Skip to main content

Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering

  • Chapter
  • First Online:
Biomedical Applications of Polymeric Nanofibers

Part of the book series: Advances in Polymer Science ((POLYMER,volume 246))

Abstract

Many types of tissue in the body, such as nerve, muscle, tendon, ligament, bone, and blood vessels, rely on a highly organized microstructure in order to impart their desired functionality. Cell and extracellular matrix (ECM) alignment in these tissues allows for increased mechanical strength and cell communication. In tissue engineering, aligned polymer nanofibers can be used to take on the role of natural ECM fibers in order to provide mechanical strength, sites for cell attachment, and modulation of cell behavior via morphological cues. A wide variety of physical and electrostatic techniques are available for assembly of aligned nanofiber structures, and many of these structures have been evaluated as tissue engineering scaffolds. It is widely understood that aligned microstructure induces an aligned morphology in most cell types, but aligned nanofibrous topography also influences other cell behaviors such as differentiation, gene expression, and ECM deposition. With a greater understanding of aligned nanofiber scaffold fabrication techniques, and cell interactions with these scaffolds, researchers may be able to overcome current challenges and develop better strategies for regenerating aligned tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakai T, Larsen M, Yamada KM (2003) Fibronectin requirement in branching morphogenesis. Nature 423(6942):876–881

    CAS  Google Scholar 

  2. Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    CAS  Google Scholar 

  3. Rebustini IT et al (2007) Laminin alpha5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through beta1 integrin signaling. Dev Biol 308(1):15–29

    CAS  Google Scholar 

  4. Beachley V, Wen X (2010) Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci 35(7):868–892

    CAS  Google Scholar 

  5. Huang Z-M et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    CAS  Google Scholar 

  6. Jeong HE et al (2006) Stretched polymer nanohairs by nanodrawing. Nano Lett 6(7):1508–1513

    CAS  Google Scholar 

  7. Xing X, Wang Y, Li B (2008) Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Opt Express 16(14):10815–10822

    CAS  Google Scholar 

  8. Nain A et al (2006) Drawing suspended polyer micro-/nanofibers using glass micropipettes. Appl Phys Lett 89:1831051–1831053

    Google Scholar 

  9. Nain AS et al (2009) Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers. Macromol Rapid Commun 30(16):1406–1412

    CAS  Google Scholar 

  10. Cheng F et al (2006) Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries. Chemistry 12(11):3082–3088

    CAS  Google Scholar 

  11. Badrossamay MR et al (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261

    CAS  Google Scholar 

  12. Li HY, Ke YC, Hu YL (2006) Polymer nanofibers prepared by template melt extrusion. J Appl Polym Sci 99(3):1018–1023

    CAS  Google Scholar 

  13. Grimm S et al (2008) Nondestructive replication of self-ordered nanoporous alumina membranes via cross-linked polyacrylate nanofiber arrays. Nano Lett 8(7):1954–1959

    CAS  Google Scholar 

  14. Porter JR, Henson A, Popat KC (2009) Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials 30(5):780–788

    CAS  Google Scholar 

  15. Lee W et al (2004) Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir 20(18):7665–7669

    CAS  Google Scholar 

  16. Tao SL, Desai TA (2007) Aligned arrays of biodegradable poly(epsilon-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett 7(6):1463–1468

    CAS  Google Scholar 

  17. Sheng XL, Zhang JH (2009) Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers. Langmuir 25(12):6916–6922

    CAS  Google Scholar 

  18. Prasanthkumar S et al (2010) Solution phase epitaxial self-assembly and high charge-carrier mobility nanofibers of semiconducting molecular gelators. J Am Chem Soc 132(26):8866–8867

    CAS  Google Scholar 

  19. Weronski KJ et al (2010) Time-lapse atomic force microscopy observations of the morphology, growth rate, and spontaneous alignment of nanofibers containing a peptide-amphiphile from the hepatitis G virus (NS3 protein). J Phys Chem B 114(1):620–625

    CAS  Google Scholar 

  20. Hung AM, Stupp SI (2009) Understanding factors affecting alignment of self-assembling nanofibers patterned by sonication-assisted solution embossing. Langmuir 25(12):7084–7089

    CAS  Google Scholar 

  21. Hung AM, Stupp SI (2007) Simultaneous self-assembly, orientation, and patterning of peptide-amphiphile nanofibers by soft lithography. Nano Lett 7(5):1165–1171

    CAS  Google Scholar 

  22. Nogueira GM et al (2010) Layer-by-layer deposited chitosan/silk fibroin thin films with anisotropic nanofiber alignment. Langmuir 26(11):8953–8958

    CAS  Google Scholar 

  23. Kyotani M et al (2010) Entanglement-free fibrils of aligned polyacetylene films that produce single nanofibers. Nanoscale 2(4):509–514

    CAS  Google Scholar 

  24. Mata A et al (2009) Micropatterning of bioactive self-assembling gels. Soft Matter 5(6):1228–1236

    CAS  Google Scholar 

  25. Everett TA, Higgins DA (2009) Electrostatic self-assembly of ordered perylene-diimide/polyelectrolyte nanofibers in fluidic devices: from nematic domains to macroscopic alignment. Langmuir 25(22):13045–13051

    CAS  Google Scholar 

  26. Merzlyak A, Indrakanti S, Lee SW (2009) Genetically engineered nanofiber-like viruses for tissue regenerating materials. Nano Lett 9(2):846–852

    CAS  Google Scholar 

  27. Lee P et al (2006) Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed Microdevices 8(1):35–41

    CAS  Google Scholar 

  28. Guo Y et al (2006) Alignment of glycolipid nanotubes on a planar glass substrate using a two-step microextrusion technique. J Nanosci Nanotechnol 6(5):1464–1466

    CAS  Google Scholar 

  29. Kim J et al (2008) Magnetic field effect for cellulose nanofiber alignment. J Appl Phys 104(9):096104

    Google Scholar 

  30. Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25(16):4232–4234

    CAS  Google Scholar 

  31. Torbet J, Ronziere MC (1984) Magnetic alignment of collagen during self-assembly. Biochem J 219:1057–1059

    CAS  Google Scholar 

  32. Lowik D et al (2007) A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv Mater 19(9):1191−+

    Google Scholar 

  33. Guo C, Kaufman LJ (2007) Flow and magnetic field induced collagen alignment. Biomaterials 28(6):1105–1114

    CAS  Google Scholar 

  34. Rollings DA et al (2007) Formation and aqueous surface wettability of polysiloxane nanofibers prepared via surface initiated, vapor-phase polymerization of organotrichlorosilanes. Langmuir 23(10):5275–5278

    CAS  Google Scholar 

  35. Sun QH et al (2009) Fabrication of aligned polyaniline nanofiber array via a facile wet chemical process. Macromol Rapid Commun 30(12):1027–1032

    CAS  Google Scholar 

  36. Li M, Wei ZX, Jiang L (2008) Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J Mater Chem 18(19):2276–2280

    CAS  Google Scholar 

  37. Czaja WK et al (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1–12

    CAS  Google Scholar 

  38. Kondo T et al (2002) Biodirected epitaxial nanodeposition of polymers on oriented macromolecular templates. Proc Natl Acad Sci USA 99(22):14008–14013

    CAS  Google Scholar 

  39. Putra A et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7):1885–1891

    CAS  Google Scholar 

  40. Uraki Y et al (2007) Honeycomb-like architecture produced by living bacteria, gluconacetobacter xylinus. Carbohydr Polym 69(1):1–6

    CAS  Google Scholar 

  41. Sano MB et al (2010) Electromagnetically controlled biological assembly of aligned bacterial cellulose nanofibers. Ann Biomed Eng 38(8):2475–2484

    Google Scholar 

  42. Afifi AM et al (2009) Fabrication of aligned poly(L-lactide) fibers by electrospinning and drawing. Macromol Mater Eng 294(10):658–665

    CAS  Google Scholar 

  43. Zong X et al (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26):5330–5338

    CAS  Google Scholar 

  44. Ji JY et al (2009) Significant improvement of mechanical properties observed in highly aligned carbon-nanotube-reinforced nanofibers. J Phys Chem C 113(12):4779–4785

    CAS  Google Scholar 

  45. Smit E, Buttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423

    CAS  Google Scholar 

  46. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223

    CAS  Google Scholar 

  47. Yee WA et al (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly(vinylidene fluoride) fibers. Polymer 48(2):512–521

    CAS  Google Scholar 

  48. Wu YQ, Carnell LA, Clark RL (2007) Control of electrospun mat width through the use of parallel auxiliary electrodes. Polymer 48(19):5653–5661

    CAS  Google Scholar 

  49. Edwards MD et al (2010) Development of orientation during electrospinning of fibres of poly(epsilon-caprolactone). Eur Polym J 46(6):1175–1183

    CAS  Google Scholar 

  50. Bashur CA, Dahlgren LA, Goldstein AS (2006) Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(D, L-lactic-co-glycolic acid) meshes. Biomaterials 27(33):5681–5688

    CAS  Google Scholar 

  51. Wang HB et al (2009) Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J Neural Eng 6(1):016001

    Google Scholar 

  52. Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cells Mater 19:193–204

    CAS  Google Scholar 

  53. Courtney T et al (2006) Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27(19):3631–3638

    CAS  Google Scholar 

  54. Zhong S et al (2006) An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture. J Biomed Mater Res A 79(3):456–463

    Google Scholar 

  55. Lee JY et al (2010) Enhanced polarization of embryonic hippocampal neurons on micron scale electrospun fibers. J Biomed Mater Res A 92A(4):1398–1406

    CAS  Google Scholar 

  56. Li WJ et al (2007) Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J Biomech 40(8):1686–1693

    Google Scholar 

  57. Chan KHK et al (2010) Morphologies and electrical properties of electrospun poly (R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate/multiwalled carbon nanotubes fibers. J Appl Polym Sci 116(2):1030–1035

    CAS  Google Scholar 

  58. Thomas V et al (2006) Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Sci Polym Ed 17(9):969–984

    CAS  Google Scholar 

  59. Bashur CA et al (2009) Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng A 15(9):2435–2445

    CAS  Google Scholar 

  60. McClure MJ et al (2009) Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix. Biomed Mater 4(5):055010

    CAS  Google Scholar 

  61. Jose MV et al (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48(4):1096–1104

    CAS  Google Scholar 

  62. Li D, Wang YL, Xia YN (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3(8):1167–1171

    CAS  Google Scholar 

  63. Xin Y et al (2008) Fabrication of well-aligned PPV/PVP nanofibers by electrospinning. Mater Lett 62(6–7):991–993

    CAS  Google Scholar 

  64. Kuo CC, Wang CT, Chen WC (2008) Highly-aligned electrospun luminescent nanofibers prepared from polyfluorene/PMMA blends: fabrication, morphology, photophysical properties and sensory applications. Macromol Mater Eng 293(12):999–1008

    CAS  Google Scholar 

  65. Dalton PD et al (2007) Electrospinning of polymer melts: phenomenological observations. Polymer 48(23):6823–6833

    CAS  Google Scholar 

  66. Jalili R et al (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101(6):4350–4357

    CAS  Google Scholar 

  67. Li D, Wang YL, Xia YN (2004) Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv Mater 16(4):361–366

    Google Scholar 

  68. Wray LS, Orwin EJ (2009) Recreating the microenvironment of the native cornea for tissue engineering applications. Tissue Eng A 15(7):1463–1472

    CAS  Google Scholar 

  69. Bazbouz MB, Stylios GK (2008) Alignment and optimization of nylon 6 nanofibers by electrospinning. J Appl Polym Sci 107(5):3023–3032

    CAS  Google Scholar 

  70. Liu LH, Dzenis YA (2008) Analysis of the effects of the residual charge and gap size on electrospun nanofiber alignment in a gap method. Nanotechnology 19(35):355307

    Google Scholar 

  71. Katta P et al (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218

    CAS  Google Scholar 

  72. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    CAS  Google Scholar 

  73. Pokorny M, Niedoba K, Velebny V (2010) Transversal electrostatic strength of patterned collector affecting alignment of electrospun nanofibers. Appl Phys Lett 96(19):193111

    Google Scholar 

  74. Beachley V, Wen X (2009) Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C 29:663–668

    CAS  Google Scholar 

  75. Teo WE, Ramakrishna S (2005) Electrospun fibre bundle made of aligned nanofibres over two fixed points. Nanotechnology 16(9):1878–1884

    CAS  Google Scholar 

  76. Ayutsede J et al (2006) Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7(1):208–214

    CAS  Google Scholar 

  77. Carnell LS et al (2009) Electric field effects on fiber alignment using an auxiliary electrode during electrospinning. Scr Mater 60(6):359–361

    CAS  Google Scholar 

  78. Acharya M, Arumugam GK, Heiden PA (2008) Dual electric field induced alignment of electrospun nanofibers. Macromol Mater Eng 293(8):666–674

    CAS  Google Scholar 

  79. Kim G, Kim W (2006) Formation of oriented nanofibers using electrospinning. Appl Phys Lett 88:233101

    Google Scholar 

  80. Deitzel JM et al (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163–8170

    CAS  Google Scholar 

  81. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384–390

    Google Scholar 

  82. Yao L et al (2009) Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater 90B(2):483–491

    CAS  Google Scholar 

  83. Bhattarai N et al (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26(31):6176–6184

    CAS  Google Scholar 

  84. Secasanu VP, Giardina CK, Wang YD (2009) A novel electrospinning target to improve the yield of uniaxially aligned fibers. Biotechnol Prog 25(4):1169–1175

    CAS  Google Scholar 

  85. Carnell LS et al (2008) Aligned mats from electrospun single fibers. Macromolecules 41(14):5345–5349

    CAS  Google Scholar 

  86. Sundaray B et al (2004) Electrospinning of continuous aligned polymer fibers. Appl Phys Lett 84(7):1222–1224

    CAS  Google Scholar 

  87. Teo WE et al (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16(6):918–924

    CAS  Google Scholar 

  88. Mo XM, Weber HJ (2004) Electrospinning P(LLA-CL) nanofiber: a tubular scaffold fabrication with circumferential alignment. Macromol Symp 217:413–416

    CAS  Google Scholar 

  89. Lee H, Yoon H, Kim G (2009) Highly oriented electrospun polycaprolactone micro/nanofibers prepared by a field-controllable electrode and rotating collector. Appl Phys A Mater Sci Process 97(3):559–565

    CAS  Google Scholar 

  90. Kim GH (2006) Electrospinning process using field-controllable electrodes. J Polym Sci B Polym Phys 44(10):1426–1433

    CAS  Google Scholar 

  91. Attout A, Yunus S, Bertrand P (2008) Electrospinning and alignment of polyaniline-based nanowires and nanotubes. Polym Eng Sci 48(9):1661–1666

    CAS  Google Scholar 

  92. Ishii Y, Sakai H, Murata H (2008) A new electrospinning method to control the number and a diameter of uniaxially aligned polymer fibers. Mater Lett 62(19):3370–3372

    CAS  Google Scholar 

  93. Kessick R, Fenn J, Tepper G (2004) The use of AC potentials in electrospraying and electrospinning processes. Polymer 45(9):2981–2984

    CAS  Google Scholar 

  94. Sarkar S, Deevi S, Tepper G (2007) Biased AC electrospinning of aligned polymer nanofibers. Macromol Rapid Commun 28(9):1034–1039

    CAS  Google Scholar 

  95. Rafique J et al (2007) Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector. Appl Phys Lett 91:063126

    Google Scholar 

  96. Zhou W et al (2007) Gas flow-assisted alignment of super long electrospun nanofibers. J Nanosci Nanotechnol 7(8):2667–2673

    CAS  Google Scholar 

  97. Liu YQ et al (2010) Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv Mater 22(22): 2454−+

    Google Scholar 

  98. Beachley V, Wen X (2010) Fabrication of three dimensional aligned nanofiber array, US-7828539, Clemson University (Clemson, SC, US) US

    Google Scholar 

  99. Madhugiri S et al (2003) Electrospun MEH-PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc 125(47):14531–14538

    CAS  Google Scholar 

  100. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46

    CAS  Google Scholar 

  101. Ding B et al (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45(6):1895–1902

    CAS  Google Scholar 

  102. Theron SA et al (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46(9):2889–2899

    CAS  Google Scholar 

  103. Chow WN et al (2007) Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol 3:119–126

    Google Scholar 

  104. Hayami JWS et al (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92A(4):1407–1420

    CAS  Google Scholar 

  105. Yao YF et al (2007) Fiber-oriented liquid crystal polarizers based on anisotropic electrospinning. Adv Mater 19(21): 3707−+

    Google Scholar 

  106. Li WJ et al (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 67(4):1105–1114

    Google Scholar 

  107. Yang F et al (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15):2603–2610

    CAS  Google Scholar 

  108. Rockwood DN et al (2008) Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro. Biomaterials 29(36):4783–4791

    CAS  Google Scholar 

  109. Chew SY et al (2008) The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29(6):653–661

    CAS  Google Scholar 

  110. Choi JS et al (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906

    CAS  Google Scholar 

  111. Wise JK et al (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng A 15(4):913–921

    CAS  Google Scholar 

  112. Moffat KL et al (2009) Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng A 15(1):115–126

    CAS  Google Scholar 

  113. Corey JM et al (2007) Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J Biomed Mater Res A 83A(3):636–645

    CAS  Google Scholar 

  114. Ma J, He X, Jabbari E (2011) Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(l-lactide) nanofibers. Ann Biomed Eng 39:14–25

    CAS  Google Scholar 

  115. Nisbet DR et al (2009) Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30(27):4573–4580

    CAS  Google Scholar 

  116. Tian F et al (2008) Quantitative analysis of cell adhesion on aligned micro- and nanofibers. J Biomed Mater Res A 84(2):291–299

    Google Scholar 

  117. He LM et al (2010) Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. Acta Biomater 6(8):2960–2969

    CAS  Google Scholar 

  118. Patel S et al (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7(7):2122–2128

    CAS  Google Scholar 

  119. Madduri S, Papaloizos M, Gander B (2010) Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials 31(8):2323–2334

    CAS  Google Scholar 

  120. Xie JW et al (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30(3):354–362

    CAS  Google Scholar 

  121. Lam HJ et al (2010) In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Eng A 16(8):2641–2648

    CAS  Google Scholar 

  122. Meng J et al (2009) Enhancement of nanofibrous scaffold of multiwalled carbon nanotubes/polyurethane composite to the fibroblasts growth and biosynthesis. J Biomed Mater Res A 88(1):105–116

    Google Scholar 

  123. Shang SH et al (2010) The effect of electrospun fibre alignment on the behaviour of rat periodontal ligament cells. Eur Cells Mater 19:180–192

    CAS  Google Scholar 

  124. Chua KN et al (2006) Surface-aminated electrospun nanofibers enhance adhesion and expansion of human umbilical cord blood hematopoietic stem/progenitor cells. Biomaterials 27(36):6043–6051

    CAS  Google Scholar 

  125. Sangsanoh P et al (2007) In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules 8(5):1587–1594

    CAS  Google Scholar 

  126. Chen M et al (2007) Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng 13(3):579–587

    CAS  Google Scholar 

  127. Rubenstein D et al (2007) Bioassay chamber for angiogenesis with perfused explanted arteries and electrospun scaffolding. Microcirculation 14(7):723–737

    CAS  Google Scholar 

  128. McKenzie JL et al (2004) Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25(7–8):1309–1317

    CAS  Google Scholar 

  129. Elias KL, Price RL, Webster TJ (2002) Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 23(15):3279–3287

    CAS  Google Scholar 

  130. Baker BM, Mauck RL (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28(11):1967–1977

    CAS  Google Scholar 

  131. Lu H et al (2009) Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds. J Mater Sci Mater Med 20(9):1937–1944

    CAS  Google Scholar 

  132. Meng J et al (2010) Electrospun aligned nanofibrous composite of MWCNT/polyurethane to enhance vascular endothelium cells proliferation and function. J Biomed Mater Res A 95(1):312–320

    Google Scholar 

  133. Lee CH et al (2005) Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261–1270

    CAS  Google Scholar 

  134. Liu Y et al (2009) Effects of fiber orientation and diameter on the behavior of human dermal fibroblasts on electrospun PMMA scaffolds. J Biomed Mater Res A 90A(4):1092–1106

    CAS  Google Scholar 

  135. Li WJ, Jiang YJ, Tuan RS (2006) Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12(7):1775–1785

    CAS  Google Scholar 

  136. Liu Y et al (2009) Control of cell migration in two and three dimensions using substrate morphology. Exp Cell Res 315(15):2544–2557

    CAS  Google Scholar 

  137. Chua KN et al (2005) Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26(15):2537–2547

    CAS  Google Scholar 

  138. Shih YR et al (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24(11):2391–2397

    CAS  Google Scholar 

  139. Johnson J et al (2009) Quantitative analysis of complex glioma cell migration on electrospun polycaprolactone using time-lapse microscopy. Tissue Eng Part C Methods 15(4):531–540

    CAS  Google Scholar 

  140. Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805

    CAS  Google Scholar 

  141. Balguid A et al (2009) Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng A 15(2):437–444

    CAS  Google Scholar 

  142. Kurpinski KT et al (2010) The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 31(13):3536–3542

    CAS  Google Scholar 

  143. Cao HQ et al (2010) The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J Biomed Mater Res A 93A(3):1151–1159

    CAS  Google Scholar 

  144. Nur EKA et al (2006) Three-dimensional nanofibrillar surfaces promote self-renewal in mouse embryonic stem cells. Stem Cells 24(2):426–433

    Google Scholar 

  145. Yin Z et al (2010) The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31(8):2163–2175

    CAS  Google Scholar 

  146. Huber A, Pickett A, Shakesheff KM (2007) Reconstruction of spatially orientated myotubes in vitro using electrospun, parallel microfibre arrays. Eur Cells Mater 14:56–63

    CAS  Google Scholar 

  147. Dang JM, Leong KW (2007) Myogenic induction of aligned mesenchymal stem cell sheets by culture on thermally responsive electrospun nanofibers. Adv Mater Deerfield 19(19):2775–2779

    CAS  Google Scholar 

  148. Lee MR et al (2010) Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31(15):4360–4366

    CAS  Google Scholar 

  149. Leong MF et al (2009) Effect of electrospun poly(D, L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption. J Biomed Mater Res A 89(4):1040–1048

    Google Scholar 

  150. Baker SC, Southgate J (2008) Towards control of smooth muscle cell differentiation in synthetic 3D scaffolds. Biomaterials 29(23):3357–3366

    CAS  Google Scholar 

  151. Silva GA et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303(5662):1352–1355

    CAS  Google Scholar 

  152. McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495

    CAS  Google Scholar 

  153. Spiegelman BM, Ginty CA (1983) Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell 35(3 Pt 2):657–666

    CAS  Google Scholar 

  154. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94(3):849–854

    CAS  Google Scholar 

  155. Thomas CH et al (2002) Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc Natl Acad Sci USA 99(4):1972–1977

    CAS  Google Scholar 

  156. McBride SH, Knothe ML (2008) Tate. Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression. Tissue Eng A 14(9):1561–1572

    CAS  Google Scholar 

  157. Hu W, Huang ZM (2010) Biocompatibility of braided poly(L-lactic acid) nanofiber wires applied as tissue sutures. Polym Int 59(1):92–99

    CAS  Google Scholar 

  158. Valmikinathan CM et al (2008) Novel nanofibrous spiral scaffolds for neural tissue engineering. J Neural Eng 5(4):422–432

    Google Scholar 

  159. Chew SY et al (2007) Aligned protein-polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv Funct Mater 17(8):1288–1296

    CAS  Google Scholar 

  160. Horne MK et al (2010) Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev 19(6):843–852

    CAS  Google Scholar 

  161. Hou XX et al (2008) Stretching-induced orientation to improve mechanical properties of electrospun pan nanocomposites. Int J Mod Phys B 22(31–32):5913–5918

    CAS  Google Scholar 

  162. Yoon H et al (2010) Fabricating highly aligned electrospun poly(epsilon-caprolactone) micro/nanofibers for nerve tissue regeneration. Polymer-Korea 34(3):185–190

    CAS  Google Scholar 

  163. Koh HS et al (2010) In vivo study of novel nanofibrous intra-luminal guidance channels to promote nerve regeneration. J Neural Eng 7(4):046003

    CAS  Google Scholar 

  164. Zhu YB et al (2010) Macro-alignment of electrospun fibers for vascular tissue engineering. J Biomed Mater Res B Appl Biomater 92B(2):508–516

    CAS  Google Scholar 

  165. Zhang XH et al (2009) Dynamic culture conditions to generate silk-based tissue-engineered vascular grafts. Biomaterials 30(19):3213–3223

    CAS  Google Scholar 

  166. Xu CY et al (2004) Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials 25(5):877–886

    CAS  Google Scholar 

  167. Uttayarat P et al (2010) Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater 6(11):4229–4237

    CAS  Google Scholar 

  168. Hashi CK et al (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA 104(29):11915–11920

    CAS  Google Scholar 

  169. He W et al (2006) Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells. Tissue Eng 12(9):2457–2466

    CAS  Google Scholar 

  170. Han ZZ et al (2008) Growing behavior of endothelial cells on electrospun aligned nanofibrous film of polyurethane. Chem J Chin Univer-Chin 29(5):1070–1073

    CAS  Google Scholar 

  171. Jose MV et al (2010) Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Macromol Biosci 10(4):433–444

    CAS  Google Scholar 

  172. Chen F et al (2010) Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomater 6(8):3013–3020

    CAS  Google Scholar 

  173. Jose MV et al (2009) Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer 50(15):3778–3785

    CAS  Google Scholar 

  174. Jose MV et al (2009) Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater 5(1):305–315

    CAS  Google Scholar 

  175. Xie JW et al (2010) “Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site. Nanoscale 2(6):923–926

    CAS  Google Scholar 

  176. Subramanian A et al (2004) Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering. Biomed Sci Instrum 40:117–122

    CAS  Google Scholar 

  177. Subramanian A et al (2005) Preparation and evaluation of the electrospun chitosan/PEO fibers for potential applications in cartilage tissue engineering. J Biomater Sci Polym Ed 16(7):861–873

    CAS  Google Scholar 

  178. Baker BM et al (2009) Tissue engineering with meniscus cells derived from surgical debris. Osteoarthritis Cartilage 17(3):336–345

    CAS  Google Scholar 

  179. Nerurkar NL, Elliott DM, Mauck RL (2007) Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res 25(8):1018–1028

    CAS  Google Scholar 

  180. Yeganegi M, Kandel RA, Santerre JP (2010) Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: mechanical properties and cytotoxicity. Acta Biomater 6(10):3847–3855

    CAS  Google Scholar 

  181. Sell SA, McClure MJ, Ayres CE, Simpson DG, Bowlin GL (2011) Preliminary investigation of airgap electrospun silk-fibroin-based structures for ligament analogue engineering. J Biomater Sci Polym Ed 22:1253–1273

    CAS  Google Scholar 

  182. Wu H et al (2010) Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med 21(12):3207–3215

    CAS  Google Scholar 

  183. Silber JS et al (2003) Donor site morbidity after anterior iliac crest bone harvest for single-level anterior cervical discectomy and fusion. Spine (Phila Pa 1976) 28(2):134–139

    Google Scholar 

  184. Mankin HJ, Hornicek FJ, Raskin KA (2005) Infection in massive bone allografts. Clin Orthop Relat Res 432:210–216

    Google Scholar 

  185. Li X et al (2008) Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24(24):14145–14150

    CAS  Google Scholar 

  186. Ngiam M et al (2009) The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone 45(1):4–16

    CAS  Google Scholar 

  187. Teo W-E et al (2007) A dynamic liquid support system for continuous electrospun yarn fabrication. Polymer 48(12):3400–3405

    CAS  Google Scholar 

  188. Hu W, Huang ZM, Liu XY (2010) Development of braided drug-loaded nanofiber sutures. Nanotechnology 21(31):315104

    Google Scholar 

  189. Meek KM, Boote C (2004) The organization of collagen in the corneal stroma. Exp Eye Res 78(3):503–512

    CAS  Google Scholar 

  190. Baker BM et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358

    CAS  Google Scholar 

  191. Beachley V, Wen XJ (2009) Fabrication of nanofiber reinforced protein structures for tissue engineering. Mater Sci Eng C 29(8):2448–2453

    CAS  Google Scholar 

  192. Wang W et al (2009) Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A 91A(4):994–1005

    CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by the grants from NIH (NS050243), NIH/NCRR (P20RR021949), and American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Wen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beachley, V., Katsanevakis, E., Zhang, N., Wen, X. (2011). Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering. In: Jayakumar, R., Nair, S. (eds) Biomedical Applications of Polymeric Nanofibers. Advances in Polymer Science, vol 246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_141

Download citation

Publish with us

Policies and ethics