Advertisement

Design of Biointerfaces for Regenerative Medicine

  • Yusuke Arima
  • Koichi Kato
  • Yuji Teramura
  • Hiroo IwataEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 247)

Abstract

Understanding and controlling biological responses against artificial materials is important for the development of medical devices and therapies. Self-assembled monolayers (SAMs) of alkanethiols provide well-defined surfaces that can be manipulated by varying the terminal functional groups. Thus, SAMs have been extensively used as a platform for studying how artificial materials affect biological responses. Here, we review cell adhesion behavior in response to SAMs with various surface properties and the effects that adsorbed proteins have on subsequent cell adhesion. We also describe an application for SAMs as a substrate for culturing neural stem cells (NSCs). Substrates that induced the correct orientation of immobilized growth factors, like epidermal growth factor, improved the selection of a pure NSC population during cell expansion. In addition, we review new methodologies for using amphiphilic polymers to modify the surfaces of cells and tissues. Coating the cell surface with amphiphilic polymers that can capture and immobilize bioactive substances or cells represents a promising approach for clinical applications, particularly cellular therapies.

Keywords

Amphiphilic polymer Cell adhesion Chimeric protein Islet of Langerhans Self-assembled monolayer Stem cell 

References

  1. 1.
    Park JB (1984) Tissue response to implants (biocompatibility). In: Biomaterials science and engineering. Plenum, New YorkGoogle Scholar
  2. 2.
    Anderson JM, Cook G, Costerton B, Hanson SR, Hensten-Pettersen A, Jacobsen N et al (2004) Host reactions to biomaterials and their evaluation. In: Ratner BD, Hoffman AS, Schoen EJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 2nd edn. Elsevier Academic, AmsterdamGoogle Scholar
  3. 3.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554CrossRefGoogle Scholar
  4. 4.
    Ostuni E, Yan L, Whitesides GM (1999) The interaction of proteins and cells with self-assembled monolayers of alkanethiolates on gold and silver. Colloids Surf B 15:3–30CrossRefGoogle Scholar
  5. 5.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169CrossRefGoogle Scholar
  6. 6.
    Senaratne W, Andruzzi L, Ober CK (2005) Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 6:2427–2448CrossRefGoogle Scholar
  7. 7.
    Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19:971–974CrossRefGoogle Scholar
  8. 8.
    Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Methods 2:119–125CrossRefGoogle Scholar
  9. 9.
    Soen Y, Mori A, Palmer TD, Brown PO (2006) Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol. doi: 10.1038/msb4100076
  10. 10.
    Nakajima M, Ishimuro T, Kato K, Ko IK, Hirata I, Arima Y, Iwata H (2007) Combinatorial protein display for the cell-based screening of biomaterials that direct neural stem cell differentiation. Biomaterials 28:1048–1060CrossRefGoogle Scholar
  11. 11.
    Reynolds BA, Tetzlaff W, Weiss SA (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12:4565–4574Google Scholar
  12. 12.
    Green RJ, Frazier RA, Shakesheff KM, Davies MC, Roberts CJ, Tendler SJB (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomaterials 21:1823–1835CrossRefGoogle Scholar
  13. 13.
    Tengvall P, Lundström I, Liedberg B (1998) Protein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach. Biomaterials 19:407–422CrossRefGoogle Scholar
  14. 14.
    Reimhult E, Larsson C, Kasemo B, Höök F (2004) Simultaneous SPR and QCM-D monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water. Anal Chem 76:7211–7220CrossRefGoogle Scholar
  15. 15.
    Nuzzo RG, Zegarski BR, Dubois LH (1987) Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 109:733–740CrossRefGoogle Scholar
  16. 16.
    Nuzzo RG, Dubois LH, Allara DL (1990) Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers. J Am Chem Soc 112:558–569CrossRefGoogle Scholar
  17. 17.
    Porter MD, Bright TB, Allara DL, Chidsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568CrossRefGoogle Scholar
  18. 18.
    Strong L, Whitesides GM (1988) Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single crystals: electron diffraction studies. Langmuir 4:546–558CrossRefGoogle Scholar
  19. 19.
    Hirata I, Hioki Y, Toda M, Kitazawa T, Murakami Y, Kitano E, Kitamura H, Ikada Y, Iwata H (2003) Deposition of complement protein C3b on mixed self-assembled monolayers carrying surface hydroxyl and methyl groups studied by surface plasmon resonance. J Biomed Mater Res 66A:669–676CrossRefGoogle Scholar
  20. 20.
    Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111:7155–7164CrossRefGoogle Scholar
  21. 21.
    Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082CrossRefGoogle Scholar
  22. 22.
    Tarlov MJ, Burgess DRF Jr, Gillen G (1993) UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver. J Am Chem Soc 115:5305–5306Google Scholar
  23. 23.
    Huang J, Dahlgren DA, Hemminger JC (1994) Photopatterning of self-assembled alkanethiolate monolayers on gold: a simple monolayer photoresist utilizing aqueous chemistry. Langmuir 10:626–628CrossRefGoogle Scholar
  24. 24.
    Ryan D, Parviz BA, Linder V, Semetey V, Sia SK, Su J, Mrksich M, Whitesides GM (2004) Patterning multiple aligned self-assembled monolayers using light. Langmuir 20:9080–9088CrossRefGoogle Scholar
  25. 25.
    Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498–1511CrossRefGoogle Scholar
  26. 26.
    Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed Engl 37:550–575CrossRefGoogle Scholar
  27. 27.
    Brockman JM, Frutos AG, Corn RM (1999) A multistep chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging. J Am Chem Soc 121:8044–8051CrossRefGoogle Scholar
  28. 28.
    Liebermann T, Knoll W (2003) Parallel multispot detection of target hybridization to surface-bound probe oligonucleotides of different base mismatch by surface-plasmon field-enhanced fluorescence microscopy. Langmuir 9:1567–1572CrossRefGoogle Scholar
  29. 29.
    Shumaker-Parry JS, Aebersold R, Campbell CT (2004) Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem 76:2071–2082CrossRefGoogle Scholar
  30. 30.
    Houseman BT, Huh JH, Kron SJ, Mrksich M (2002) Peptide chips for the quantitative evaluation of protein kinase activity. Nat Biotechnol 20:270–274CrossRefGoogle Scholar
  31. 31.
    Wegner GJ, Lee NJ, Marriott G, Corn RM (2003) Fabrication of histidine-tagged fusion protein arrays for surface plasmon resonance imaging studies of protein-protein and protein-DNA interactions. Anal Chem 75:4740–4746CrossRefGoogle Scholar
  32. 32.
    Houseman BT, Gawalt ES, Mrksich M (2003) Maleimide-functionalized self-assembled monolayers for the preparation of peptide and carbohydrate biochips. Langmuir 19:1522–1531CrossRefGoogle Scholar
  33. 33.
    Kanda V, Kariuki JK, Harrison DJ, McDermott MT (2004) Label-free reading of microarray-based immunoassays with surface plasmon resonance imaging. Anal Chem 76:7257–7262CrossRefGoogle Scholar
  34. 34.
    Yamauchi F, Kato K, Iwata H (2004) Micropatterned, self-assembled monolayers for fabrication of transfected cell microarrays. Biochim Biophys Acta 1672:138–147CrossRefGoogle Scholar
  35. 35.
    Yamazoe H, Iwata H (2005) Cell microarray for screening feeder cells for differentiation of embryonic stem cells. J Biosci Bioeng 100:292–296CrossRefGoogle Scholar
  36. 36.
    Ko I-K, Kato K, Iwata H (2005) Parallel analysis of multiple surface markers expressed on rat neural stem cells using antibody microarrays. Biomaterials 26:4882–4891CrossRefGoogle Scholar
  37. 37.
    Kato K, Sato H, Iwata H (2005) Immobilization of histidine-tagged recombinant proteins onto micropatterned surfaces for cell-based functional assays. Langmuir 21:7071–7075CrossRefGoogle Scholar
  38. 38.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428CrossRefGoogle Scholar
  39. 39.
    Brock A, Chang E, Ho CC, LeDuc P, Jiang XY, Whitesides GM, Ingber DE (2003) Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 19:1611–1617CrossRefGoogle Scholar
  40. 40.
    Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C, Imhof BA, Bastmeyer M (2004) Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci 117:41–52CrossRefGoogle Scholar
  41. 41.
    McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–95CrossRefGoogle Scholar
  42. 42.
    Arima Y, Iwata H (2007) Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J Mater Chem 17:4079–4087CrossRefGoogle Scholar
  43. 43.
    Axelrod D, Hellen EH, Fulbright RM (1992) Total internal reflection fluorescence. In: Lakowicz JR (ed) Topics in fluorescence microscopy. Plenum, New YorkGoogle Scholar
  44. 44.
    Burmeister JS, Olivier LA, Reichert WM, Truskey GA (1998) Application of total internal reflection fluorescence microscopy to study cell adhesion to biomaterials. Biomaterials 19:307–325CrossRefGoogle Scholar
  45. 45.
    Tidwell CD, Ertel SI, Ratner BD (1997) Endothelial cell growth and protein adsorption on terminally functionalized, self-assembled monolayers of alkanethiolates on gold. Langmuir 13:3404–3413CrossRefGoogle Scholar
  46. 46.
    Tegoulia VA, Cooper SL (2000) Leukocyte adhesion on model surfaces under flow: effects of surface chemistry, protein adsorption, and shear rate. J Biomed Mater Res 50:291–301CrossRefGoogle Scholar
  47. 47.
    McClary KB, Ugarova T, Grainger DW (2000) Modulating fibroblast adhesion, spreading, and proliferation using self-assembled monolayer films of alkylthiolates on gold. J Biomed Mater Res 50:428–439CrossRefGoogle Scholar
  48. 48.
    Franco M, Nealey PF, Campbell S, Teixeira AI, Murphy CJ (2000) Adhesion and proliferation of corneal epithelial cells on self-assembled monolayers. J Biomed Mater Res 52:261–269CrossRefGoogle Scholar
  49. 49.
    Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99CrossRefGoogle Scholar
  50. 50.
    Faucheux N, Schweiss R, Lützow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730CrossRefGoogle Scholar
  51. 51.
    van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1985) Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials 6:403–408CrossRefGoogle Scholar
  52. 52.
    van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1987) Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 8:323–328CrossRefGoogle Scholar
  53. 53.
    Tamada Y, Ikada Y (1986) Cell attachment to various polymer surfaces. In: Chiellini E, Giusti P, Migliaresi C, Nicolais L (eds) Polymers in medicine II. Plenum, New YorkGoogle Scholar
  54. 54.
    Tamada Y, Ikada Y (1993) Effect of preadsorbed proteins on cell adhesion to polymer surfaces. J Colloid Interface Sci 155:334–339CrossRefGoogle Scholar
  55. 55.
    Tamada Y, Ikada Y (1993) Cell adhesion to plasma-treated polymer surfaces. Polymer 34:2208–2212CrossRefGoogle Scholar
  56. 56.
    Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205:323–330CrossRefGoogle Scholar
  57. 57.
    Lee JH, Lee JW, Khang G, Lee HB (1997) Interaction of cells on chargeable functional group gradient surfaces. Biomaterials 18:351–358CrossRefGoogle Scholar
  58. 58.
    Sigal GB, Mrksich M, Whitesides GM (1998) Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc 120:3464–3473CrossRefGoogle Scholar
  59. 59.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605CrossRefGoogle Scholar
  60. 60.
    Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, García AJ (2003) Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir 19:8033–8040CrossRefGoogle Scholar
  61. 61.
    Arima Y, Toda M, Iwata H (2011) Surface plasmon resonance in monitoring of complement activation on biomaterials. Adv Drug Delivery Rev 63(12): 988–999Google Scholar
  62. 62.
    Lestelius M, Liedberg B, Tengvall P (1997) In vitro plasma protein adsorption on ω-functionalized alkanethiolate self-assembled monolayers. Langmuir 13:5900–5908CrossRefGoogle Scholar
  63. 63.
    Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721CrossRefGoogle Scholar
  64. 64.
    Evans-Nguyen KM, Schoenfisch MH (2005) Fibrin proliferation at model surfaces: influence of surface properties. Langmuir 21:1691–1694CrossRefGoogle Scholar
  65. 65.
    Rodahl M, Höök F, Fredriksson C, Keller CA, Krozer A, Brzezinski P, Voinova M, Kasemo B (1997) Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107:229–246CrossRefGoogle Scholar
  66. 66.
    Sellborn A, Andersson M, Fant C, Gretzer C, Elwing H (2003) Methods for research on immune complement activation on modified sensor surfaces. Colloids Surf B 27:295–301CrossRefGoogle Scholar
  67. 67.
    Azzam RMA, Bashara NM (1977) Ellipsometry and polarized light. North-Holland, AmsterdamGoogle Scholar
  68. 68.
    Knoll W (1991) Polymer thin films and interfaces characterized with evanescent light. Makromol Chem 192:2827–2856CrossRefGoogle Scholar
  69. 69.
    López GP, Albers MW, Schreiber SL, Carroll R, Peralta E, Whitesides GM (1993) Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold. J Am Chem Soc 115:5877–5878CrossRefGoogle Scholar
  70. 70.
    Tegoulia VA, Rao W, Kalambur AT, Rabolt JF, Cooper SL (2001) Surface properties, fibrinogen adsorption, and cellular interactions of a novel phosphorylcholine-containing self-assembled monolayer on gold. Langmuir 17:4396–4404CrossRefGoogle Scholar
  71. 71.
    Chung YC, Chiu YH, Wu YW, Tao YT (2005) Self-assembled biomimetic monolayers using phospholipid-containing disulfides. Biomaterials 26:2313–2324CrossRefGoogle Scholar
  72. 72.
    Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–50CrossRefGoogle Scholar
  73. 73.
    Chen S, Yu F, Yu Q, He Y, Jiang S (2006) Strong resistance of a thin crystalline layer of balanced charged groups to protein adsorption. Langmuir 22:8186–91CrossRefGoogle Scholar
  74. 74.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33CrossRefGoogle Scholar
  75. 75.
    Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–24761Google Scholar
  76. 76.
    Toda M, Kitazawa T, Hirata I, Hirano Y, Iwata H (2008) Complement activation on surfaces carrying amino groups. Biomaterials 29:407–417CrossRefGoogle Scholar
  77. 77.
    Cornelius RM, Shankar SP, Brash JL, Babensee JE (2011) Immunoblot analysis of proteins associated with self-assembled monolayer surfaces of defined chemistries. J Biomed Mater Res 98A:7–18CrossRefGoogle Scholar
  78. 78.
    Barrias CC, Martins MCL, Almeida-Porada G, Barbosa MA, Granja PL (2009) The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials 30:307–316CrossRefGoogle Scholar
  79. 79.
    Keselowsky BG, Collard DM, García AJ (2003) Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res 66A:247–259CrossRefGoogle Scholar
  80. 80.
    Roberts C, Chen CS, Mrksich M, Martichonok V, Ingber DE, Whitesides GE (1998) Using mixed self-assembled monolayers presenting RGD and (EG)3OH groups to characterize long-term attachment of bovine capillary endothelial cells to surfaces. J Am Chem Soc 120:6548–6555CrossRefGoogle Scholar
  81. 81.
    Feng Y, Mrksich M (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43:15811–15821CrossRefGoogle Scholar
  82. 82.
    Orner BP, Derda R, Lewis RL, Thomson JA, Kiessling LL (2004) Arrays for the combinatorial exploration of cell adhesion. J Am Chem Soc 126:10808–10809CrossRefGoogle Scholar
  83. 83.
    Derda R, Li L, Orner BP, Lewis RL, Thomson JA, Kiessling LL (2007) Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem Biol 2:347–55CrossRefGoogle Scholar
  84. 84.
    Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5:383–388CrossRefGoogle Scholar
  85. 85.
    Nakaji-Hirabayashi T, Kato K, Arima Y, Iwata H (2007) Oriented immobilization of epidermal growth factor onto culture substrates for the selective expansion of neural stem cells. Biomaterials 28:3517–3529CrossRefGoogle Scholar
  86. 86.
    Nakaji-Hirabayashi T, Kato K, Iwata H (2008) Essential role of structural integrity and firm attachment of surface-anchored epidermal growth factor in adherent culture of neural stem cells. Biomaterials 29:4403–4408CrossRefGoogle Scholar
  87. 87.
    Nakaji-Hirabayashi T, Kato K, Iwata H (2009) Surface-anchoring of spontaneously dimerized epidermal growth factor for highly selective expansion of neural stem cells. Bioconjug Chem 20:102–110CrossRefGoogle Scholar
  88. 88.
    Konagaya S, Kato K, Nakaji-Hirabayashi T, Iwata H (2011) Design of culture substrates for large-scale expansion of neural stem cells. Biomaterials 32:992–1001CrossRefGoogle Scholar
  89. 89.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117CrossRefGoogle Scholar
  90. 90.
    Björklund A, Lindvall O (2000) Cell replacement therapies for central nervous system disorders. Nat Neurosci 3:537–544CrossRefGoogle Scholar
  91. 91.
    Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M (2010) Challenges of stem cell therapy for spinal cord injury: Human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28:93–99Google Scholar
  92. 92.
    Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, San Diego, pp 57–63Google Scholar
  93. 93.
    Lauer SA, Nolan JP (2002) Development and characterization of Ni-NTA-bearing microspheres. Cytometry 48:136–145CrossRefGoogle Scholar
  94. 94.
    Lu HS, Chai JJ, Li M, Huang BR, He CH, Bi RC (2001) Crystal structure of human epidermal growth factor and its dimerization. J Biol Chem 276:34913–34917CrossRefGoogle Scholar
  95. 95.
    Laibinis PE, Whitesides GM, Allara DL, Tao Y-T, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J Am Chem Soc 113:7152–7167CrossRefGoogle Scholar
  96. 96.
    Grosdemange GP, Simon ES, Prime KL, Whitesides GM (1991) Formation of self-assembled monolayers by chemisorption of derivatives of oligo(ethylene glycol) of structure HS(CH2)11(OCH2CH2)mOH on gold. J Am Chem Soc 113:12–20CrossRefGoogle Scholar
  97. 97.
    Miyamoto K, Yamada P, Yamaguchi RT, Muto T, Hirano A, Kimura Y, Niwano M, Isoda H (2007) In situ observation of a cell adhesion and metabolism using surface infrared spectroscopy. Cytotechnology 55:143–149CrossRefGoogle Scholar
  98. 98.
    Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61:203–212CrossRefGoogle Scholar
  99. 99.
    Tripet B, Wagschal K, Lavigne P, Mant CT, Hodges RS (2000) Effects of side-chain characteristics on stability and oligomerization state of a de Novo-designed model coiled-coil: 20 amino acid substitutions in position “d”. J Mol Biol 300:377–402CrossRefGoogle Scholar
  100. 100.
    Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim J-H, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787CrossRefGoogle Scholar
  101. 101.
    Kumada Y, Shiritani Y, Hamasaki K, Ohse T, Kishimoto M (2009) High biological activity of a recombinant protein immobilized onto polystyrene. Biotechnol J 4:1178–1189CrossRefGoogle Scholar
  102. 102.
    Jl C, Xie D, Mays J et al (2004) A novel approach to xenotransplantation combining surface engineering and genetic modification of isolated adult porcine islets. Surgery 136:537–547CrossRefGoogle Scholar
  103. 103.
    Hashemi-Najafabadi S, Vasheghani-Farahani E, Shojaosadati SA et al (2006) A method to optimize PEG-coating of red blood cells. Bioconjug Chem 17:1288–1293CrossRefGoogle Scholar
  104. 104.
    Nacharaju P, Boctor FN, Manjula BN et al (2005) Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells. Transfusion 45:374–383CrossRefGoogle Scholar
  105. 105.
    Scott MD, Murad KL, Koumpouras F et al (1997) Chemical camouflage of antigenic determinants: stealth erythrocytes. Proc Natl Acad Sci USA 94:7566–7571CrossRefGoogle Scholar
  106. 106.
    Elbert DL, Herbert CB, Hubbell JA (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15:5355–5362CrossRefGoogle Scholar
  107. 107.
    Germain M, Balaguer P, Jc N et al (2006) Protection of mammalian cell used in biosensors by coating with a polyelectrolyte shell. Biosens Bioelectron 21:1566–1573CrossRefGoogle Scholar
  108. 108.
    Krol S, Del Guerra S, Grupillo M et al (2006) Multilayer nanoencapsulation. New approach for immune protection of human pancreatic islets. Nano Lett 6:1933–1939CrossRefGoogle Scholar
  109. 109.
    Ng V, Pl G, Ss S-C et al (2007) Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol Biosci 7:877–882CrossRefGoogle Scholar
  110. 110.
    Chen H, Teramura Y, Iwata H (2011) Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid. J Control Release 150:229–234CrossRefGoogle Scholar
  111. 111.
    Inui O, Teramura Y, Iwata H (2010) Retention dynamics of amphiphilic polymers PEG-lipids and PVA-Alkyl on the cell surface. ACS Appl Mater Interfaces 2:1514–1520CrossRefGoogle Scholar
  112. 112.
    Luan NM, Teramura Y, Iwata H (2011) Immobilization of soluble complement receptor 1 on islets. Biomaterials 32:4539–4545CrossRefGoogle Scholar
  113. 113.
    Miura S, Teramura Y, Iwata H (2006) Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene glycol)-phospholipids anchored to cell membrane. Biomaterials 27:5828–5835CrossRefGoogle Scholar
  114. 114.
    Sakurai K, Teramura Y, Iwata H (2011) Cells immobilized on patterns printed in DNA by an inkjet printer. Biomaterials 32:3596–3602CrossRefGoogle Scholar
  115. 115.
    Takemoto N, Teramura Y, Iwata H (2011) Islet surface modification with urokinase through DNA hybridization. Bioconjug Chem 22:673–678CrossRefGoogle Scholar
  116. 116.
    Teramura Y, Chen H, Kawamoto T et al (2010) Control of cell attachment through polyDNA hybridization. Biomaterials 31:2229–2235CrossRefGoogle Scholar
  117. 117.
    Teramura Y, Iwata H (2010) Bioartificial pancreas microencapsulation and conformal coating of islet of Langerhans. Adv Drug Deliv Rev 62:827–840CrossRefGoogle Scholar
  118. 118.
    Teramura Y, Iwata H (2010) Cell surface modification with polymers for biomedical studies. Soft Matter 6:1081–1091CrossRefGoogle Scholar
  119. 119.
    Teramura Y, Iwata H (2011) Improvement of graft survival by surface modification with poly(ethylene glycol)-lipid and urokinase in intraportal islet transplantation. Transplantation 91:271–278CrossRefGoogle Scholar
  120. 120.
    Teramura Y, Iwata H (2009) Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials 30:2270–2275CrossRefGoogle Scholar
  121. 121.
    Teramura Y, Iwata H (2008) Islets surface modification prevents blood-mediated inflammatory responses. Bioconjug Chem 19:1389–1395CrossRefGoogle Scholar
  122. 122.
    Teramura Y, Iwata H (2009) Surface modification of islets with PEG-lipid for improvement of graft survival in intraportal transplantation. Transplantation 88:624–630CrossRefGoogle Scholar
  123. 123.
    Teramura Y, Kaneda Y, Iwata H (2007) Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)-lipids in the cell membrane. Biomaterials 28:4818–4825CrossRefGoogle Scholar
  124. 124.
    Teramura Y, Kaneda Y, Totani T et al (2008) Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials 29:1345–1355CrossRefGoogle Scholar
  125. 125.
    Teramura Y, Ln M, Kawamoto T et al (2010) Microencapsulation of islets with living cells using polyDNA-PEG-lipid conjugate. Bioconjug Chem 21:792–796CrossRefGoogle Scholar
  126. 126.
    Totani T, Teramura Y, Iwata H (2008) Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials 29:2878–2883CrossRefGoogle Scholar
  127. 127.
    Bennet W, Sundberg B, Cg G et al (1999) Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes 48:1907–1914CrossRefGoogle Scholar
  128. 128.
    Moberg L, Johansson H, Lukinius A et al (2002) Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 360:2039–2045CrossRefGoogle Scholar
  129. 129.
    Nilsson B, Korsgren O, Jd L et al (2010) Can cells and biomaterials in therapeutic medicine be shielded from innate immune recognition? Trends Immunol 31:32–38CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yusuke Arima
    • 1
  • Koichi Kato
    • 1
    • 2
  • Yuji Teramura
    • 1
    • 3
  • Hiroo Iwata
    • 1
    Email author
  1. 1.Institute for Frontier Medical SciencesKyoto UniversityKyotoJapan
  2. 2.Department of Biomaterials Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
  3. 3.Department of Immunology, Genetics and Pathology (IGP)Uppsala UniversityUppsalaSweden

Personalised recommendations