Biopolymeric Micro- and Nanoparticles: Preparation, Characterization and Industrial Applications

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 254)

Abstract

One of the most important industrial applications of the interfacial properties of biopolymeric complexes such as protein–polysaccharide interactions is the formation of microcapsules, microparticles, nanocapsules and/or nanoparticles. Nanogel formation results from the ability of protein–polysaccharide complexes to form a solid film around the droplets containing the product to be encapsulated (microcapsules) and also the possibility of entrapping solvent molecules into the coacervate (microgels). The first, based on the complex coacervation of two oppositely charged biopolymers, consists of the entrapment of a solvent containing the molecule to be encapsulated in the structure of the coacervate. In this case, the microencapsulated product can be either in the core of the complex or in the wall, resulting in some retention problems. The second method of microencapsulation, and the most widespread, is to produce an emulsion stabilized with proteins. The dispersed oil droplets contain the desirable oil-soluble products to be encapsulated (aroma, drugs, cells, etc.). After addition of a polysaccharide, the interfacial coacervation between the protein and the polysaccharide around the oil droplets induces the formation of microcapsules, which are subsequently dried. This type of microencapsulation is referred to as interfacial coacervation. Its main advantage resides in the location of the encapsulated material in the core of the microcapsule.

Keywords

Biopolymer Characterization Industrial applications Micro-/nanoparticles Preparation 

References

  1. 1.
    Muzzarelli RAA (ed) (1977) Chitin. Oxford, Pergamon, p 307Google Scholar
  2. 2.
    Stevens WF (2001) Production of chitin and chitosan: refinement and sustainability of chemical and biological processing. In: Uragami et al (eds) Chitin and chitosan: chitin and chitosan in life science. Kodansha Scientific, Tokyo, pp 293–300Google Scholar
  3. 3.
    Joensen O, Villadsen A (1994) Ecological sustainable production of chitin and chitosan. In: Karnicki ZS, Brzeski MM, Bykowski PJ, Wojtasz-Pajak A (eds) Chitin world. Wirtschaftsverlag, Bremerhaven, pp 38–47Google Scholar
  4. 4.
    Roberts AFG (1992) Chitin chemistry. Macmillan, London, pp 85–102Google Scholar
  5. 5.
    Ogawa K (1991) Effect of heating an aqueous suspension of chitosan on the crystallinity and polymorphs. Agric Biol Chem 55:2375–2377CrossRefGoogle Scholar
  6. 6.
    Mucha M (1997) Rheological characteristics of semi-dilute chitosan solutions. Macromol Chem Phys 198:471CrossRefGoogle Scholar
  7. 7.
    Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  8. 8.
    Arai K, Kinumaki T, Fujita T (1968) Toxicity of chitosan. Bull Tokai Reg Fish Lab 43:89–94Google Scholar
  9. 9.
    Chandy T, Sharma CP (1990) Chitosan – as a biomaterial. Biomater Artif Cells Artif Organs 18:1–24Google Scholar
  10. 10.
    Bajpai SK, Sharma S (2004) React Funct Polym 59:129–140CrossRefGoogle Scholar
  11. 11.
    Park K, Sharaby WSW, Park H (1993) Biodegradable hydrogels for drug delivery. Technomic Publishing, Lancaster, pp 99–140Google Scholar
  12. 12.
    Smidsrod O (1974) Chem Soc 57:263–270Google Scholar
  13. 13.
    Sartori C, Finch DS, Ralph AB (1996) Determination of the cation content of alginate thin films by FTIR spectroscopy. Polymer 38:43–51CrossRefGoogle Scholar
  14. 14.
    Walsh PK, Isdell FV, Noone SM, O’Donovan MG, Malone DM (1996) Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: effect of physical and chemical properties of gels. Enzyme Microb Technol 18:366–372CrossRefGoogle Scholar
  15. 15.
    Poncelet D (2001) Production of alginate beads by emulsification/internal gelation. Ann N Y Acad Sci 944:74–82CrossRefGoogle Scholar
  16. 16.
    Halliwell B (1988) Biochem Pharmacol 37:569CrossRefGoogle Scholar
  17. 17.
    Emerson TE (1989) Crit Care Med 17:690CrossRefGoogle Scholar
  18. 18.
    Kreuter J, Tuber U, Illi V (1979) Distribution and elimination of poly(methyl-2-14C methacrylate) nanoparticle radioactivity after injection in rats and mice. J Pharm Sci 68:1443–1447CrossRefGoogle Scholar
  19. 19.
    Sinn H, Schrenk HH, Friedrich EA, Schilling U, Maier-Borst W (1990) Nucl Med Biol 17:819Google Scholar
  20. 20.
    Majumdar S, Basu SK (1991) Antimicrob Agents Chemother 35:135CrossRefGoogle Scholar
  21. 21.
    Nakagawa Y, Takayama K, Ueda H, Machida Y, Nagai T (1987) Drug Des Deliv 2:99Google Scholar
  22. 22.
    Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S (2005) Mini Rev Med Chem 5:293CrossRefGoogle Scholar
  23. 23.
    Santhi K, Dhanaraj SA, Joseph V, Ponnusankar S, Suresh B (2002) Drug Dev Ind Pharm 28:1171CrossRefGoogle Scholar
  24. 24.
    Kreuter J, Hekmatara T, Dreis S, Vogel T, Gelperina S, Langer K (2007) J Control Release 118:54CrossRefGoogle Scholar
  25. 25.
    Merodio M, Irache JM, Eclancher F, Mirshahi M, Villarroya H (2000) J Drug Target 8:289CrossRefGoogle Scholar
  26. 26.
    Lynn AK, Yannas IV, Bonfield W (2004) J Biomed Mater Res B Appl Biomater 71:343CrossRefGoogle Scholar
  27. 27.
    Barbani N, Giusti P, Lazzeri L, Polacco G, Pizzirani G (1995) J Biomater Sci Polym Ed 7:461CrossRefGoogle Scholar
  28. 28.
    Lefebvre F, Gorecki S, Bareille R, Amedee J, Bordenave L, Rabaud M (1992) Biomaterials 13:28CrossRefGoogle Scholar
  29. 29.
    Ruderman RJ, Wade CWR, Shepard WD, Leonard F (1973) J Biomed Mater Res 7:253CrossRefGoogle Scholar
  30. 30.
    Bender A, von Briesen H, Kreuter J, Duncan IB, Rubsamen-Waigmann H (1996) Antimicrob Agents Chemother 40:1467Google Scholar
  31. 31.
    Schwick HG, Heide K (1969) Bibl Haematol 33:111Google Scholar
  32. 32.
    Ward AG, Courts A (1977) The science and technology of gelatin. Academic, New YorkGoogle Scholar
  33. 33.
    Bajpai AK, Choubey J (2006) J Mater Sci Mater Med 17:345CrossRefGoogle Scholar
  34. 34.
    Stevens KR, Einerson NJ, Burmania JA, Kao WJ (2002) J Biomater Sci Polym Ed 13:1353CrossRefGoogle Scholar
  35. 35.
    Marios Y, Chakfe N, Deng X, Marios M, How T, King W, Guidoin R (1995) Biomaterials 16:1131CrossRefGoogle Scholar
  36. 36.
    DiSilvio L, Courtney-Harris RG, Downes S (1994) J Mater Sci Mater Med 5:819CrossRefGoogle Scholar
  37. 37.
    Anal AK, Singh H (2007) Recent advances in microencapsulation technologies for probiotics for industrial (11–12). Trends Food Sci Technol 18:240–251CrossRefGoogle Scholar
  38. 38.
    ChampagneC P, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opin Biotechnol 18:184CrossRefGoogle Scholar
  39. 39.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121CrossRefGoogle Scholar
  40. 40.
    Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15:30–347CrossRefGoogle Scholar
  41. 41.
    Gibbs BF, Kermasha S, Alli I, Mulligan CN (1999) Encapsulation in the food industry: a review. Int J Food Sci Nutr 50:213–224CrossRefGoogle Scholar
  42. 42.
    Dziezak JD (1988) Microencapsulation and encapsulated ingredients. Food Technol 42:136–151Google Scholar
  43. 43.
    Wantabe Y, Fang X, Adachi S, Matsuno R (2002) Suppressive effect of saturated acyl l-ascorbate on the oxidation of linoleic acid encapsulated with maltodetrin or gum Arabic by spray drying. J Agric Food Chem 50(14):3984–3987CrossRefGoogle Scholar
  44. 44.
    Goubet I, Le Quere JL, Voilley A (1998) Retention of aroma compounds by carbohydrates: influence of their physicochemical characteristics and of their physical state. J Agric Food Chem 48:1981–1990CrossRefGoogle Scholar
  45. 45.
    Bomben JL, Bruin B, Thijssen HAC, Merson RL (1973) Aroma recovery and retention in concentration and drying of foods. Adv Food Res 20:2–11Google Scholar
  46. 46.
    Rosenberg M et al (1990) Factors affecting retention in spray-drying microencapsulation of volatile materials. J Agric Food Chem 38(5):1288–1294CrossRefGoogle Scholar
  47. 47.
    Madene A, Jacquot M, Scher J, Desobry S (2006) Flavour encapsulation and controlled release – a review. Int J Food Sci Technol 41:1–21CrossRefGoogle Scholar
  48. 48.
    Anal AK, Stevens WF (2005) Chitosan-alginate multilayer beads for controlled release of ampicillin. Int J Pharm 290:45–54CrossRefGoogle Scholar
  49. 49.
    Anal AK, Bhopatkar D, Tokura S, Tamura H, Stevens WF (2003) Chitosan-alginate multilayer beads for gastric passage and controlled intestinal release of protein. Drug Dev Ind Pharm 29:713–724CrossRefGoogle Scholar
  50. 50.
    Nishimura K (1986) J Biomed Mater Res 20:1359CrossRefGoogle Scholar
  51. 51.
    Lin W, Coombes A, Davies M, Davis S, Illum L (1993) J Drug Target 1:237CrossRefGoogle Scholar
  52. 52.
    Hedges A, McBride C (1999) Utilization of β-cyclodextrin in food. Cereal Foods World Microporous Sugars Adsorpt 44:700–704Google Scholar
  53. 53.
    Patiington JS (1986) β-cyclodextrin and its uses in the flavour industry. In: Brich GG, Lindley MG (eds) Developments in food flavour. Elsevier Applied Science, LondonGoogle Scholar
  54. 54.
    Gomez A, Bingham D, De Juan L, Tang K (1999) Mater Res Soc Symp Proc 550:101CrossRefGoogle Scholar
  55. 55.
    Mandal BB, Kundu SC (2009) Nanotechnology 203:55101Google Scholar
  56. 56.
    Tamada Y, Sano M, Niwa K, Imai T, Yoshino G (2004) J Biomater Sci Polym Ed 15:971CrossRefGoogle Scholar
  57. 57.
    Aramwit P, Kanokpanont S, De-Eknamkul W, Kamei K, Srichana T (2009) J Biomater Sci Polym Ed 20:1295CrossRefGoogle Scholar
  58. 58.
    Zhang YQ (2002) Biotechnol Adv 20:91CrossRefGoogle Scholar
  59. 59.
    Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Xue RY (2006) J Control Release 11:5307Google Scholar
  60. 60.
    Aramwit P, Kanokpanont S, De-Eknamkul W, Srichana T (2009) J Biosci Bioeng 10:7556Google Scholar
  61. 61.
    Dunne M, Corrigan OI, Ramtoola Z (2000) Biomaterials 21:1659CrossRefGoogle Scholar
  62. 62.
    Berne BJ, Pecora R (1975) Dynamic light scattering. Wiley, New YorkGoogle Scholar
  63. 63.
    Mohanraj VJ, Chen Y (2006) Trop J Pharm Res 5:561Google Scholar
  64. 64.
    Van Eerdenbrugh B, Van den Mooter G, Augustijns P (2008) Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm 364:64–75CrossRefGoogle Scholar
  65. 65.
    Raghavan SL, Schuessel K, Davis A, Hadgraft J (2003) Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int J Pharm 261:153–158CrossRefGoogle Scholar
  66. 66.
    Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3:785–796CrossRefGoogle Scholar
  67. 67.
    Farrokhpay S (2009) A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interface Sci 151:24–32CrossRefGoogle Scholar
  68. 68.
    Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D (2007) Pharm Res 24:2198CrossRefGoogle Scholar
  69. 69.
    Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD (2002) Int J Pharm 249:139CrossRefGoogle Scholar
  70. 70.
    Sieval AB, Thanou M, Kotze AF, Verhoef JC, Brussee J, Junginger HE (1998) Preparation and NMR-characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym 36:157–165CrossRefGoogle Scholar
  71. 71.
    Sano T, Mimura R, Ohshima K (2001) Phylogenetic analysis of hop and grapevine isolates of Hop stunt viroid supports a grapevine origin for hop stunt disease. Virus Genes 22:53–59CrossRefGoogle Scholar
  72. 72.
    Giunchedi P, Juliano C, Gavini E, Cossu M, Sorrenti M (2002) Formulation and in-vivo evaluation of drug carriers for cerebral tumours. J Microencapsul 17:625–638Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Food Engineering and Bioprocess TechnologyAsian Institute of TechnologyKlongLuangThailand

Personalised recommendations