (2009) Chem Commun 2009(18):2532. doi:10.1039/b818972b

    Article  Google Scholar 

  52. Stefik M, Sai H, Sauer K, Gruner SM, DiSalvo FJ, Wiesner U (2009) Macromolecules 42:6682. doi:10.1021/ma900685e

    Article  CAS  Google Scholar 

  53. Stefik M, Mahajan S, Sai H, Epps TH, Bates FS, Gruner SM, DiSalvo FJ, Wiesner U (2009) Chem Mater 21:5466. doi:10.1021/cm902626z

    Article  CAS  Google Scholar 

  54. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  55. Rauda IE, Buonsanti R, Saldarriaga-Lopez LC, Benjauthrit K, Schelhas LT, Stefik M, Augustyn V, Ko J, Dunn B, Wiesner U, Milliron DJ, Tolbert SH (2012) ACS Nano 6:6386. doi:10.1021/nn302789r

    Article  CAS  Google Scholar 

  56. Hsueh H-Y, Huang Y-C, Ho R-M, Lai C-H, Makida T, Hasegawa H (2011) Adv Mater 23:3041. doi:10.1002/adma.201100883

    Article  CAS  Google Scholar 

  57. Orilall MC, Matsumoto F, Zhou Q, Sai H, Abruña HD, DiSalvo FJ, Wiesner U (2009) J Am Chem Soc 131:9389. doi:10.1021/ja903296r

    Article  CAS  Google Scholar 

  58. Shim J, Lee J, Ye Y, Hwang J, Kim S-K, Lim T-H, Wiesner U, Lee J (2012) ACS Nano 6:6870. doi:10.1021/nn301692y

    Article  CAS  Google Scholar 

  59. Elabd YA, Hickner MA (2010) Macromolecules 44:1. doi:10.1021/ma101247c

    Article  Google Scholar 

  60. Joannopoulos JD (2008) Photonic crystals: molding the flow of light. Princeton University Press, Princeton

    Google Scholar 

  61. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) IEEE Trans Microwave Theory Tech 47:2075

    Article  Google Scholar 

  62. Soukoulis CM, Wegener M (2011) Nat Photon 5:523

    CAS  Google Scholar 

  63. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  64. Pendry JB (2000) Phys Rev Lett 85:3966

    Article  CAS  Google Scholar 

  65. Ying JY (2012) Nat Chem 4:159

    Article  CAS  Google Scholar 

  66. Salvatore S, Demetriadou A, Vignolini S, Oh SS, Wuestner S, Yufa NA, Stefik M, Wiesner U, Baumberg JJ, Hess O, Steiner U (2013) Adv Mater 25:2713. doi:10.1002/adma.201300193

    Article  CAS  Google Scholar 

  67. DiSalvo FJ (1999) Science 285:703. doi:10.1126/science.285.5428.703

    Article  CAS  Google Scholar 

  68. Polman A, Atwater HA (2012) Nat Mater 11:174

    Article  CAS  Google Scholar 

  69. Docampo P, Stefik M, Guldin S, Gunning R, Yufa NA, Cai N, Wang P, Steiner U, Wiesner U, Snaith HJ (2012) Adv Energy Mater 2:676. doi:10.1002/aenm.201100699

    Article  CAS  Google Scholar 

  70. Yang SY, Ryu I, Kim HY, Kim JK, Jang SK, Russell TP (2006) Adv Mater 18:709. doi:10.1002/adma.200501500

    Article  CAS  Google Scholar 

  71. Orsini F, Du Pasquier A, Beaudoin B, Tarascon JM, Trentin M, Langenhuizen N, De Beer E, Notten P (1998) J Power Sources 76:19. doi:10.1016/S0378-7753(98)00128-1

    Article  CAS  Google Scholar 

  72. Ji X, Lee KT, Nazar LF (2009) Nat Mater 8:500. doi:10.1038/nmat2460

    Article  CAS  Google Scholar 

  73. Arora P, Zhang Z (2004) Chem Rev 104:4419. doi:10.1021/cr020738u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is based on research over a period of about 15 years in the Wiesner group at the Materials Science and Engineering Department of Cornell University. The work would have been impossible without the help of an enormous number of very motivated, talented and enthusiastic students, postdocs, and collaborators at Cornell and beyond. Equally important, the work was enabled by a continuous stream of financial support, for which we would particularly like to thank the National Science Foundation via the Polymers Program within the Division of Materials Research (current grant DMR-1104773). We thank Joerg Werner for contributing to the lithium battery section.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Wiesner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hur, K., Wiesner, U. (2013). Design and Applications of Multiscale Organic–Inorganic Hybrid Materials Derived from Block Copolymer Self-Assembly. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_246

Download citation

Publish with us

Policies and ethics