Chemical Strategies for the Synthesis of Protein–Polymer Conjugates

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 253)

Abstract

Protein-polymer conjugates have achieved tremendous attention in the last few years. The synergistic combination of properties has led to certain advantages in bio-applications. Over the past few years, numerous chemical strategies have been developed to conjugate different synthetic polymers onto proteins, most of which can be summarized within the scope of click-chemistry. Here we highlight conjugation strategies based on available functional groups present on the synthetic polymer and existing groups of proteins from the natural pool. In particular, the chapter organizes the various possible reactions by classes of functional groups present on protein surfaces, deriving from selected amino acid residues.

Keywords

Biomaterials Click chemistry Peptides Polymer conjugate Protein modification Proteins 

References

  1. 1.
    Klok H (2009) Peptide/protein-synthetic polymer conjugates: quo vadis. Macromolecules 42:7990–8000Google Scholar
  2. 2.
    Badi N, Lutz J (2009) Sequence control in polymer synthesis. Chem Soc Rev 38:3383–3390Google Scholar
  3. 3.
    Lutz J (2010) Polymer chemistry: a controlled sequence of events. Nat Chem 2:84–85Google Scholar
  4. 4.
    Lutz J (2010) Sequence-controlled polymerizations: the next Holy Grail in polymer science? Polym Chem 1:55–62Google Scholar
  5. 5.
    Kiick KL (2007) Polymer therapeutics. Science 317:1182–1183Google Scholar
  6. 6.
    Liu S, Maheshwari R, Kiick KL (2009) Polymer-based therapeutics. Macromolecules 42:3–13Google Scholar
  7. 7.
    Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39Google Scholar
  8. 8.
    Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Adv Drug Deliv Rev 55:1261–1277Google Scholar
  9. 9.
    Schellekens H (2002) Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev Drug Discov 1:457–462Google Scholar
  10. 10.
    de Groot AS, Scott DW (2007) Immunogenicity of protein therapeutics. Trends Immunol 28:482–490Google Scholar
  11. 11.
    Kontermann RE (2011) Strategies for extended serum half-life of protein therapeutics. Curr Opin Chem Biol 22:868–876Google Scholar
  12. 12.
    Lao BJ, Kamei DT (2008) Improving therapeutic properties of protein drugs through alteration of intracellular trafficking pathways. Biotechnol Prog 24:2–7Google Scholar
  13. 13.
    Pasut G, Veronese F (2007) Polymer–drug conjugation, recent achievements and general strategies. Prog Polym Sci 32:933–961Google Scholar
  14. 14.
    Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221Google Scholar
  15. 15.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701Google Scholar
  16. 16.
    Pasut G, Sergi M, Veronese FM (2008) Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv Drug Deliv Rev 60:69–78Google Scholar
  17. 17.
    Ryan SM, Mantovani G, Wang X, Haddleton DM, Brayden DJ (2008) Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin Drug Deliv 5:371–383Google Scholar
  18. 18.
    Maeda H, Bharate GY, Daruwalla J (2009) Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 71:409–419Google Scholar
  19. 19.
    Vandermeulen GW, Klok H (2004) Peptide/protein hybrid materials: enhanced control of structure and improved performance through conjugation of biological and synthetic polymers. Macromol Biosci 4:383–398Google Scholar
  20. 20.
    Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760Google Scholar
  21. 21.
    Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 46:169–185Google Scholar
  22. 22.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res 46:6387–6392Google Scholar
  23. 23.
    Graham M (2003) Pegaspargase: a review of clinical studies. Adv Drug Deliv Rev 55:1293–1302Google Scholar
  24. 24.
    Reddy KR, Modi MW, Pedder S (2002) Use of peginterferon alfa-2a (40 KD) (Pegasys®) for the treatment of hepatitis C. Adv Drug Deliv Rev 54:571–586Google Scholar
  25. 25.
    Wang Y, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570Google Scholar
  26. 26.
    Duncan R, Ringsdorf H, Satchi-Fainaro R (2006) Polymer therapeutics: polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. Adv Polym Sci 192:1–8Google Scholar
  27. 27.
    Vicent MJ, Dieudonné L, Carbajo RJ, Pineda-Lucena A (2008) Polymer conjugates as therapeutics: future trends, challenges and opportunities. Expert Opin Drug Deliv 5:593–614Google Scholar
  28. 28.
    Alconcel SN, Baas AS, Maynard HD (2011) FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym Chem 2:1442–1448Google Scholar
  29. 29.
    Thordarson P, Droumaguet B, Velonia K (2006) Well-defined protein–polymer conjugates—synthesis and potential applications. Appl Microbiol Biotechnol 73:243–254Google Scholar
  30. 30.
    Shakya AK, Sami H, Srivastava A, Kumar A (2010) Stability of responsive polymer–protein bioconjugates. Prog Polym Sci 35:459–486Google Scholar
  31. 31.
    Dagani R (1995) Polymeric ‘smart’ materials respond to changes in their environment. Chem Eng News 73:30–33Google Scholar
  32. 32.
    Hoffman AS, Stayton PS (2004) Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol Symp 207:139–152Google Scholar
  33. 33.
    Hoffman AS, Stayton PS (2007) Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci 32:922–932Google Scholar
  34. 34.
    Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670Google Scholar
  35. 35.
    Zarafshani Z, Obata T, Lutz J (2010) Smart PEGylation of trypsin. Biomacromolecules 11:2130–2135Google Scholar
  36. 36.
    Hentschel J, Bleek K, Ernst O, Lutz J, Börner HG (2008) Easy access to bioactive peptide–polymer conjugates via RAFT. Macromolecules 41:1073–1075Google Scholar
  37. 37.
    Ding Z, Fong RB, Long CJ, Stayton PS, Hoffman AS (2001) Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411:59–62Google Scholar
  38. 38.
    Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton PS (2002) Photoresponsive polymer-enzyme switches. PNAS 99:16592–16596Google Scholar
  39. 39.
    Ding Z, Chen G, Hoffman AS (1998) Unusual properties of thermally sensitive oligomer–enzyme conjugates of poly(N-isopropylacrylamide)–trypsin. J Biomed Mater Res 39:498–505Google Scholar
  40. 40.
    Li H, Bapat AP, Li M, Sumerlin BS (2011) Protein conjugation of thermoresponsive amine-reactive polymers prepared by RAFT. Polym Chem 2:323–327Google Scholar
  41. 41.
    Reynhout IC, Cornelissen JJ, Nolte RJ (2009) Synthesis of polymer–biohybrids: from small to giant surfactants. Acc Chem Res 42:681–692Google Scholar
  42. 42.
    Velonia K (2010) Protein-polymer amphiphilic chimeras: recent advances and future challenges. Polym Chem 1:944–952Google Scholar
  43. 43.
    Boerakker MJ, Hannink JM, Bomans PH, Frederik PM, Nolte RJ, Meijer EM, Sommerdijk NA (2002) Giant amphiphiles by cofactor reconstitution. Angew Chem Int Ed 41:4239–4241Google Scholar
  44. 44.
    Uludag H, Norrie B, Kousinioris N, Gao T (2001) Engineering temperature-sensitive poly(N-isopropylacrylamide) polymers as carriers of therapeutic proteins. Biotechnol Bioeng 73:510–521Google Scholar
  45. 45.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215Google Scholar
  46. 46.
    Godwin A, Bolina KC, Dinand E, Rankin S, Simic S, Brocchini S (2001) Strategies for polymer development in pharmaceutical science – a short review. J Pharm Pharmacol 53:1175–1184Google Scholar
  47. 47.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2:347–360Google Scholar
  48. 48.
    de Alarcón Cl, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34:276–285Google Scholar
  49. 49.
    Bajpai A, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118Google Scholar
  50. 50.
    Schild H (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249Google Scholar
  51. 51.
    Bütün V, Liu S, Weaver J, Bories-Azeau X, Cai Y, Armes S (2006) A brief review of ‘schizophrenic’ block copolymers. React Funct Polym 66:157–165Google Scholar
  52. 52.
    Smith AE, Xu X, Kirkland-York SE, Savin DA, McCormick CL (2010) “Schizophrenic” self-assembly of block copolymers synthesized via aqueous RAFT polymerization: from micelles to vesicles. Macromolecules 43:1210–1217Google Scholar
  53. 53.
    Du J, O'Reilly RK (2010) pH-responsive vesicles from a schizophrenic diblock copolymer. Macromol Chem Phys 211:1530–1537Google Scholar
  54. 54.
    Link AJ, Vink MK, Tirrell DA (2007) Synthesis of the functionalizable methionine surrogate azidohomoalanine using Boc-homoserine as precursor. Nat Protoc 2:1884–1887Google Scholar
  55. 55.
    Montclare JK, Tirrell DA (2006) Evolving proteins of novel composition. Angew Chem Int Ed 45:4518–4521Google Scholar
  56. 56.
    Gauthier MA, Klok H (2008) Peptide/protein–polymer conjugates: synthetic strategies and design concepts. Chem Commun 2591–2611Google Scholar
  57. 57.
    Espuña G, Arsequell G, Valencia G, Barluenga J, Alvarez-Gutiérrez JM, Ballesteros A, González JM (2004) Regioselective postsynthetic modification of phenylalanine side chains of peptides leading to uncommon ortho-iodinated analogues. Angew Chem Int Ed 43:325–329Google Scholar
  58. 58.
    Tam JP, Xu J, Eom KD (2001) Methods and strategies of peptide ligation. Biopolymers 60:194–205Google Scholar
  59. 59.
    Villar HO, Koehler RT (2000) Amino acid preferences of small, naturally occurring polypeptides. Biopolymers 53:226–232Google Scholar
  60. 60.
    Villar HO, Kauvar LM (1994) Amino acid preferences at protein binding sites. FEBS Lett 349:125–130Google Scholar
  61. 61.
    UniProt Database. UniProtKB/Swiss-Prot protein knowledgebase release 2011_09 statistics. http://expasy.org
  62. 62.
    Moelbert S, Emberly E, Tang C (2004) Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins. Protein Sci 13:752–762Google Scholar
  63. 63.
    Antos JM, McFarland JM, Iavarone AT, Francis MB (2009) Chemoselective tryptophan labeling with rhodium carbenoids at mild pH. J Am Chem Soc 131:6301–6308Google Scholar
  64. 64.
    Grover GN, Maynard HD (2010) Protein–polymer conjugates: synthetic approaches by controlled radical polymerizations and interesting applications. Curr Opin Chem Biol 14:818–827Google Scholar
  65. 65.
    Broyer RM, Grover GN, Maynard HD (2011) Emerging synthetic approaches for protein–polymer conjugations. Chem Commun 47:2212–2226Google Scholar
  66. 66.
    Gauthier MA, Klok H (2010) Polymer–protein conjugates: an enzymatic activity perspective. Polym Chem 1:1352Google Scholar
  67. 67.
    Tasdelen MA, Kahveci MU, Yagci Y (2011) Telechelic polymers by living and controlled/living polymerization methods. Prog Polym Sci 36:455–567Google Scholar
  68. 68.
    Willcock H, O'Reilly RK (2010) End group removal and modification of RAFT polymers. Polym Chem 1:149–157Google Scholar
  69. 69.
    Stukel JM, Li RC, Maynard HD, Caplan MR (2010) Two-step synthesis of multivalent cancer-targeting constructs. Biomacromolecules 11:160–167Google Scholar
  70. 70.
    Nicolas J, Mantovani G, Haddleton DM (2007) Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol Rapid Commun 28:1083–1111Google Scholar
  71. 71.
    Barner-Kowollik C (2008) Handbook of RAFT polymerization. Wiley-VCH, WeinheimGoogle Scholar
  72. 72.
    Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410Google Scholar
  73. 73.
    Favier A, Charreyre M (2006) Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process. Macromol Rapid Commun 27:653–692Google Scholar
  74. 74.
    Boyer C, Stenzel MH, Davis TP (2011) Building nanostructures using RAFT polymerization. J Polym Sci A Polym Chem 49:551–595Google Scholar
  75. 75.
    Patten TE, Matyjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 10:901–915Google Scholar
  76. 76.
    Matyjaszewski K, Xia J (2001) Atom transfer radical polymerization. Chem Rev 101:2921–2990Google Scholar
  77. 77.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288Google Scholar
  78. 78.
    Sciannamea V, Jérôme R, Detrembleur C (2008) In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem Rev 108:1104–1126Google Scholar
  79. 79.
    Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458Google Scholar
  80. 80.
    Fee CJ, van Alstine JM (2006) PEG-proteins: reaction engineering and separation issues. Chem Eng Sci 61:924–939Google Scholar
  81. 81.
    Klok H (2005) Biological-synthetic hybrid block copolymers: combining the best from two worlds. J Polym Sci A Polym Chem 43:1–17Google Scholar
  82. 82.
    Kinstler OB, Brems DN, Lauren SL, Paige AG, Hamburger JB, Treuheit MJ (1996) Characterization and stability of N-terminally PEGylated rhG-CSF. Pharm Res 13:996–1002Google Scholar
  83. 83.
    Mougin NC, van Rijn P, Park H, Müller AH, Böker A (2011) Hybrid capsules via self-assembly of thermoresponsive and interfacially active bionanoparticle-polymer conjugates. Adv Funct Mater 21:2470–2476Google Scholar
  84. 84.
    Lecolley F, Tao L, Mantovani G, Durkin I, Lautru S, Haddleton DM (2004) A new approach to bioconjugates for proteins and peptides (“pegylation”) utilising living radical polymerisation. Chem Commun 2026. Electronic supplementary information (ESI) available: Experimental procedures on prepared compounds and characterisation. See http://www.rsc.org/suppdata/cc/b4/b407712a
  85. 85.
    Ladmiral V, Monaghan L, Mantovani G, Haddleton DM (2005) α-Functional glycopolymers: new materials for (poly)peptide conjugation. Polymer 46:8536–8545Google Scholar
  86. 86.
    Miyamoto D, Watanabe J, Ishihara K (2004) Highly stabilized papain conjugated with water-soluble phospholipid polymer chain having a reacting terminal group. J Appl Polym Sci 91:827–832Google Scholar
  87. 87.
    Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–476Google Scholar
  88. 88.
    Harris JM, Kozlowski A. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications. Patent 5672662Google Scholar
  89. 89.
    Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z, Hua J, Hsieh M, Zhou J, Petti G, Li X, Janjua A, Mendez M, Liu J, Longley C, Zhang Z, Mehlig M, Borowski V, Viswanathan M, Filpula D (2006) Structure-function engineering of interferon-β-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjugate Chem 17:618–630Google Scholar
  90. 90.
    Magnusson JP, Bersani S, Salmaso S, Alexander C, Caliceti P (2010) In situ growth of side-chain PEG polymers from functionalized human growth hormone—a new technique for preparation of enhanced protein–polymer conjugates. Bioconjugate Chem 21:671–678Google Scholar
  91. 91.
    Pasut G, Mero A, Caboi F, Scaramuzza S, Sollai L, Veronese FM (2008) A new PEG–β-alanine active derivative for releasable protein conjugation. Bioconjugate Chem 19:2427–2431Google Scholar
  92. 92.
    Tao L, Liu J, Davis TP (2009) Branched polymer–protein conjugates made from mid-chain-functional P(HPMA). Biomacromolecules 10:2847–2851Google Scholar
  93. 93.
    Wiss KT, Krishna OD, Roth PJ, Kiick KL, Theato P (2009) A versatile grafting-to approach for the bioconjugation of polymers to collagen-like peptides using an activated ester chain transfer agent. Macromolecules 42:3860–3863Google Scholar
  94. 94.
    Roth PJ, Wiss KT, Zentel R, Theato P (2008) Synthesis of reactive telechelic polymers based on pentafluorophenyl esters. Macromolecules 41:8513–8519Google Scholar
  95. 95.
    Roth PJ, Jochum FD, Zentel R, Theato P (2010) Synthesis of hetero-telechelic α, ω bio-functionalized polymers. Biomacromolecules 11:238–244Google Scholar
  96. 96.
    Marquette CA, Imbert-Laurenceau E, Mallet F, Chaix C, Mandrand B, Blum LJ (2005) Electroaddressed immobilization of recombinant HIV-1 P24 capsid protein onto screen-printed arrays for serological testing. Anal Biochem 340:14–23Google Scholar
  97. 97.
    Apostolovic B, Deacon SP, Duncan R, Klok H (2010) Hybrid polymer therapeutics incorporating bioresponsive, coiled coil peptide linkers. Biomacromolecules 11:1187–1195Google Scholar
  98. 98.
    Apostolovic B, Klok H (2010) Copolymerization behavior of N-(2-hydroxypropyl)methacrylamide and a methacrylated coiled-coil peptide derivative. Biomacromolecules 11:1891–1895Google Scholar
  99. 99.
    Lele BS, Murata H, Matyjaszewski K, Russell AJ (2005) Synthesis of uniform protein–polymer conjugates. Biomacromolecules 6:3380–3387Google Scholar
  100. 100.
    Zhang J, Lei Y, Dhaliwal A, Ng QK, Du J, Yan M, Lu Y, Segura T (2011) Protein–polymer nanoparticles for nonviral gene delivery. Biomacromolecules 12:1006–1014Google Scholar
  101. 101.
    Thilakarathne V, Briand VA, Zhou Y, Kasi RM, Kumar CV (2011) Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid). Langmuir 27:7663–7671Google Scholar
  102. 102.
    Tao L, Mantovani G, Lecolley F, Haddleton DM (2004) α-Aldehyde terminally functional methacrylic polymers from living radical polymerization: application in protein conjugation “pegylation”. J Am Chem Soc 126:13220–13221Google Scholar
  103. 103.
    Sayers CT, Mantovani G, Ryan SM, Randev RK, Keiper O, Leszczyszyn OI, Blindauer C, Brayden DJ, Haddleton DM (2009) Site-specific N-terminus conjugation of poly(mPEG1100) methacrylates to salmon calcitonin: synthesis and preliminary biological evaluation. Soft Matter 5:3038Google Scholar
  104. 104.
    McFarland JM, Francis MB (2005) Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J Am Chem Soc 127:13490–13491Google Scholar
  105. 105.
    van Maarseveen JH, Reek JN, Back JW (2006) Transition-metal catalysis as a tool for the covalent labeling of proteins. Angew Chem Int Ed 45:1841–1843Google Scholar
  106. 106.
    Levesque G, Arsène P, Fanneau-Bellenger V, Pham T (2000) Protein thioacylation. 1. Reagents design and synthesis. Biomacromolecules 1:387–399Google Scholar
  107. 107.
    Lundblad RL (1995) Techniques in protein modification. CRC, Boca RatonGoogle Scholar
  108. 108.
    Hermanson GT (1996) Bioconjugate techniques. Academic, San DiegoGoogle Scholar
  109. 109.
    Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjugate Chem 14:412–419Google Scholar
  110. 110.
    Bontempo D, Heredia KL, Fish BA, Maynard HD (2004) Cysteine-reactive polymers synthesized by atom transfer radical polymerization for conjugation to proteins. J Am Chem Soc 126:15372–15373Google Scholar
  111. 111.
    Heredia KL, Bontempo D, Ly T, Byers JT, Halstenberg S, Maynard HD (2005) In situ preparation of protein–“smart” polymer conjugates with retention of bioactivity. J Am Chem Soc 127:16955–16960Google Scholar
  112. 112.
    Liu J, Bulmus V, Barner-Kowollik C, Stenzel MH, Davis TP (2007) Direct synthesis of pyridyl disulfide-terminated polymers by RAFT polymerization. Macromol Rapid Commun 28:305–314Google Scholar
  113. 113.
    Liu J, Bulmus V, Herlambang DL, Barner-Kowollik C, Stenzel MH, Davis TP (2007) In situ formation of protein–polymer conjugates through reversible addition fragmentation chain transfer polymerization. Angew Chem 119:3159–3163Google Scholar
  114. 114.
    Boyer C, Bulmus V, Liu J, Davis TP, Stenzel MH, Barner-Kowollik C (2007) Well-defined protein–polymer conjugates via in situ RAFT polymerization. J Am Chem Soc 129:7145–7154Google Scholar
  115. 115.
    Liu J, Liu H, Bulmus V, Tao L, Boyer C, Davis TP (2010) A simple methodology for the synthesis of heterotelechelic protein-polymer-biomolecule conjugates. J Polym Sci A Polym Chem 48:1399–1405Google Scholar
  116. 116.
    Tedaldi LM, Smith ME, Nathani RI, Baker JR (2009) Bromomaleimides: new reagents for the selective and reversible modification of cysteine. Chem Commun 6583–6585Google Scholar
  117. 117.
    Schumacher FF, Nobles M, Ryan CP, Smith ME, Tinker A, Caddick S, Baker JR (2011) In situ maleimide bridging of disulfides and a new approach to protein PEGylation. Bioconjugate Chem 22:132–136Google Scholar
  118. 118.
    Jones MW, Strickland RA, Schumacher FF, Caddick S, Baker JR, Gibson MI, Haddleton DM (2012) Polymeric dibromomaleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents. J Am Chem Soc 134:1847–1852Google Scholar
  119. 119.
    Shaunak S, Godwin A, Choi J, Balan S, Pedone E, Vijayarangam D, Heidelberger S, Teo I, Zloh M, Brocchini S (2006) Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat Chem Biol 2:312–313Google Scholar
  120. 120.
    Balan S, Choi J, Godwin A, Teo I, Laborde CM, Heidelberger S, Zloh M, Shaunak S, Brocchini S (2007) Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge. Bioconjugate Chem 18:61–76Google Scholar
  121. 121.
    De P, Li M, Gondi SR, Sumerlin BS (2008) Temperature-regulated activity of responsive polymer–protein conjugates prepared by grafting-from via RAFT polymerization. J Am Chem Soc 130:11288–11289Google Scholar
  122. 122.
    Li M, Li H, De P, Sumerlin BS (2011) Thermoresponsive block copolymer-protein conjugates prepared by grafting-from via RAFT polymerization. Macromol Rapid Commun 32:354–359Google Scholar
  123. 123.
    Mantovani G, Lecolley F, Tao L, Haddleton DM, Clerx J, Cornelissen JJ, Velonia K (2005) Design and synthesis of N. J Am Chem Soc 127:2966–2973Google Scholar
  124. 124.
    Neubert BJ, Snider BB (2003) Synthesis of (±)-phloeodictine A1. Org Lett 5:765–768Google Scholar
  125. 125.
    Le Droumaguet B, Mantovani G, Haddleton DM, Velonia K (2007) Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates. J Mater Chem 17:1916–1922Google Scholar
  126. 126.
    Geng J, Mantovani G, Tao L, Nicolas J, Chen G, Wallis R, Mitchell DA, Johnson BR, Evans SD, Haddleton DM (2007) Site-directed conjugation of “clicked” glycopolymers to form glycoprotein mimics: binding to mammalian lectin and induction of immunological function. J Am Chem Soc 129:15156–15163Google Scholar
  127. 127.
    Bays E, Tao L, Chang C, Maynard HD (2009) Synthesis of semitelechelic maleimide poly(PEGA) for protein conjugation by RAFT polymerization. Biomacromolecules 10:1777–1781Google Scholar
  128. 128.
    Pennadam SS, Lavigne MD, Dutta CF, Firman K, Mernagh D, Górecki DC, Alexander C (2004) Control of a multisubunit DNA motor by a thermoresponsive polymer switch. J Am Chem Soc 126:13208–13209Google Scholar
  129. 129.
    Perrier S, Takolpuckdee P, Mars CA (2005) Reversible addition–fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38:2033–2036Google Scholar
  130. 130.
    Deacon SP, Apostolovic B, Carbajo RJ, Schott A, Beck K, Vicent MJ, Pineda-Lucena A, Klok H, Duncan R (2011) Polymer coiled-coil conjugates: potential for development as a new class of therapeutic “molecular switch”. Biomacromolecules 12:19–27Google Scholar
  131. 131.
    Tao L, Kaddis CS, Ogorzalek Loo RR, Grover GN, Loo JA, Maynard HD (2009) Synthetic approach to homodimeric protein–polymer conjugates. Chem Commun 2148Google Scholar
  132. 132.
    Heredia KL, Tao L, Grover GN, Maynard HD (2010) Heterotelechelic polymers for capture and release of protein–polymer conjugates. Polym Chem 1:168–170Google Scholar
  133. 133.
    Tao L, Kaddis CS, Loo RR, Grover GN, Loo JA, Maynard HD (2009) Synthesis of maleimide-end-functionalized star polymers and multimeric protein–polymer conjugates. Macromolecules 42:8028–8033Google Scholar
  134. 134.
    Li M, De P, Li H, Sumerlin BS (2010) Conjugation of RAFT-generated polymers to proteins by two consecutive thiol–ene reactions. Polym Chem 1:854–859Google Scholar
  135. 135.
    Grover GN, Alconcel SN, Matsumoto NM, Maynard HD (2009) Trapping of thiol-terminated acrylate polymers with divinyl sulfone to generate well-defined semitelechelic Michael acceptor polymers. Macromolecules 42:7657–7663Google Scholar
  136. 136.
    Jones MW, Mantovani G, Ryan SM, Wang X, Brayden DJ, Haddleton DM (2009) Phosphine-mediated one-pot thiol–ene “click” approach to polymer–protein conjugates. Chem Commun 5272–5274Google Scholar
  137. 137.
    Valdebenito A, Espinoza P, Lissi E, Encinas M (2010) Bovine serum albumin as chain transfer agent in the acrylamide polymerization. Protein-polymer conjugates. Polymer 51:2503–2507Google Scholar
  138. 138.
    Tilley SD, Francis MB (2006) Tyrosine-selective protein alkylation using π-allylpalladium complexes. J Am Chem Soc 128:1080–1081Google Scholar
  139. 139.
    Antos JM, Francis MB (2006) Transition metal catalyzed methods for site-selective protein modification. Curr Opin Chem Biol 10:253–262Google Scholar
  140. 140.
    Joshi NS, Whitaker LR, Francis MB (2004) A three-component Mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943Google Scholar
  141. 141.
    Holder PG, Finley DT, Stephanopoulos N, Walton R, Clark DS, Francis MB (2010) Dramatic thermal stability of virus–polymer conjugates in hydrophobic solvents. Langmuir 26:17383–17388Google Scholar
  142. 142.
    Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723Google Scholar
  143. 143.
    Ban H, Gavrilyuk J, Barbas CF (2010) Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J Am Chem Soc 132:1523–1525Google Scholar
  144. 144.
    Tanaka T, Kamiya N, Nagamune T (2005) N-Terminal glycine-specific protein conjugation catalyzed by microbial transglutaminase. FEBS Lett 579:2092–2096Google Scholar
  145. 145.
    Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60:13–28Google Scholar
  146. 146.
    Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396Google Scholar
  147. 147.
    Yokoyama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol 64:447–454Google Scholar
  148. 148.
    Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjugate Chem 20:384–389Google Scholar
  149. 149.
    Antos JM, Francis MB (2004) Selective tryptophan modification with rhodium carbenoids in aqueous solution. J Am Chem Soc 126:10256–10257Google Scholar
  150. 150.
    Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281Google Scholar
  151. 151.
    Smith MC, Furman TC, Ingolia TD, Pidgeon C (1988) Chelating peptide-immobilized metal ion affinity chromatography. A new concept in affinity chromatography for recombinant proteins. J Biol Chem 263:7211–7215Google Scholar
  152. 152.
    Kumar A, Kamihira M, Galaev IY, Iijima S, Mattiasson B (2003) Binding of Cu(II)-poly(N-isopropylacrylamide/vinylimidazole) copolymer to histidine-tagged protein: a surface plasmon resonance study surface plasmon resonance study. Langmuir 19:865–871Google Scholar
  153. 153.
    Griffith BR, Allen BL, Rapraeger AC, Kiessling LL (2004) A polymer scaffold for protein oligomerization. J Am Chem Soc 126:1608–1609Google Scholar
  154. 154.
    Tahir MN, Natalio F, Berger R, Barz M, Theato P, Schröder H, Müller WE, Tremel W (2009) Growth of fibrous aggregates of silica nanoparticles: fibre growth by mimicking the biogenic silica patterning processes. Soft Matter 5:3657Google Scholar
  155. 155.
    Thompson LB, Mack NH (2010) Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces. Phys Chem Chem Phys 12:4301–4308Google Scholar
  156. 156.
    Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M, Eberhardt M, Theato P, Schröder HC, Müller WE, Tremel W (2008) Fabrication of a silica coating on magnetic γ-Fe2O3 nanoparticles by an immobilized enzyme. Chem Mater 20:3567–3573Google Scholar
  157. 157.
    Shukoor M, Natalio F, Tahir M, Divekar M, Metz N, Therese H, Theato P, Ksenofontov V, Schröder H, Müller W, Tremel W (2008) Multifunctional polymer-derivatized γ-Fe2O3 nanocrystals as a methodology for the biomagnetic separation of recombinant His-tagged proteins. J Magn Magn Mater 320:2339–2344Google Scholar
  158. 158.
    Zhang X, Li F, Lu X, Liu C (2009) Protein C-terminal modification through thioacid/azide amidation. Bioconjugate Chem 20:197–200Google Scholar
  159. 159.
    Tam A, Soellner MB, Raines RT (2007) Water-soluble phosphinothiols for traceless staudinger ligation and integration with expressed protein ligation. J Am Chem Soc 129:11421–11430Google Scholar
  160. 160.
    Gao W, Liu W, Christensen T, Zalutsky MR, Chilkoti A (2010) In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. PNAS 107:16432–16437Google Scholar
  161. 161.
    Gauthier MA, Klok H (2011) Arginine-specific modification of proteins with polyethylene glycol. Biomacromolecules 12:482–493Google Scholar
  162. 162.
    de Graaf AJ, Kooijman M, Hennink WE, Mastrobattista E (2009) Nonnatural amino acids for site-specific protein conjugation. Bioconjugate Chem 20:1281–1295Google Scholar
  163. 163.
    Kochendoerfer GG, Chen S, Mao F, Cressman S, Traviglia S, Shao J, Hunter CL, Low DC, Carnevali M, Gueriguian V, Keogh P et al (2003) Design and chemical synthesis of a homogeneous polymer-modified erythropoiesis protein. Science 299:884–887Google Scholar
  164. 164.
    Deiters A, Cropp TA, Summerer D, Mukherji M, Schultz PG (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg Med Chem Lett 14:5743–5745Google Scholar
  165. 165.
    Peeler JC, Woodman BF, Averick S, Miyake-Stoner SJ, Stokes AL, Hess KR, Matyjaszewski K, Mehl RA (2010) Genetically encoded initiator for polymer growth from proteins. J Am Chem Soc 132:13575–13577Google Scholar
  166. 166.
    Kempe K, Krieg A, Becer CR, Schubert US (2012) “Clicking” on/with polymers: a rapidly expanding field for the straightforward preparation of novel macromolecular architectures. Chem Soc Rev 41:176–191Google Scholar
  167. 167.
    Lallana E, Riguera R, Fernandez-Megia E (2011) Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions. Angew Chem Int Ed 50:8794–8804Google Scholar
  168. 168.
    Dirks AJ, van Berkel SS, Hatzakis NS, Opsteen JA, van Delft FL, Cornelissen JJ, Rowan AE, van Hest JC, Rutjes FP, Nolte RJ (2005) Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3+2] dipolar cycloaddition reaction. Chem Commun 4172–4174Google Scholar
  169. 169.
    Li M, De P, Gondi SR, Sumerlin BS (2008) Responsive polymer‐protein bioconjugates prepared by RAFT polymerization and copper‐catalyzed azide‐alkyne click chemistry. Macromol Rapid Commun 29:1172–1176Google Scholar
  170. 170.
    Shao H, Crnogorac MM, Kong T, Chen S, Williams JM, Tack JM, Gueriguian V, Cagle EN, Carnevali M, Tumelty D, Paliard X, Miranda LP, Bradburne JA, Kochendoerfer GG (2005) Site-specific polymer attachment to a CCL-5 (RANTES) analogue by oxime exchange. J Am Chem Soc 127:1350–1351Google Scholar
  171. 171.
    Heredia KL, Tolstyka ZP, Maynard HD (2007) Aminooxy end-functionalized polymers synthesized by ATRP for chemoselective conjugation to proteins. Macromolecules 40:4772–4779Google Scholar
  172. 172.
    Gao W, Liu W, Mackay JA, Zalutsky MR, Toone EJ, Chilkoti A (2009) In situ growth of a stoichiometric PEG-like conjugate at a protein’s N-terminus with significantly improved pharmacokinetics. PNAS 106:15231–15236Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School Materials Science in Mainz, Institute of Organic ChemistryUniversity of MainzMainzGermany
  2. 2.Institute for Technical and Macromolecular ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations