Skip to main content

From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 262))

Abstract

Poly(ethylene glycol) (PEG) is the gold standard polymer for biomedical applications. PEG is known for its biocompatibility and antifouling properties and is widely used for bioconjugation. However, like other synthetic polymers in the field, PEG is not biodegradable, limiting its use for parenteral formulations and protein conjugation to a molecular weight range with a specific upper limit (commonly 40–60 kDa) to avoid polyether accumulation in human tissue. For these biomedical applications, but also for other purposes such as cleavable hydrogels and templates for porous membranes, several routes for the insertion of in-chain biocleavable moieties, such as acetals or disulfides, into PEG have been developed. Recently, the synthetic strategies have been extended from step-growth polymerizations of commercially available, telechelic PEGs to more sophisticated routes based on ethylene oxide (co)polymerizations, permitting the incorporation of predetermined breaking points at any position in the PEG chains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

APEG:

Amino-pendent polyacetal

AROP:

Anionic ring-opening polymerization

DOX:

Doxorubicin

EO:

Ethylene oxide

EPR:

Enhanced permeability and retention

FDA:

Food and Drug Administration

GSH:

Glutathione

mPEG:

Poly(ethylene glycol) monomethyl ether

OLZ:

Olsalazin

PDI:

Polydispersity index M w/M n

PEG:

Poly(ethylene glycol)

PEI:

Poly(ethylene imine)

PG:

Polyglycerol

PU:

Polyurethane

TEG:

Triethylene glycol

References

  1. Staudinger H (1953) Die makromolekulare Chemie. Nobel Lecture: Macromolecular chemistry. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1953/staudinger-lecture.html

  2. Staudinger H, Schweitzer O (1929) Über hochpolymere Verbindungen, 20. Mitteil.: Über die Polyäthylenoxyde. Ber Dtsch Chem Ges 62:2395–2405

    Google Scholar 

  3. Staudinger H, Lohmann H (1933) Über hochpolymere Verbindungen. 81. Mitteilung. Über eukolloides Polyäthylenoxyd. Justus Liebigs Ann Chem 505:41–51

    CAS  Google Scholar 

  4. Staudinger H, Lohmann H (1935) Über hochpolymere Verbindungen, 125. Mitteil.: Molekulargewichts-Bestimmungen an hochmolekularen Polyäthylenoxyden. Ber Dtsch Chem Ges 68:2313–2319

    Google Scholar 

  5. Staudinger H, Staudinger M, Sauter E (1937) Mikroskopische Untersuchungen an synthetischen hochmolekularen Stoffen. Z Physik Chem B 37:403–420

    Google Scholar 

  6. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458

    CAS  Google Scholar 

  7. Kjellander R, Florin E (1981) Water structure and changes in thermal stability of the system poly(ethylene oxide)-water. J Chem Soc Faraday Trans 1 Phys Chem Condensed Phases 77:2053–2077

    Google Scholar 

  8. Zalipsky S (1995) Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. Bioconjugate Chem 6:150–165

    CAS  Google Scholar 

  9. Li J, Kao WJ (2003) Synthesis of polyethylene glycol (PEG) derivatives and PEGylated-peptide biopolymer conjugates. Biomacromolecules 4:1055–1067

    CAS  Google Scholar 

  10. Thompson MS, Vadala TP, Vadala ML, Lin Y, Riffle JS (2008) Synthesis and applications of heterobifunctional poly(ethylene oxide) oligomers. Polymer 49:345–373

    CAS  Google Scholar 

  11. Dingels C, Schömer M, Frey H (2011) Die vielen Gesichter des Poly(ethylenglykol)s. Chem unserer Zeit 45:338–349

    CAS  Google Scholar 

  12. Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly-(ethylene glycol)-protein conjugates. Adv Drug Del Rev 55:1261–1277

    CAS  Google Scholar 

  13. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates: bioconjugates for effective drug targeting. Adv Drug Del Rev 55:217–250

    CAS  Google Scholar 

  14. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    CAS  Google Scholar 

  15. Pasut G, Sergi M, Veronese FM (2008) Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Del Rev 60:69–78

    CAS  Google Scholar 

  16. Pasut G, Veronese FM (2009) PEG conjugates in clinical development or use as anticancer agents: an overview. Adv Drug Del Rev 61:1177–1188

    CAS  Google Scholar 

  17. Lasic DD, Needham D (1995) The "stealth" liposome: a prototypical biomaterial. Chem Rev 95:2601–2628

    CAS  Google Scholar 

  18. Greenwald RB (2001) PEG drugs: an overview. J Control Release 74:159–171

    CAS  Google Scholar 

  19. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252:3578–3581

    CAS  Google Scholar 

  20. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    CAS  Google Scholar 

  21. Alconcel SNS, Baas AS, Maynard HD (2011) FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym Chem 2:1442–1448

    CAS  Google Scholar 

  22. Immordino ML, Dosio F, Cattel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomed 1:297–315

    CAS  Google Scholar 

  23. Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Polym Symp 51:135–153

    CAS  Google Scholar 

  24. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  Google Scholar 

  25. Seymour LW (1992) Passive tumour-targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst 9:135–342

    CAS  Google Scholar 

  26. Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360

    CAS  Google Scholar 

  27. Knischka R, Lutz PJ, Sunder A, Mülhaupt R, Frey H (2000) Functional poly(ethylene oxide) multiarm star polymers: core-first synthesis using hyperbranched polyglycerol initiators. Macromolecules 33:315–320

    CAS  Google Scholar 

  28. Taton D, Saule M, Logan J, Duran R, Hou S, Chaikof EL, Gnanou Y (2003) Polymerization of ethylene oxide with a calixarene-based precursor: synthesis of eight-arm poly(ethylene oxide) stars by the core-first methodology. J Polym Sci A Polym Chem 41:1669–1676

    CAS  Google Scholar 

  29. Zhao H, Rubio B, Sapra P, Wu D, Reddy P, Sai P, Martinez A, Gao Y, Lozanguiez Y, Longley C, Greenberger LM, Horak ID (2008) Novel prodrugs of SN38 using multiarm poly(ethylene glycol) linkers. Bioconjugate Chem 19:849–859

    CAS  Google Scholar 

  30. Hawker CJ, Chu F, Pomery PJ, Hill DJT (1996) Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29:3831–3838

    CAS  Google Scholar 

  31. Berna M, Dalzoppo D, Pasut G, Manunta M, Izzo L, Jones AT, Duncan R, Veronese FM (2006) Novel monodisperse PEG-dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. Biomacromolecules 7:146–153

    CAS  Google Scholar 

  32. Feng X-S, Taton D, Chaikof EL, Gnanou Y (2005) Toward an easy access to dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 127:10956–10966

    CAS  Google Scholar 

  33. Feng X, Taton D, Borsali R, Chaikof EL, Gnanou Y (2006) pH responsiveness of dendrimer-like poly(ethylene oxide)s. J Am Chem Soc 128:11551–11562

    CAS  Google Scholar 

  34. Feng X, Taton D, Chaikof EL, Gnanou Y (2007) Bouquet-type dendrimerlike poly(ethylene oxide)s with a focal aldehyde and peripheral hydroxyls. Biomacromolecules 8:2374–2378

    CAS  Google Scholar 

  35. Wilms D, Schömer M, Wurm F, Hermanns MI, Kirkpatrick CJ, Frey H (2010) Hyperbranched PEG by random copolymerization of ethylene oxide and glycidol. Macromol Rapid Commun 31:1811–1815

    CAS  Google Scholar 

  36. Choe YH, Conover CD, Wu D, Royzen M, Gervacio Y, Borowski V, Mehlig M, Greenwald RB (2002) Anticancer drug delivery systems: multi-loaded N4-acyl poly(ethylene glycol) prodrugs of ara-C.: II. Efficacy in ascites and solid tumors. J Contr Release 79:55–70

    CAS  Google Scholar 

  37. Pasut G, Scaramuzza S, Schiavon O, Mendichi R, Veronese FM (2005) PEG-epirubicin conjugates with high drug loading. J Bioact Compat Polym 20:213–230

    CAS  Google Scholar 

  38. Obermeier B, Wurm F, Mangold C, Frey H (2011) Multifunctional poly(ethylene glycol)s. Angew Chem Int Ed 50:7988–7997

    CAS  Google Scholar 

  39. Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49:6288–6308

    CAS  Google Scholar 

  40. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci 83:601–606

    CAS  Google Scholar 

  41. Pasut G, Veronese FM (2007) Polymer-drug conjugation, recent achievements and general strategies: polymers in Biomedical Applications. Prog Polym Sci 32:933–961

    CAS  Google Scholar 

  42. Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv Drug Del Rev 60:29–49

    CAS  Google Scholar 

  43. Boomer JA, Thompson DH (1999) Synthesis of acid-labile diplasmenyl lipids for drug and gene delivery applications. Chem Phys Lipids 99:145–153

    CAS  Google Scholar 

  44. Guo X, Szoka FC (2001) Steric stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate. Bioconjugate Chem 12:291–300

    CAS  Google Scholar 

  45. Boomer JA, Inerowicz HD, Zhang Z-Y, Bergstrand N, Edwards K, Kim J-M, Thompson DH (2003) Acid-triggered release from sterically stabilized fusogenic liposomes via a hydrolytic dPEGylation strategy. Langmuir 19:6408–6415

    CAS  Google Scholar 

  46. Masson C, Garinot M, Mignet N, Wetzer B, Mailhe P, Scherman D, Bessodes M (2004) pH-sensitive PEG lipids containing orthoester linkers: new potential tools for nonviral gene delivery. J Contr Release 99:423–434

    CAS  Google Scholar 

  47. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, Ueno M, Kobayashi H, Kikuchi H, Harashima H (2006) Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther 14:68–77

    Google Scholar 

  48. Sawant RM, Hurley JP, Salmaso S, Kale A, Tolcheva E, Levchenko TS, Torchilin VP (2006) "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem 17:943–949

    CAS  Google Scholar 

  49. Xu H, Deng Y, Chen D, Hong W, Lu Y, Dong X (2008) Esterase-catalyzed dePEGylation of pH-sensitive vesicles modified with cleavable PEG-lipid derivatives. J Contr Release 130:238–245

    CAS  Google Scholar 

  50. Boomer JA, Qualls MM, Inerowicz HD, Haynes RH, Patri VS, Kim J-M, Thompson DH (2009) Cytoplasmic delivery of liposomal contents mediated by an acid-labile cholesterol-vinyl ether-PEG conjugate. Bioconjugate Chem 20:47–59

    CAS  Google Scholar 

  51. Kuai R, Yuan W, Qin Y, Chen H, Tang J, Yuan M, Zhang Z, He Q (2010) Efficient delivery of payload into tumor cells in a controlled manner by TAT and thiolytic cleavable PEG co-modified liposomes. Mol Pharm 7:1816–1826

    CAS  Google Scholar 

  52. Chen D, Jiang X, Huang Y, Zhang C, Ping Q (2010) pH-sensitive mPEG-Hz-cholesterol conjugates as a liposome delivery system. J Bioact Compat Polym 25:527–542

    CAS  Google Scholar 

  53. Tomlinson R, Klee M, Garrett S, Heller J, Duncan R, Brocchini S (2002) Pendent chain functionalized polyacetals that display pH-dependent degradation: a platform for the development of novel polymer therapeutics. Macromolecules 35:473–480

    CAS  Google Scholar 

  54. Cheng J, Khin KT, Jensen GS, Liu A, Davis ME (2003) Synthesis of linear, β-cyclodextrin-based polymers and their camptothecin conjugates. Bioconjugate Chem 14:1007–1017

    CAS  Google Scholar 

  55. Tomlinson R, Heller J, Brocchini S, Duncan R (2003) Polyacetal-doxorubicin conjugates designed for pH-dependent degradation. Bioconjugate Chem 14:1096–1106

    CAS  Google Scholar 

  56. Vicent MJ, Tomlinson R, Brocchini S, Duncan R (2004) Polyacetal-diethylstilboestrol: a polymeric drug designed for pH-triggered activation. J Drug Target 12:491–501

    CAS  Google Scholar 

  57. Rickerby J, Prabhakar R, Ali M, Knowles J, Brocchini S (2005) Water-soluble polyacetals derived from diphenols. J Mater Chem 15:1849–1856

    CAS  Google Scholar 

  58. Kaihara S, Matsumura S, Fisher JP (2007) Synthesis and properties of poly[poly(ethylene glycol)-co-cyclic acetal] based hydrogels. Macromolecules 40:7625–7632

    CAS  Google Scholar 

  59. Knorr V, Allmendinger L, Walker GF, Paintner FF, Wagner E (2007) An acetal-based PEGylation reagent for pH-sensitive shielding of DNA polyplexes. Bioconjugate Chem 18:1218–1225

    CAS  Google Scholar 

  60. Cui W, Qi M, Li X, Huang S, Zhou S, Weng J (2008) Electrospun fibers of acid-labile biodegradable polymers with acetal groups as potential drug carriers. Int J Pharm 361:47–55

    CAS  Google Scholar 

  61. Wong JB, Grosse S, Tabor AB, Hart SL, Hailes HC (2008) Acid cleavable PEG-lipids for applications in a ternary gene delivery vector. Mol BioSyst 4:532–541

    CAS  Google Scholar 

  62. Betz MW, Caccamese JF, Coletti DP, Sauk JJ, Fisher JP (2009) Tissue response and orbital floor regeneration using cyclic acetal hydrogels. J Biomed Mater Res A 90A:819–829

    CAS  Google Scholar 

  63. Kaihara S, Matsumura S, Fisher JP (2009) Cellular responses to degradable cyclic acetal modified PEG hydrogels. J Biomed Mater Res A 90A:863–873

    CAS  Google Scholar 

  64. Kaihara S, Fisher JP, Matsumura S (2009) Chemo-enzymatic synthesis of degradable PTMC-b-PECA-b-PTMC triblock copolymers and their micelle formation for pH-dependent controlled release. Macromol Biosci 9:613–621

    CAS  Google Scholar 

  65. Wang Y, Morinaga H, Sudo A, Endo T (2011) Synthesis of amphiphilic polyacetal by polycondensation of aldehyde and polyethylene glycol as an acid-labile polymer for controlled release of aldehyde. J Polym Sci A Polym Chem 49:596–602

    CAS  Google Scholar 

  66. England RM, Masiá E, Giménez V, Lucas R, Vicent MJ (2012) Polyacetal-stilbene conjugates – the first examples of polymer therapeutics for the inhibition of HIF-1 in the treatment of solid tumours. J Contr Release 164:314–322

    CAS  Google Scholar 

  67. Giménez V, James C, Arminán A, Schweins R, Paul A, Vicent MJ (2012) Demonstrating the importance of polymer-conjugate conformation in solution on its therapeutic output: diethylstilbestrol (DES)-polyacetals as prostate cancer treatment. J Contr Release 159:290–301

    Google Scholar 

  68. Tonhauser C, Schüll C, Dingels C, Frey H (2012) Branched acid-degradable, biocompatible polyether copolymers via anionic ring-opening polymerization using an epoxide inimer. ACS Macro Lett 1:1094–1097

    CAS  Google Scholar 

  69. Feng X, Chaikof EL, Absalon C, Drummond C, Taton D, Gnanou Y (2011) Dendritic carrier based on PEG: design and degradation of acid-sensitive dendrimer-like poly(ethylene oxide)s. Macromol Rapid Commun 32:1722–1728

    CAS  Google Scholar 

  70. Dingels C, Müller SS, Steinbach T, Tonhauser C, Frey H (2013) Universal concept for the implemantation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s. Biomacromolecules 14:448–459

    CAS  Google Scholar 

  71. DuBois Clochard M-C, Rankin S, Brocchini S (2000) Synthesis of soluble polymers for medicine that degrade by intramolecular acid catalysis. Macromol Rapid Commun 21:853–859

    Google Scholar 

  72. Lai J, Wang L-Q, Tu K, Zhao C, Sun W (2005) Linear azo polymer containing conjugated 5,5′-azodisalicylic acid segments in the main chain: synthesis, characterization, and degradation. Macromol Rapid Commun 26:1572–1577

    CAS  Google Scholar 

  73. Lai J, Tu K, Wang H, Chen Z, Wang L-Q (2008) Degradability of the linear azo polymer conjugated 5,5′-azodisalicylic acid segment in the main chain for colon-specific drug delivery. J Appl Polym Sci 108:3305–3312

    CAS  Google Scholar 

  74. Goldberg EP (1963) Elastomeric polycarbonate block copolymers. J Polym Sci C Polym Symp 4:707–730

    Google Scholar 

  75. Suzuki T, Kotaka T (1980) Dielectric and mechanical relaxations in randomly coupled multiblock copolymers with varying block lengths: bisphenol-A polycarbonate-poly(oxyethylene) systems. Macromolecules 13:1495–1501

    CAS  Google Scholar 

  76. Suzuki T, Kotaka T (1983) Morphological and physical properties of randomly coupled multiblock copolymers: bisphenol-A polycarbonate-poply(oxyethylene) systems. Polym J 15:15–23

    CAS  Google Scholar 

  77. Suzuki T, Chihara H, Kotaka T (1984) Sorption of water by bisphenol-A polycarbonate and polyoxyethylene multiblock copolymers with varying composition and block length. Polym J 16:129–138

    CAS  Google Scholar 

  78. Tanisugi H, Ohnuma H, Kotaka T (1984) Swelling behavior of bisphenol-A polycarbonate-polyoxyethylene multiblock copolymers in ethanol/water mixtures. Polym J 16:633–640

    CAS  Google Scholar 

  79. Harris JM, Bentley MD, Zhoa X, Shen X (2002) Patent Application 09/459312, US6,348,558B1

    Google Scholar 

  80. Tziampazis E, Kohn J, Moghe PV (2000) PEG-variant biomaterials as selectively adhesive protein templates: model surfaces for controlled cell adhesion and migration. Biomaterials 21:511–520

    CAS  Google Scholar 

  81. Bourke SL, Kohn J (2003) Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Del Rev 55:447–466

    CAS  Google Scholar 

  82. Sharma RI, Kohn J, Moghe PV (2004) Poly(ethylene glycol) enhances cell motility on protein-based poly(ethylene glycol)-polycarbonate substrates: a mechanism for cell-guided ligand remodeling. J Biomed Mater Res A 69A:114–123

    CAS  Google Scholar 

  83. Sousa A, Schut J, Kohn J, Libera M (2006) Nanoscale morphological changes during hydrolytic degradation and erosion of a bioresorbable polymer. Macromolecules 39:7306–7312

    CAS  Google Scholar 

  84. Kozlowski A, McKannan J, McManus SP (2007) Patent Application PCT/US2006/029,929, WO/2007/016560A2

    Google Scholar 

  85. Won C-Y, Chu C-C, Lee JD (1998) Novel biodegradable copolymers containing pendant amine functional groups based on aspartic acid and poly(ethylene glycol). Polymer 39:6677–6681

    CAS  Google Scholar 

  86. Won C-Y, Chu C-C, Lee JD (1998) Synthesis and characterization of biodegradable poly(l-aspartic acid-co-PEG). J Polym Sci A Polym Chem 36:2949–2959

    CAS  Google Scholar 

  87. Padmaja T, Lele BS, Deshpande MC, Kulkarni MG (2002) Enzymatically degradable prodrugs: a novel methodology for drug linkage. J Appl Polym Sci 85:2108–2118

    CAS  Google Scholar 

  88. Nagahama K, Hashizume M, Yamamoto H, Ouchi T, Ohya Y (2009) Hydrophobically modified biodegradable poly(ethylene glycol) copolymers that form temperature-responsive nanogels. Langmuir 25:9734–9740

    CAS  Google Scholar 

  89. Braunová A, Pechar M, Laga R, Ulbrich K (2007) Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s. Macromol Chem Phys 208:2642–2653

    Google Scholar 

  90. Harris JM (2001) Patent Application 08/937846, US06,214,966B1

    Google Scholar 

  91. Nagata M, Hizakae S (2003) Synthesis and properties of biodegradable copolymers based on 4,4′-(adipoyldioxy)dicinnamic acid, 1,6-hexanediol, and poly(ethylene glycol)s. J Polym Sci A Polym Chem 41:2930–2938

    CAS  Google Scholar 

  92. Nagata M, Hizakae S (2003) Synthesis and characterization of photocrosslinkable biodegradable polymers derived from 4-hydroxycinnamic acid. Macromol Biosci 3:412–419

    CAS  Google Scholar 

  93. Mero A, Schiavon O, Pasut G, Veronese FM, Emilitri E, Ferruti P (2009) A biodegradable polymeric carrier based on PEG for drug delivery. J Bioact Compat Polym 24:220–234

    CAS  Google Scholar 

  94. Unal S, Lin Q, Mourey TH, Long TE (2005) Tailoring the degree of branching: preparation of poly(ether ester)s via copolymerization of poly(ethylene glycol) oligomers (A2) and 1,3,5-benzenetricarbonyl trichloride (B3). Macromolecules 38:3246–3254

    CAS  Google Scholar 

  95. Wang N, Dong A, Tang H, Van Kirk EA, Johnson PA, Murdoch WJ, Radosz M, Shen Y (2007) Synthesis of degradable functional poly(ethylene glycol) analogs as versatile drug delivery carriers. Macromol Biosci 7:1187–1198

    CAS  Google Scholar 

  96. Wang N, Dong A, Radosz M, Shen Y (2008) Thermoresponsive degradable poly(ethylene glycol) analogues. J Biomed Mater Res A 84A:148–157

    CAS  Google Scholar 

  97. Chen S, Wang Y, Fan Y, Ma J (2009) Synthesis of amphiphilic poly(tetraethylene glycol succinate) and the thermosensitivity of its aggregation in water. J Biomed Mater Res A 88A:769–777

    CAS  Google Scholar 

  98. Kumar R, Chen M-H, Parmar VS, Samuelson LA, Kumar J, Nicolosi R, Yoganathan S, Watterson AC (2004) Supramolecular assemblies based on copolymers of PEG600 and functionalized aromatic diesters for drug delivery applications. J Am Chem Soc 126:10640–10644

    CAS  Google Scholar 

  99. Dou S, Zhang S, Klein RJ, Runt J, Colby RH (2006) Synthesis and characterization of poly(ethylene glycol)-based single-ion conductors. Chem Mater 18:4288–4295

    CAS  Google Scholar 

  100. Wang W, Liu W, Tudryn GJ, Colby RH, Winey KI (2010) Multi-length scale morphology of poly(ethylene oxide)-based sulfonate ionomers with alkali cations at room temperature. Macromolecules 43:4223–4229

    CAS  Google Scholar 

  101. Bhatia S, Mohr A, Mathur D, Parmar VS, Haag R, Prasad AK (2011) Biocatalytic route to sugar-PEG-based polymers for drug delivery applications. Biomacromolecules 12:3487–3498

    CAS  Google Scholar 

  102. Wang H-Y, Zhou Y-J, Wang Z, Wang N, Li K, Yu X-Q (2011) Enzyme-catalyzed synthesis of a novel thermosensitive polyester with pendant ketoprofen. Macromol Biosci 11:595–599

    CAS  Google Scholar 

  103. Wang W, Tudryn GJ, Colby RH, Winey KI (2011) Thermally driven ionic aggregation in poly(ethylene oxide)-based sulfonate ionomers. J Am Chem Soc 133:10826–10831

    CAS  Google Scholar 

  104. Braunová A, Pechar M, Ulbrich K (2004) Degradation behavior of poly(ethylene glycol) diblock and multiblock polymers with hydrolytically degradable ester linkages. Collect Czech Chem Commun 69:1643–1656

    Google Scholar 

  105. Lee Y, Koo H, G-w J, Mo H, Cho MY, Park J-Y, Choi JS, Park JS (2005) Poly(ethylene oxide sulfide): new poly(ethylene glycol) derivatives degradable in reductive conditions. Biomacromolecules 6:24–26

    CAS  Google Scholar 

  106. Lee J, Joo MK, Kim J, Park JS, Yoon M-Y, Jeong B (2009) Temperature-sensitive biodegradable poly(ethylene glycol). J Biomater Sci Polym Ed 20:957–965

    CAS  Google Scholar 

  107. Etrych T, Kovár L, Šubr V, Braunová A, Pechar M, Chytil P, Říhová B, Ulbrich K (2010) High-molecular-weight polymers containing biodegradable disulfide bonds: synthesis and in vitro verification of intracellular degradation. J Bioact Compat Polym 25:5–26

    CAS  Google Scholar 

  108. Hernandez-Mireles T, Rito-Palomares M (2006) New aqueous two-phase systems based on poly(ethylene oxide sulfide) (PEOS) and potassium phosphate for the potential recovery of proteins. J Chem Technol Biotechnol 81:997–1002

    CAS  Google Scholar 

  109. Reid B, Tzeng S, Warren A, Kozielski K, Elisseeff J (2010) Development of a PEG derivative containing hydrolytically degradable hemiacetals. Macromolecules 43:9588–9590

    CAS  Google Scholar 

  110. Qi M, Li X, Yang Y, Zhou S (2008) Electrospun fibers of acid-labile biodegradable polymers containing ortho ester groups for controlled release of paracetamol. Eur J Pharm Biopharm 70:445–452

    CAS  Google Scholar 

  111. Ulbrich K, Strohalm J, Kopeček J (1986) Poly(ethylene glycol)s containing enzymatically degradable bonds. Makromol Chem 187:1131–1144

    CAS  Google Scholar 

  112. Pechar M, Strohalm J, Ulbrich K (1995) Synthesis of poly(ethylene glycol) block copolymers as potential water-soluble drug carriers. Collect Czech Chem Commun 60:1765–1780

    CAS  Google Scholar 

  113. Pechar M, Strohalm J, Ulbrich K, Schacht E (1997) Biodegradable drug carriers based on poly(ethylene glycol) block copolymers. Macromol Chem Phys 198:1009–1020

    CAS  Google Scholar 

  114. Ulbrich K, Pechar M, Strohalm J, Šubr V, Říhová B (1997) Polymeric carriers of drugs for site-specific therapy. Macromol Symp 118:577–585

    CAS  Google Scholar 

  115. Ulbrich K, Šubr V, Pechar M, Strohalm J, Jelínková M, Říhová B (2000) Hydrophilic polymers for drug delivery. Macromol Symp 152:151–162

    CAS  Google Scholar 

  116. Pechar M, Ulbrich K, Šubr V, Seymour LW, Schacht EH (2000) Poly(ethylene glycol) multiblock copolymer as a carrier of anti-cancer drug doxorubicin. Bioconjugate Chem 11:131–139

    CAS  Google Scholar 

  117. Pechar M, Ulbrich K, Jelínková M, Říhová B (2003) Conjugates of antibody-targeted PEG multiblock polymers with doxorubicin in cancer therapy. Macromol Biosci 3:364–372

    CAS  Google Scholar 

  118. Pechar M, Braunová A, Ulbrich K, Jelínková M, Říhová B (2005) Poly(Ethylene Glycol)-doxorubicin conjugates with pH-controlled activation. J Bioact Compat Polym 20:319–341

    CAS  Google Scholar 

  119. Pechar M, Braunová A, Ulbrich K (2005) Poly(ethylene glycol)-based polymer carrier of doxorubicin degradable by both enzymatic and chemical hydrolyses. Collect Czech Chem Commun 70:327–338

    CAS  Google Scholar 

  120. Ramanathan S, Qiu B, Pooyan S, Zhang G, Stein S, Leibowitz MJ, Sinko PJ (2001) Targeted PEG-based bioconjugates enhance the cellular uptake and transport of a HIV-1 TAT nonapeptide. J Contr Release 77:199–212

    CAS  Google Scholar 

  121. d'Acunzo F, Kohn J (2002) Alternating multiblock amphiphilic copolymers of PEG and tyrosine-derived diphenols. 1. Synthesis and characterization. Macromolecules 35:9360–9365

    Google Scholar 

  122. d'Acunzo F, Le T-Q, Kohn J (2002) Alternating multiblock amphiphilic copolymers of PEG and tyrosine-derived diphenols. 2. Self-assembly in aqueous solution and at hydrophobic surfaces. Macromolecules 35:9366–9371

    Google Scholar 

  123. Rao Z, Sasaki M, Taguchi T (2013) Development of amphiphilic, enzymatically-degradable PEG-peptide conjugate as cell crosslinker for spheroid formation. Colloids Surf B Biointerfaces 101:223–227

    CAS  Google Scholar 

  124. Tzevi R, Novakov P, Troev K, Roundhill DM (1997) Synthesis of poly(oxyethylene phosphonate)s bearing oxirane groups in the side chain. J Polym Sci A Polym Chem 35:625–630

    CAS  Google Scholar 

  125. Pretula J, Penczek S (1990) High-molecular-weight poly(alkylene phosphonate)s by condensation of dialkylphosphonates with diols. Makromol Chem 191:671–680

    CAS  Google Scholar 

  126. Pretula J, Penczek S (1988) Poly(ethylene glycol) ionomers with phosphate diester linkages. Makromol Chem Rapid Commun 9:731–737

    CAS  Google Scholar 

  127. Penczek S, Pretula J (1993) High-molecular-weight poly(alkylene phosphates) and preparation of amphiphilic polymers thereof. Macromolecules 26:2228–2233

    CAS  Google Scholar 

  128. Tzevi R, Todorova G, Kossev K, Troev K, Georgiev EM, Roundhill DM (1993) Immobilization of bioactive substances on poly(alkylene phosphate)s, 1. Immobilization of 2-phenylethylamine. Makromol Chem 194:3261–3269

    CAS  Google Scholar 

  129. Pretula J, Kaluzynski K, Szymanski R, Penczek S (1997) Preparation of poly(alkylene H-phosphonate)s and their derivatives by polycondensation of diphenyl H-phosphonate with diols and subsequent transformations. Macromolecules 30:8172–8176

    CAS  Google Scholar 

  130. Wang J, Zhuo R (1999) Synthesis and characterization of phosphoester linkage-containing hydrogels. Eur Polym J 35:491–497

    CAS  Google Scholar 

  131. Georgieva R, Tsevi R, Kossev K, Kusheva R, Balgjiska M, Petrova R, Tenchova V, Gitsov I, Troev K (2002) Immobilization of aminothiols on poly(oxyalkylene phosphates). Formation of poly(oxyethylene phosphates)/cysteamine complexes and their radioprotective efficiency. J Med Chem 45:5797–5801

    CAS  Google Scholar 

  132. Troev K, Tsatcheva I, Koseva N, Georgieva R, Gitsov I (2007) Immobilization of aminothiols on poly(oxyethylene H-phosphonate)s and poly(oxyethylene phosphate)s—an approach to polymeric protective agents for radiotherapy of cancer. J Polym Sci A Polym Chem 45:1349–1363

    CAS  Google Scholar 

  133. Stanimirov S, Vasilev A, Haupt E, Petkov I, Deligeorgiev T (2009) Synthesis and spectral properties of novel fluorescent poly(oxyethylene phosphate) tris(β-diketonate) europium (III) complexes. J Fluoresc 19:85–95

    CAS  Google Scholar 

  134. Gitsov I, Johnson FE (2008) Synthesis and hydrolytic stability of poly(oxyethylene-H-phosphonate)s. J Polym Sci A Polym Chem 46:4130–4139

    CAS  Google Scholar 

  135. Kraicheva I, Bogomilova A, Tsacheva I, Momekov G, Momekova D, Troev K (2010) Synthesis, NMR characterization and in vitro cytotoxicity evaluation of new poly(oxyethylene aminophosphonate)s. Eur J Med Chem 45:6039–6044

    CAS  Google Scholar 

  136. D-A W, Williams CG, Li Q, Sharma B, Elisseeff JH (2003) Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 24:3969–3980

    Google Scholar 

  137. Troev KD (2012) Polyphosphoesters. Elsevier, Oxford

    Google Scholar 

  138. Nathan A, Bolikal D, Vyavahare N, Zalipsky S, Kohn J (1992) Hydrogels based on water-soluble poly(ether urethanes) derived from L-lysine and poly(ethylene glycol). Macromolecules 25:4476–4484

    CAS  Google Scholar 

  139. Nathan A, Zalipsky S, Ertel SI, Agathos SN, Yarmush ML, Kohn J (1993) Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers. Bioconjugate Chem 4:54–62

    CAS  Google Scholar 

  140. Nathan A, Zalipsky S, Kohn J (1994) Strategies for covalent attachment of doxorubicin to poly(PEG-Lys), a new water-soluble poly(ether urethane). J Bioact Compat Polym 9:239–251

    CAS  Google Scholar 

  141. Huang S-Y, Pooyan S, Wang J, Choudhury I, Leibowitz MJ, Stein S (1998) A polyethylene glycol copolymer for carrying and releasing multiple copies of Cysteine-containing peptides. Bioconjugate Chem 9:612–617

    CAS  Google Scholar 

  142. Liu X-M, Thakur A, Wang D (2007) Efficient synthesis of linear multifunctional poly(ethylene glycol) by copper(I)-catalyzed huisgen 1,3-dipolar cycloaddition. Biomacromolecules 8:2653–2658

    CAS  Google Scholar 

  143. Liu X-M, L-d Q, Tian J, Laquer FC, Ciborowski P, Wang D (2010) Syntheses of click PEG-dexamethasone conjugates for the treatment of rheumatoid arthritis. Biomacromolecules 11:2621–2628

    CAS  Google Scholar 

  144. Sarkar D, Lopina ST (2007) Oxidative and enzymatic degradations of l-tyrosine based polyurethanes. Polym Degrad Stab 92:1994–2004

    CAS  Google Scholar 

  145. Fu H, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Preparation and tunable temperature sensitivity of biodegradable polyurethane nanoassemblies from diisocyanate and poly(ethylene glycol). Soft Matter 7:3546–3552

    CAS  Google Scholar 

  146. Sun X, Gao H, Wu G, Wang Y, Fan Y, Ma J (2011) Biodegradable and temperature-responsive polyurethanes for adriamycin delivery. Int J Pharm 412:52–58

    CAS  Google Scholar 

  147. Lundberg P, Lee BF, van den Berg SA, Pressly ED, Lee A, Hawker CJ, Lynd NA (2012) Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: a hydrolytically degradable poly(ethylene oxide) platform. ACS Macro Lett 1:1240–1243

    CAS  Google Scholar 

  148. Chan TH, Ong BS (1978) Chemistry of allene oxides. J Org Chem 43:2994–3001

    CAS  Google Scholar 

  149. Lo W-J, Wu Y-J, Lee Y-P (2002) Isomers of S2O: Infrared absorption spectra of cyclic S2O in solid Ar. J Chem Phys 117:6655–6661

    CAS  Google Scholar 

  150. Lo W-J, Wu Y-J, Lee Y-P (2003) Ultraviolet absorption spectrum of cyclic S2O in solid Ar. J Phys Chem A 107:6944–6947

    CAS  Google Scholar 

  151. Nagahara H, Kagawa K, Iwaisako T, Masamoto J (1995) Initiation mechanism of the copolymerization of 1,3,5-trioxane and ethylene oxide. Ind Eng Chem Res 34:2515–2519

    CAS  Google Scholar 

  152. Nagahara H, Kagawa K, Hamanaka K, Yoshida K, Iwaisako T, Masamoto J (2000) Acetal copolymer from the copolymerization of trioxane and ethylene oxide. Ind Eng Chem Res 39:2275–2280

    CAS  Google Scholar 

  153. Yamasaki N, Kanaori K, Masamoto J (2001) Analysis of ethylene oxide sequences of the acetal copolymer from trioxane and ethylene oxide. J Polym Sci A Polym Chem 39:3239–3245

    CAS  Google Scholar 

  154. Shenoi RA, Narayanannair JK, Hamilton JL, Lai BFL, Horte S, Kainthan RK, Varghese JP, Rajeev KG, Manoharan M, Kizhakkedathu JN (2012) Branched multifunctional polyether polyketals: variation of ketal group structure enables unprecedented control over polymer degradation in solution and within cells. J Am Chem Soc 134:14945–14957

    CAS  Google Scholar 

  155. Shenoi RA, Lai BFL, Imran ul-haq M, Brooks DE, Kizhakkedathu JN (2013) Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems. Biomaterials 34:6068–6081

    Google Scholar 

  156. Binauld S, Stenzel MH (2013) Acid-degradable polymers for drug delivery: a decade of innovation. Chem Commun 49:2082–2102

    CAS  Google Scholar 

  157. Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    CAS  Google Scholar 

  158. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  Google Scholar 

  159. Roldo M, Barbu E, Brown JF, Laight DW, Smart JD, Tsibouklis J (2007) Azo compounds in colon-specific drug delivery. Expert Opin Drug Deliv 4:547–560

    CAS  Google Scholar 

  160. Yu C, Kohn J (1999) Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials: Part I: synthesis and evaluation. Biomaterials 20:253–264

    CAS  Google Scholar 

  161. Yu C, Mielewczyk SS, Breslauer KJ, Kohn J (1999) Tyrosine-PEG-derived poly(ether carbonate)s as new biomaterials: Part II: study of inverse temperature transitions. Biomaterials 20:265–272

    CAS  Google Scholar 

  162. Lendlein A, Sisson A (eds) (2011) Handbook of biodegradable polymers: synthesis, characterization and applications. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Frey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dingels, C., Frey, H. (2013). From Biocompatible to Biodegradable: Poly(Ethylene Glycol)s with Predetermined Breaking Points. In: Percec, V. (eds) Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Advances in Polymer Science, vol 262. Springer, Cham. https://doi.org/10.1007/12_2013_235

Download citation

Publish with us

Policies and ethics