Skip to main content

Ordering of Polypeptides in Liquid Crystals, Gels and Micelles

  • Chapter
  • First Online:
Controlled Polymerization and Polymeric Structures

Part of the book series: Advances in Polymer Science ((POLYMER,volume 259))

Abstract

Ordered structures assembled from polypeptides have attracted a great deal of attention over the past few decades. Both α-helix and β-sheet conformations of polypeptides support the formation of ordered structures during the assembly process. For polypeptides with α-helix conformation, the ordered structures are formed mainly by side-by-side packing of α-helix rods. For polypeptides with β-sheet conformation, ordering of the chains can be achieved by parallel or antiparallel packing. The ordering characteristic of polypeptide chains gives rise to fascinating assembly behaviors of polypeptide homopolymers and copolymers in solution. Usually, a decrease in polymer concentration is accompanied by the assembly of polypeptides into liquid crystals (LCs), gels, and micelles. This review describes the ordering structures of polypeptides in these assemblies. In LC structures, polypeptide homopolymer chains are packed in a highly ordered fashion with smectic, nematic, and cholesteric phases. Both polypeptide homopolymers and copolymers support the formation of gels in solution. The dislocated side-by-side packing of polypeptide helices is the basic ordering characteristic of the polypeptides in gels. Compared with the α-helix conformation, gels formed from polypeptides with β-sheet conformation show higher stability. In dilute solutions, amphiphilic polypeptide copolymers can self-assemble into micelles that include cylinders, vesicles, and complex hierarchical structures. The ordering nature of the polypeptide chains can be observed in the assemblies. The close relationship with proteins makes polypeptides and their assembly structures ideal models for protein research and promising candidates in biorelated applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

B:

Biphasic region

BD:

Brownian dynamics

CDCl3 :

Deuterated chloroform

CHCl3 :

Chloroform

DCA:

Dichloroacetic acid

DL-PA:

Poly(dl-alanine)

DHP:

Dendron-helical polypeptide

DMF:

N,N′-dimethylformamide

DP:

Degree of polymerization

DPD:

Dissipative particle dynamics

EDC:

Dichloroethane

I:

Isotropic phase

LC:

Liquid crystal

L-PA:

Poly(l-alanine)

LSCM:

Confocal laser scanning microscopy

NCA:

N-Carboxyanhydride

PArg:

Poly(l-arginine)

PBLG:

Poly(γ-benzyl l-glutamate)

PClBLA:

Poly(β-p-chlorobenzyl l-aspartate)

PDI:

Polydispersity index

PDMS:

Poly(dimethylsiloxane)

PEG:

Poly(ethylene glycol)

PEO:

Poly(ethylene oxide)

PFS:

Poly(ferrocenylsilane)

PHEG:

Poly[N 5-(2-hydroxyethyl) l-glutamine]

PIAA:

Poly(isocyano-l-alanine-l-alanine)

PIAH:

Poly(isocyano-l-alanine-l-histidine)

PLeu:

Poly(l-leucine)

PLGA:

Poly(l-glutamic acid)

PLL:

Poly(l-lysine)

PMLG:

Poly(γ-methyl l-glutamate)

PNIPAm:

Poly(N-isopropylacrylamide)

POM:

Polarizing optical micrograph

PPLA:

Poly(β-phenethyl l-aspartate)

PZLys:

Poly(ε-carbobenzoxy l-lysine)

S :

Periodicity of cholesteric LC

SAXD:

Small-angle X-ray diffraction

SAXS:

Small-angle X-ray scattering

SEM:

Scanning electron microscopy

SFM:

Scanning force microscopy

TCE:

Trichloroethylene

TEM:

Transmission electron microscopy

TFA:

Trifluoroacetic acid

THF:

Tetrahydrofuran

References

  1. Deming TJ (1997) Polypeptide materials: new synthetic methods and applications. Adv Mater 9:299–311

    CAS  Google Scholar 

  2. Mart RJ, Osborne RD, Stevens URV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2:822–835

    CAS  Google Scholar 

  3. Osada K, Kataoka K (2006) Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Adv Polym Sci 202:113–153

    CAS  Google Scholar 

  4. Schlaad H (2006) Solution properties of polypeptide-based copolymers. Adv Polym Sci 202:53–73

    CAS  Google Scholar 

  5. Carlsen A, Lecommandoux S (2009) Self-assembly of polypeptide-based block copolymer amphiphiles. Curr Opin Colloid Interface Sci 14:329–339

    CAS  Google Scholar 

  6. Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875

    CAS  Google Scholar 

  7. Banwell EF, Abelardo ES, Adams DJ, Birchall MA, Corrigan A (2009) Rational design and application of responsive α-helical peptide hydrogels. Nat Mater 8:596–600

    CAS  Google Scholar 

  8. He C, Zhuang X, Tang Z, Tian H, Chen X (2012) Stimuli-sensitive synthetic polypeptide-based materials for drug and gene delivery. Adv Healthc Mater 1:48–78

    CAS  Google Scholar 

  9. Lowik DWPM, Leunissen EHP, van den Heuvel M, Hansen MB, van Hest JCM (2010) Stimulus responsive peptide based materials. Chem Soc Rev 39:3394–3412

    Google Scholar 

  10. Choe U-J, Sun VZ, Tan JKY, Kamei DT (2012) Self-assembly polypeptide and polypeptide hybrid vesicles: from synthesis to application. Top Curr Chem 310:117–134

    CAS  Google Scholar 

  11. Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep 62:125–155

    Google Scholar 

  12. Lim Y-b, Lee E, Lee M (2007) Cell-penetrating-peptide-coated nanoribbons for intracellular nanocarriers. Angew Chem Int Ed 46:3475–3478

    Google Scholar 

  13. Kopecek J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51:7396–7417

    CAS  Google Scholar 

  14. Higashihara T, Ueda M (2011) Block copolymers containing rod segments. In: Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architectures: synthesis, characterization, and self-assembly. Wiley, Hoboken, pp 395–429

    Google Scholar 

  15. Klok H-A (2002) Protein-inspired materials: synthetic concepts and potential applications. Angew Chem Int Ed 41:1509–1513

    CAS  Google Scholar 

  16. Zhang G, Fournier MJ, Mason TL, Tirrell DA (1992) Biological synthesis of monodisperse derivatives of poly(α, l-glutamic acid): model rodlike polymers. Macromolecules 25:3601–3603

    CAS  Google Scholar 

  17. Rabotyagova OS, Cebe P, Kaplan DL (2011) Protein-based block copolymers. Biomacromolecules 12:269–289

    CAS  Google Scholar 

  18. Kiick KL (2002) Genetic methods of polymer synthesis. In: Mark HF (ed) Encyclopedia of polymer science and technology. Wiley, Hoboken, pp 515–522

    Google Scholar 

  19. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    CAS  Google Scholar 

  20. Aliferis T, Iatrou H, Hadjichristidis N (2004) Living polypeptides. Biomacromolecules 5:1653–1656

    CAS  Google Scholar 

  21. Hadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G (2009) Synthesis of well-defined polypeptide-based materials via the ring-opening polymerization of alpha-amino acid N-carboxyanhydrides. Chem Rev 109:5528–5578

    CAS  Google Scholar 

  22. Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    CAS  Google Scholar 

  23. Kricheldorf HR (1987) α-aminoacid-N-carboxy-anhydrides and related heterocycles: syntheses, properties, peptide synthesis, polymerization. Springer, Berlin

    Google Scholar 

  24. Penczek S, Kricheldorf HR (1990) Models of biopolymers by ring opening polymerization. CRC, Boca Raton

    Google Scholar 

  25. Duran H, Ogura K, Nakao K, Vianna SDB, Usui H (2009) High-vacuum vapor deposition and in situ monitoring of N-carboxy anhydride benzyl glutamate polymerization. Langmuir 25:10711–10718

    CAS  Google Scholar 

  26. Leuchs H, Geiger W (1908) The anhydrides of alpha-amino-N-carboxylic and alpha-amino acids. Ber Dtsch Chem Ges 41:1721–1726

    CAS  Google Scholar 

  27. Voet D, Voet JG (eds) (1995) Biochemistry, Solutions Manual. Wiley, Hoboken

    Google Scholar 

  28. Zimm BH, Bragg JK (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J Chem Phys 31:526–535

    CAS  Google Scholar 

  29. Teramoto A, Fujita H (1975) Conformation-dependent properties of synthetic polypeptides in the helix-coil transition region. Adv Polym Sci 18:65–149

    CAS  Google Scholar 

  30. Parras P, Castelletto V, Hamley IW, Klok H-A (2005) Nanostructure formation in poly(γ-benzyl-l-glutamate)-poly(ethylene glycol)-poly(γ-benzyl-l-glutamate) triblock copolymers in the solid state. Soft Matter 1:284–291

    CAS  Google Scholar 

  31. Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A (2005) Linear and non-linear triblock terpolymers: synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 30:725–782

    CAS  Google Scholar 

  32. Klok H-A, Lecommandoux S (2006) Solid-state structure, organization and properties of peptide-synthetic hybrid block copolymers. Adv Polym Sci 202:75–111

    CAS  Google Scholar 

  33. Sanchez-Ferrer A, Mezzenga R (2010) Secondary structure-induced micro- and macrophase separation in rod-coil polypeptide diblock, triblock, and star-block copolymers. Macromolecules 43:1093–1100

    CAS  Google Scholar 

  34. Babin J, Taton D, Brinkmann M, Lecommandoux S (2008) Synthesis and self-assembly in bulk of linear and mikto-arm star block copolymers based on polystyrene and poly(glutamic acid). Macromolecules 41:1384–1392

    CAS  Google Scholar 

  35. Kopecek J, Yang J (2009) Peptide-directed self-assembly of hydrogels. Acta Biomater 5:805–816

    CAS  Google Scholar 

  36. Hermes F, Otte K, Brandt J, Grawert M, Borner HG, Schlaad H (2011) Polypeptide-based organogelators: effects of secondary structure. Macromolecules 44:7489–7492

    CAS  Google Scholar 

  37. Huang C-J, Chang F-C (2008) Polypeptide diblock copolymers: syntheses and properties of poly(N-isopropylacrylamide)-b-polylysine. Macromolecules 41:7041–7052

    CAS  Google Scholar 

  38. Gebhardt KE, Ahn S, Venkatachalam G, Savin DA (2008) Role of secondary structure changes on the morphology of polypeptide-based block copolymer vesicles. J Colloid Interface Sci 317:70–76

    CAS  Google Scholar 

  39. Robinson C (1956) Liquid-crystalline structures in solutions of a polypeptide. Trans Faraday Soc 52:571–592

    CAS  Google Scholar 

  40. Uematsu I, Uematsu Y (1984) Polypeptide liquid crystals. Adv Polym Sci 59:37–73

    CAS  Google Scholar 

  41. Flory PJ, Leonard WJ (1965) Thermodynamic properties of solutions of helical polypeptides. J Am Chem Soc 87:2102–2108

    CAS  Google Scholar 

  42. Tohyama K, Miller WG (1981) Network structure in gels of rod-like polypeptides. Nature 289:813–814

    CAS  Google Scholar 

  43. Cohen Y (1996) The microfibrillar network in gels of poly(γ-benzyl-l-glutamate) in benzyl alcohol. J Polym Sci, Part B: Polym Phys 34:57–64

    CAS  Google Scholar 

  44. Kim KT, Park C, Vandermeulen GWM, Rider DA, Kim C, Winnik MA, Manners I (2005) Gelation of helical polypeptide-random coil diblock copolymers by a nanoribbon mechanism. Angew Chem Int Ed 44:7964–7968

    CAS  Google Scholar 

  45. Rodriguez-Hernandez J, Lecommandoux S (2005) Reversible inside-out micellization of pH-responsive and water-soluble vesicles based on polypeptide diblock copolymers. J Am Chem Soc 127:2026–2027

    CAS  Google Scholar 

  46. Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127:12423–12428

    CAS  Google Scholar 

  47. Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244–248

    CAS  Google Scholar 

  48. Kim KT, Park C, Kim C, Winnik MA, Manners I (2006) Self-assembly of dendron-helical polypeptide copolymers: organogels and lyotropic liquid crystals. Chem Commun 1372–1374

    Google Scholar 

  49. Yu SM, Conticello VP, Zhang G, Kayser C, Fournier MJ, Mason TL, Tirrell DA (1997) Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length. Nature 389:167–170

    CAS  Google Scholar 

  50. Schmidtke S, Russo P, Nakamatsu J, Buyuktanir E, Turfan B, Temyanko E, Negulescu I (2000) Thermoreversible gelation of isotropic and liquid crystalline solutions of a “sticky” rodlike polymer. Macromolecules 33:4427–4432

    CAS  Google Scholar 

  51. Ginzburg B, Siromyatnikova T, Frenkel S (1985) Gelation in the poly(γ-benzyl-l-glutamate)-dimethylformamide system. Polym Bull (Berl) 13:139–144

    CAS  Google Scholar 

  52. Russo PS, Magestro P, Miller WG (1987) Gelation of poly(γ-benzyl-α,l-glutamate). In: Russo PS (ed) Reversible polymeric gels and related systems. ACS symposium series, vol 350. American Chemical Society, Washington, DC, pp 152–180

    Google Scholar 

  53. Kuo S-W, Lee H-F, Huang W-J, Jeong K-U, Chang F-C (2009) Solid state and solution self-assembly of helical polypeptides tethered to polyhedral oligomeric silsesquioxanes. Macromolecules 42:1619–1626

    CAS  Google Scholar 

  54. Kim EH, Joo MK, Bahk KH, Park MH, Chi B, Lee YM, Jeong B (2009) Reverse thermal gelation of PAF-PLX-PAF block copolymer aqueous solution. Biomacromolecules 10:2476–2481

    CAS  Google Scholar 

  55. Li T, Lin J, Chen T, Zhang S (2006) Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer. Polymer 47:4485–4489

    CAS  Google Scholar 

  56. Cai C, Zhang L, Lin J, Wang L (2008) Self-assembly behavior of pH- and thermosensitive amphiphilic triblock copolymers in solution: experimental studies and self-consistent field theory simulations. J Phys Chem B 112:12666–12673

    CAS  Google Scholar 

  57. Ueda M, Makino A, Imai T, Sugiyama J, Kimura S (2011) Transformation of peptide nanotubes into a vesicle via fusion driven by stereo-complex formation. Chem Commun 47:3204–3206

    CAS  Google Scholar 

  58. Cai C, Wang L, Lin J (2011) Self-assembly of polypeptide-based copolymers into diverse aggregates. Chem Commun 47:11189–11203

    CAS  Google Scholar 

  59. Kim MS, Dayananda K, Choi EY, Park HJ, Kim JS, Lee DS (2009) Synthesis and characterization of poly(l-glutamic acid)-block-poly(l-phenylalanine). Polymer 50:2252–2257

    CAS  Google Scholar 

  60. Schenck HL, Gellman SH (1998) Use of a designed triple-stranded antiparallel β-sheet to probe β-sheet cooperativity in aqueous solution. J Am Chem Soc 120:4869–4870

    CAS  Google Scholar 

  61. Ding W, Lin S, Lin J, Zhang L (2008) Effect of chain conformational change on micelle structures: experimental studies and molecular dynamics simulations. J Phys Chem B 112:776–783

    CAS  Google Scholar 

  62. Lin J, Zhu G, Zhu X, Lin S, Nose T, Ding W (2008) Aggregate structure change induced by intramolecular helix-coil transition. Polymer 49:1132–1136

    CAS  Google Scholar 

  63. Kotharangannagari VK, Sanchez-Ferrer A, Ruokolainen J, Mezzenga R (2012) Thermoreversible gel–sol behavior of rod-coil-rod peptide-based triblock copolymers. Macromolecules 45:1982–1990

    CAS  Google Scholar 

  64. Yu SM, Soto CM, Tirrell DA (2000) Nanometer-scale smectic ordering of genetically engineered rodlike polymers: synthesis and characterization of monodisperse derivatives of poly(γ-benzyl α, l-glutamate). J Am Chem Soc 122:6552–6559

    CAS  Google Scholar 

  65. Sasaki S, Tokuma K, Uematsu I (1983) Phase behavior of poly(γ-benzyl l-glutamate) solutions in benzyl alcohol. Polym Bull (Berl) 10:539–546

    CAS  Google Scholar 

  66. Watanabe J, Takashina Y (1991) Columnar liquid crystals in polypeptides. 1. A columnar hexagonal liquid crystal observed in poly(γ-octadecyl l-glutamate). Macromolecules 24:3423–3426

    CAS  Google Scholar 

  67. Robinson C, Ward JC (1957) Liquid-crystalline structures in polypeptides. Nature 180:1183–1184

    CAS  Google Scholar 

  68. Robinson C (1961) Liquid-crystalline structures in polypeptide solutions. Tetrahedron 13:219–234

    CAS  Google Scholar 

  69. Robinson C, Ward JC, Beevers RB (1958) Liquid crystalline structure in polypeptide solutions. Part 2. Discuss Faraday Soc 25:29–42

    Google Scholar 

  70. Samulski ET, Tobolsky AV (1967) Solid “liquid crystal” films of poly-γ-benzyl-l-glutamate. Nature 216:997

    CAS  Google Scholar 

  71. Elliott A, Ambrose EJ (1950) Evidence of chain folding in polypeptides and proteins. Discuss Faraday Soc 9:246–251

    Google Scholar 

  72. Marx A, Thiele C (2009) Orientational properties of poly-γ-benzyl-l-glutamate: influence of molecular weight and solvent on order parameters of the solute. Chem Eur J 15:254–260

    CAS  Google Scholar 

  73. Watanabe J, Nagase T (1988) Thermotropic polypeptides. 5. Temperature dependence of cholesteric pitches exhibiting a cholesteric sense inversion. Macromolecules 21:171–175

    CAS  Google Scholar 

  74. Toriumi H, Kusumi Y, Uematsu I, Uematsu Y (1979) Thermally induced inversion of the cholesteric sense in lyotropic polypeptide liquid crystals. Polym J 11:863–869

    CAS  Google Scholar 

  75. Toriumi H, Minakuchi S, Uematsu Y, Uematsu I (1980) Helical twisting power of poly(γ-benzyl-l-glutamate) liquid crystals in mixed solvents. Polym J 12:431–437

    CAS  Google Scholar 

  76. Abe A, Hiraga K, Imada Y, Hiejima T, Furuya H (2005) Screw-sense inversion characteristic of α-helical poly(β-p-chlorobenzyl l-aspartate) and comparison with other related polyaspartates. Peptide Sci 80:249–257

    CAS  Google Scholar 

  77. Abe A, Furuya H, Okamoto S (1997) Spatial configurations, transformation, and reorganization of mesophase structures of polyaspartates-a highly intelligent molecular system. Peptide Sci 43:405–412

    CAS  Google Scholar 

  78. Abe A, Imada Y, Furuya H (2010) Mechanism of the screw-sense reversal of tightly hydrogen-bonded α-helical network triggered by the side-chain conformation. Polymer 51:6234–6239

    CAS  Google Scholar 

  79. Junnila S, Houbenov N, Hanski S, Iatrou H, Hirao A, Hadjichristidis N, Ikkala O (2010) Hierarchical smectic self-assembly of an ABC miktoarm star terpolymer with a helical polypeptide arm. Macromolecules 43:9071–9076

    CAS  Google Scholar 

  80. Lin J (1997) Re-entrant isotropic transition of polypeptide liquid crystal. Polymer 38:4837–4841

    CAS  Google Scholar 

  81. Lin J (1998) Reentrant isotropic transition of polypeptide liquid crystal: effect of steric and orientation–dependent interactions. Polymer 39:5495–5500

    CAS  Google Scholar 

  82. Lin J, Abe A, Furuya H, Okamoto S (1996) Liquid crystal formation coupled with the coil-helix transition in the ternary system poly(γ-benzyl l-glutamate)/dichloroacetic acid/dichloroethane. Macromolecules 29:2584–2589

    CAS  Google Scholar 

  83. Lin J, Lin S, Liu P, Hiejima T, Furuya H, Abe A (2003) Phase behavior of ternary systems involving a conformationally variable chain and a randomly coiled polymer. Macromolecules 36:6267–6272

    CAS  Google Scholar 

  84. Flory PJ (1984) Molecular theory of liquid crystals. Adv Polym Sci 59:1–36

    CAS  Google Scholar 

  85. Abe A, Ballauff M (1991) The Flory lattice model. In: Ciferri A (ed) Liquid crystallinity in polymers: principles and fundamental properties. Wiley-VCH, Weinheim, Chap. 4

    Google Scholar 

  86. Lin J, Lin S, Zhang L, Nose T (2009) Microphase separation of rod-coil diblock copolymer in solution. J Chem Phys 130:094907

    Google Scholar 

  87. Watanabe J, Imai K, Uematsu I (1978) Light scattering studies of poly(γ-benzyl l-glutamate) solutions and films. Polym Bull 1:67–72

    Google Scholar 

  88. Tadmor R, Khalfin RL, Cohen Y (2002) Reversible gelation in isotropic solutions of the helical polypeptide poly(γ-benzyl-l-glutamate): kinetics and formation mechanism of the fibrillar network. Langmuir 18:7146–7150

    CAS  Google Scholar 

  89. Tipton DL, Russo PS (1996) Thermoreversible gelation of a rodlike polymer. Macromolecules 29:7402–7411

    CAS  Google Scholar 

  90. Oikawa H, Nakanishi H (2001) Dynamics of probe particles during sol–gel transition of PBLG-DMF solution and the resulting gel structure. J Chem Phys 115:3785–3791

    CAS  Google Scholar 

  91. Niehoff A, Mantion A, McAloney R, Huber A (2013) Elucidation of the structure of poly(γ-benzyl-l-glutamate) nanofibers and gel networks in a helicogenic solvent. Colloid Polym Sci 291:1353–1363

    CAS  Google Scholar 

  92. Kishi R, Sisido M, Tazuke S (1990) Liquid-crystalline polymer gels. 1. Cross-linking of poly(γ-benzyl l-glutamate) in the cholesteric liquid-crystalline state. Macromolecules 23:3779–3784

    CAS  Google Scholar 

  93. Kishi R, Sisido M, Tazuke S (1990) Liquid-crystalline polymer gels. 2. Anisotropic swelling of poly(γ-benzyl l-glutamate) gel crosslinked under a magnetic field. Macromolecules 23:3868–3870

    CAS  Google Scholar 

  94. Inomata K, Iguchi Y, Mizutani K, Sugimoto H, Nakanishi E (2012) Anisotropic swelling behavior induced by helix-coil transition in liquid crystalline polypeptide gels. ACS Macro Lett 1:807–810

    CAS  Google Scholar 

  95. Gibson MI, Cameron NR (2008) Organogelation of sheet-helix diblock copolypeptides. Angew Chem Int Ed 47:5160–5162

    CAS  Google Scholar 

  96. Choi YY, Jeong Y, Joo MK, Jeong B (2009) Reverse thermal organogelation of poly(ethylene glycol)-polypeptide diblock copolymers in chloroform. Macromol Biosci 9:869–874

    CAS  Google Scholar 

  97. Naik SS, Savin DA (2009) Poly(Z-lysine)-based organogels: effect of interfacial frustration on gel strength. Macromolecules 42:7114–7121

    CAS  Google Scholar 

  98. Sun J, Chen X, Guo J, Shi Q, Xie Z, Jing X (2009) Synthesis and self-assembly of a novel Y-shaped copolymer with a helical polypeptide arm. Polymer 50:455–461

    CAS  Google Scholar 

  99. You Y, Chen Y, Hua C, Dong C (2010) Synthesis and thermoreversible gelation of dendron-like polypeptide/linear poly(ε-caprolactone)/dendron-like polypeptide triblock copolymers. J Polym Sci A Polym Chem 48:709–718

    CAS  Google Scholar 

  100. Borner HG, Smarsly BM, Hentschel J, Rank A, Schubert R, Geng Y, Discher DE, Hellweg T, Brandt A (2008) Organization of self-assembled peptide–polymer nanofibers in solution. Macromolecules 41:1430–1437

    Google Scholar 

  101. van Bommel KJC, Friggeri A, Shinkai S (2003) Organic templates for the generation of inorganic materials. Angew Chem Int Ed 42:980–999

    Google Scholar 

  102. Sone ED, Zubarev ER, Stupp SI (2002) Semiconductor nanohelices templated by supramolecular ribbons. Angew Chem Int Ed 41:1705–1709

    CAS  Google Scholar 

  103. Estroff LA, Addadi L, Weiner S, Hamilton AD (2004) An organic hydrogel as a matrix for the growth of calcite crystals. Org Biomol Chem 2:137–141

    CAS  Google Scholar 

  104. Shumburo A, Biewer MC (2002) Stabilization of an organic photochromic material by incorporation in an organogel. Chem Mater 14:3745–3750

    CAS  Google Scholar 

  105. Deming TJ (2005) Polypeptide hydrogels via a unique assembly mechanism. Soft Matter 1:28–35

    CAS  Google Scholar 

  106. Breedveld V, Nowak AP, Sato J, Deming TJ, Pine DJ (2004) Rheology of block copolypeptide solutions: hydrogels with tunable properties. Macromolecules 37:3943–3953

    CAS  Google Scholar 

  107. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles. Nature 417:424–428

    CAS  Google Scholar 

  108. Nowak AP, Breedveld V, Pine DJ, Deming TJ (2003) Unusual salt stability in highly charged diblock co-polypeptide hydrogels. J Am Chem Soc 125:15666–15670

    CAS  Google Scholar 

  109. Pakstis LM, Ozbas B, Hales KD, Nowak AP, Deming TJ, Pochan D (2003) Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels. Biomacromolecules 5:312–318

    Google Scholar 

  110. Oliveira ED, Hirsch SG, Spontak RJ, Gehrke SH (2003) Influence of polymer conformation on the shear modulus and morphology of polyallylamine and poly(α-l-lysine) hydrogels. Macromolecules 36:6189–6201

    CAS  Google Scholar 

  111. Choi BG, Park MH, Cho S-H, Joo MK, Oh HJ, Kim EH, Park K, Han DK, Jeong B (2011) Thermal gelling polyalanine–poloxamine–polyalanine aqueous solution for chondrocytes 3D culture: initial concentration effect. Soft Matter 7:456–462

    CAS  Google Scholar 

  112. Chen Y, Pang X, Dong C (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Adv Funct Mater 20:579–586

    CAS  Google Scholar 

  113. Cheng Y, He C, Xiao C, Ding J, Zhuang X, Huang Y, Chen X (2012) Decisive role of hydrophobic side groups of polypeptides in thermosensitive gelation. Biomacromolecules 13:2053–2059

    CAS  Google Scholar 

  114. Altunbas A, Pochan D (2012) Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering. Adv Polym Sci 310:135–167

    CAS  Google Scholar 

  115. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, McLeish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci USA 98:11857–11862

    CAS  Google Scholar 

  116. Smeenk JM, Otten MBJ, Thies J, Tirrell DA, Stunnenberg HG, van Hest JCM (2005) Controlled assembly of macromolecular β-Sheet fibrils. Angew Chem Int Ed 44:1968–1971

    CAS  Google Scholar 

  117. Choi YY, Joo MK, Sohn YS, Jeong B (2008) Significance of secondary structure in nanostructure formation and thermosensitivity of polypeptide block copolymers. Soft Matter 4:2383–2387

    CAS  Google Scholar 

  118. Choi YY, Jang JH, Park MH, Choi BG, Chi B, Jeong B (2010) Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J Mater Chem 20:3416–3421

    CAS  Google Scholar 

  119. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Reversible hydrogels from self-assembling artificial proteins. Science 281:389–392

    CAS  Google Scholar 

  120. Eloi J-C, Rider DA, Cambridge G, Whittell GR, Winnik MA, Manners I (2011) Stimulus-responsive self-assembly: reversible, redox-controlled micellization of polyferrocenylsilane diblock copolymers. J Am Chem Soc 133:8903–8913

    CAS  Google Scholar 

  121. Ho R-M, Chiang Y-W, Lin S-C, Chen C-K (2011) Helical architectures from self-assembly of chiral polymers and block copolymers. Prog Polym Sci 36:376–453

    CAS  Google Scholar 

  122. Lin J, Zhu J, Chen T, Lin S, Cai C, Zhang L, Zhuang Y, Wang X-S (2009) Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer. Biomaterials 30:108–117

    CAS  Google Scholar 

  123. Fuks G, Mayap Talom R, Gauffre F (2011) Biohybrid block copolymers: towards functional micelles and vesicles. Chem Soc Rev 40:2475–2493

    CAS  Google Scholar 

  124. Qian J, Zhang M, Manners I, Winnik MA (2010) Nanofiber micelles from the self-assembly of block copolymers. Trends Biotechnol 28:84–92

    CAS  Google Scholar 

  125. Cauet SI, Lee NS, Lin LY, Wooley KL (2012) Individual nano-objects obtained via hierarchical assembly of polymer building blocks. In: Matyjaszewski K, Moller M (eds) Polymer science: a comprehensive reference. Elsevier, Amsterdam, pp 775–820

    Google Scholar 

  126. Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X (2011) Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 40:1282–1295

    CAS  Google Scholar 

  127. Bian Q, Xiao Y, Lang M (2012) Thermoresponsive biotinylated star amphiphilic block copolymer: synthesis, self-assembly, and specific target recognition. Polymer 53:1684–1693

    CAS  Google Scholar 

  128. Cai C, Wang L, Lin J, Zhang X (2012) Morphology transformation of hybrid micelles self-assembled from rod-coil block copolymer and nanoparticles. Langmuir 28:4515–4524

    CAS  Google Scholar 

  129. Cai C, Zhu W, Chen T, Lin J, Tian X (2009) Synthesis and self-assembly behavior of amphiphilic polypeptide-based brush-coil block copolymers. J Polym Sci A Polym Chem 47:5967–5978

    CAS  Google Scholar 

  130. Koga T, Taguchi K, Kobuke Y, Kinoshita T, Higuchi M (2003) Structural regulation of a peptide-conjugated graft copolymer: a simple model for amyloid formation. Chem Eur J 9:1146–1156

    CAS  Google Scholar 

  131. Tang D, Lin J, Lin S, Zhang S, Chen T, Tian X (2004) Self-assembly of poly(γ-benzyl l-glutamate)-graft-poly(ethylene glycol) and its mixtures with poly(γ-benzyl l-glutamate) homopolymer. Macromol Rapid Commun 25:1241–1246

    CAS  Google Scholar 

  132. Marsden HR, Handgraaf J-W, Nudelman F, Sommerdijk NAJM, Kros A (2010) Uniting polypeptides with sequence-designed peptides: synthesis and assembly of poly(γ-benzyl l-glutamate)-b-coiled-coil peptide copolymers. J Am Chem Soc 132:2370–2377

    CAS  Google Scholar 

  133. Huang J, Bonduelle C, Thevenot J, Lecommandoux S, Heise A (2012) Biologically active polymersomes from amphiphilic glycopeptides. J Am Chem Soc 134:119–122

    CAS  Google Scholar 

  134. Checot F, Lecommandoux S, Gnanou Y, Klok HA (2002) Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angew Chem Int Ed 41:1339–1343

    CAS  Google Scholar 

  135. Sun J, Chen X, Deng C, Yu H, Xie Z, Jing X (2007) Direct formation of giant vesicles from synthetic polypeptides. Langmuir 23:8308–8315

    CAS  Google Scholar 

  136. Schatz C, Louguet S, Le Meins J-F, Lecommandoux S (2009) Polysaccharide-block-polypeptide copolymer vesicles: towards synthetic viral capsids. Angew Chem Int Ed 48:2572–2575

    CAS  Google Scholar 

  137. Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6:52–57

    CAS  Google Scholar 

  138. Cai C, Lin J, Chen T, Tian X (2010) Aggregation behavior of graft copolymer with rigid backbone. Langmuir 26:2791–2797

    CAS  Google Scholar 

  139. Zhuang Z, Zhu X, Cai C, Lin J, Wang L (2012) Self-assembly of a mixture system containing polypeptide graft and block copolymers: experimental studies and self-consistent field theory simulations. J Phys Chem B 116:10125–10134

    CAS  Google Scholar 

  140. Cornelissen JJLM, Fischer M, Sommerdijk NAJM, Nolte RJM (1998) Helical superstructures from charged poly(styrene)-poly(isocyanodipeptide) block copolymers. Science 280:1427–1430

    CAS  Google Scholar 

  141. Cai C, Lin J, Chen T, Wang X, Lin S (2009) Super-helices self-assembled from a binary system of amphiphilic polypeptide block copolymers and polypeptide homopolymers. Chem Commun 2709–2711

    Google Scholar 

  142. Bull SR, Palmer LC, Fry NJ, Greenfield M, Messmore B, Meade T, Stupp SI (2008) A templating approach for monodisperse self-assembled organic nanostructures. J Am Chem Soc 130:2742–2743

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (50925308 and 21234002), Key Grant Project of Ministry of Education (313020), and National Basic Research Program of China (No. 2012CB933600). Support from projects of Shanghai municipality (10GG15 and 12ZR1442500) is also appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaping Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, C., Lin, J., Zhuang, Z., Zhu, W. (2013). Ordering of Polypeptides in Liquid Crystals, Gels and Micelles. In: Abe, A., Lee, KS., Leibler, L., Kobayashi, S. (eds) Controlled Polymerization and Polymeric Structures. Advances in Polymer Science, vol 259. Springer, Cham. https://doi.org/10.1007/12_2013_221

Download citation

Publish with us

Policies and ethics