Skip to main content

Direct Insertion Probe Mass Spectrometry of Polymers

  • Chapter
  • First Online:
Mass Spectrometry of Polymers – New Techniques

Part of the book series: Advances in Polymer Science ((POLYMER,volume 248))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

15-Na:

Naphthoxazine

APCI:

Atmospheric pressure chemical ionization

ASAP:

Atmospheric solids analysis probe

BPAEP:

Poly(bisphenyl acryloxyethyl phosphate)

CD:

Cyclodextrin

DATE:

Decanedioic acid bis-(2-thiophen-3-yl-ethyl)ester

DESI:

Desorption electrospray ionization

DIP-MS:

Direct insertion probe mass spectrometry

DP-MS:

Direct pyrolysis mass spectrometry

ESI:

Electrospray ionization

FR:

Flame retardant

IC:

Inclusion compound

MALDI:

Matrix assisted laser desorption ionization

OTE:

2-(Thiophen-3-yl-)ethyl octanoate

P2VP:

Poly(2-vinylpyridine)

P4VP:

Poly(4-vinylpyridine)

PANI:

Polyaniline

PC:

Poly(carbonate)

PCL:

Poly(ε-caprolactone)

PEO:

Poly(ethylene oxide)

PET:

Polyethylene terephthalate

PMMA:

Poly(methyl methacrylate)

PMTh:

Poly(methyl thiophene)

PPE:

Polyphenylene

PPh:

Phenolphthalein

PPP:

Poly(p-phenylene)

PPy:

Polypyrrole

PS:

Polystyrene

PTh:

Polythiophene

PVAc:

Poly(vinyl acetate)

PVP:

Poly(vinylene phenylene)

TATE:

Terephthalic acid bis-(2-thiophen-3-yl-ethyl)ester

T di :

Initial decomposition temperature

TIC:

Total ion current

References

  1. Statheropoulos M, Georgakopoulos K, Montaudo G (1991) The interpretation of pyrolysis mass-spectra of polymers using a hybrid software system based on library searching with heuristics. J Anal Appl Pyrol 20:65

    Article  CAS  Google Scholar 

  2. Statheropoulos M, Georgakopoulos K, Montaudo G (1991) A method for the interpretation of pyrolysis mass-spectra of polyamides. J Anal Appl Pyrol 23:15

    Article  Google Scholar 

  3. Qian K, Killinger WE, Casey M (1996) Rapid polymer identification by in-source direct pyrolysis mass spectrometry and library searching techniques. Anal Chem 68:1019

    Article  CAS  Google Scholar 

  4. Zhang S, Shin YS, Mayer R, Basile F (2007) On-probe pyrolysis desorption electrospray ionization (DESI) mass spectrometry for the analysis of non-volatile pyrolysis products. J Anal Appl Pyrol 80:353

    Article  CAS  Google Scholar 

  5. Whitson SE, Erdodi G, Kennedy JP, Lattimer RP, Wesdemiotis C (2008) Direct probe-atmospheric pressure chemical ionization mass spectrometry of cross-linked copolymers and copolymer blends. Anal Chem 80:7778

    Article  CAS  Google Scholar 

  6. Huang Z, Shi W (2006) Thermal behavior and degradation mechanism of poly(bisphenyl acryloxyethyl phosphate) as a UV curable flame-retardant oligomer. Polym Degrad Stab 91:1674

    Article  CAS  Google Scholar 

  7. Huang NH, Zhang Q, Fan C, Wang JQ (2008) A mechanistic study of flame retardance of novel copolyester phosphorus containing linked pendant groups by TG/XPS/direct Py-MS. Chinese Chem Lett 19:350

    Article  CAS  Google Scholar 

  8. Yurteri S, Cianga I, Degirmenci M, Yagci Y (2004) Synthesis and characterization of poly(p-phenylene)-graft-poly(epsilon-caprolactone) copolymers by combined ring-opening polymerization and cross-coupling processes. Polym Int 53:1219

    Article  CAS  Google Scholar 

  9. Yurteri S, Cianga I, Demirel AL, Yagci Y (2005) New polyphenylene-g-polystyrene and polyphenylene-g-polystyrene/poly(epsilon-caprolactone) copolymers by combined controlled polymerization and cross-coupling processes. J Polym Sci A Polym Chem 43:879

    Article  CAS  Google Scholar 

  10. Nur Y, Yurteri Y, Cianga I, Yagci Y, Hacaloglu J (2007) Thermal degradation of poly(p-phenylene-graft-epsilon-caprolactone) copolymer. Polym Degrad Stab 92:838

    Article  CAS  Google Scholar 

  11. Nur Y, Yurteri Y, Cianga I, Yagci Y, Hacaloglu J (2007) Pyrolysis of polyphenylenes with PCL or/and PSt side chains. J Anal Appl Pyrol 80:453

    Article  CAS  Google Scholar 

  12. Colak DG, Cianga I, Yagci Y, Cirpan A, Karasz FE (2007) Novel poly(phenylene vinylenes) with well-defined poly(epsilon-caprolactone) or polystyrene as lateral substituents: synthesis and characterization. Macromolecules 40:5301

    Article  CAS  Google Scholar 

  13. Nur Y, Colak DE, Chianga I, Yagci Y, Hacaloglu J (2008) Pyrolysis of poly(phenylene vinylene)s with polycaprolactone side chains. Polym Degrad Stab 93:904

    Article  CAS  Google Scholar 

  14. Nur Y, Colak DE, Chianga I, Yagci Y, Hacaloglu J (2008) Direct pyrolysis mass spectrometry studies on thermal degradation characteristics of poly(phenylene vinylene) with well-defined PSt side chains. J Therm Anal Calorim 94:157

    Article  CAS  Google Scholar 

  15. Nur Y, Colak DE, Chianga I, Yagci Y, Hacaloglu J (2009) High temperature pyrolysis of poly(phenylene vinylene)s with poly(epsilon-caprolactone) or polystyrene side chains. J Therm Anal Calorim 98:527

    Article  CAS  Google Scholar 

  16. Bullions TA, Wei M, Porbeni FE, Gerber MJ, Peet J, Balik M, White JL, Tonelli AE (2002) Reorganization of the structures, morphologies, and conformations of bulk polymers via coalescence from polymer-cyclodextrin inclusion compounds. J Polym Sci B Polym Phys 40(10):992

    Article  CAS  Google Scholar 

  17. Rusa CC, Uyar T, Rusa M, Wang X, Hunt MA, Tonelli AE (2004) An intimate polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blend via coalescence from their common inclusion compound with gamma-cyclodextrin. J Polym Sci B Polym Phys 42(22):4182

    Article  CAS  Google Scholar 

  18. Uyar T, Aslan E, Tonelli AE, Hacaloglu J (2006) Pyrolysis mass spectrometry analysis of poly(vinyl acetate), poly(methyl methacrylate) and their blend coalesced from inclusion compounds formed with gamma-cyclodextrin. Polym Degrad Stab 91:1

    Article  CAS  Google Scholar 

  19. Uyar T, Oguz G, Tonelli AE, Hacaloglu J (2006) Thermal degradation processes of poly(carbonate) and poly(methyl methacrylate) in blends coalesced either from their common inclusion compound formed with gamma-cyclodextrin or precipitated from their common solution. Polym Degrad Stab 91:2471

    Article  CAS  Google Scholar 

  20. Uyar T, Tonelli AE, Hacaloglu J (2006) Thermal degradation of polycarbonate, poly(vinyl acetate) and their blends. Polym Degrad Stab 91:2960

    Article  CAS  Google Scholar 

  21. Uyar T, Rusa CC, Tonelli AE, Hacaloglu J (2007) Pyrolysis mass spectrometry analysis of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate) ternary blends. Polym Degrad Stab 92:32

    Article  CAS  Google Scholar 

  22. Uyar T, El-Shafei A, Wang X, Hacaloglu J, Tonelli AE (2006) The solid channel structure inclusion complex formed between guest styrene and host gamma-cyclodextrin. Incl Phenom Macrocycl Chem 55:109

    Article  CAS  Google Scholar 

  23. Elmaci A, Hacaloglu J (2009) Thermal degradation of poly(vinylpyridine)s. Polym Degrad Stab 94(4):738

    Article  CAS  Google Scholar 

  24. Elmaci A, Hacaloglu J, Kayran C, Sakellariou G, Hadjichristidis N (2009) Thermal decomposition of polystyrene-b-poly(2-vinylpyridine) coordinated to co nanoparticles. Polym Degrad Stab 94:2023

    Article  CAS  Google Scholar 

  25. Sundarrajan S, Srinivasan KSV (2006) Influence of structural factors on degradation product formation: primary pyrolysis products of poly(acyl sulfides) investigated by direct pyrolysis mass spectrometry. Polym Degrad Stab 91:975

    Article  CAS  Google Scholar 

  26. Samperi F, Puglisi C, Ferreri T, Messina R, Cicala G, Recca A, Restuccia CL, Scamporrino A (2007) Thermal decomposition products of copoly(arylene ether sulfone)s characterized by direct pyrolysis mass spectrometry. Polym Degrad Stab 92:1304

    Article  CAS  Google Scholar 

  27. Ramakrishnan L, Sivaprakasam K (2009) Synthesis, characterization, thermal degradation, and comparative chain dynamics studies of weak-link polysulfide polymers. J Polym Res 16:623

    Article  CAS  Google Scholar 

  28. Whitson SE, Wesdemiotis C, Lattimer RP (2010) Characterization of polyurethane formulations by direct probe atmospheric pressure chemical ionization mass spectrometry. Rub Chem Tech 83:35

    Article  CAS  Google Scholar 

  29. Patil AO, Heeger AJ, Wudl F (1988) Optical properties of conducting polymers. Chem Rev 88:183

    Article  CAS  Google Scholar 

  30. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Adv Mater 14:382

    Article  CAS  Google Scholar 

  31. Jin S, Liu X, Zhang W, Lu Y, Xue G (2000) Electrochemical copolymerization of pyrrole and styrene. Macromolecules 33:4805

    Article  CAS  Google Scholar 

  32. Gozet T, Onal AM, Hacaloglu J (2007) Investigation of the effect of dopant on characteristics of poly(3-methyl thiophene) via pyrolysis mass spectrometry. J Macromol Sci Pure Appl Chem 44:259

    Article  CAS  Google Scholar 

  33. Hacaloglu J, Argin E, Kucukyavuz Z (2008) Characterization of polyaniline via pyrolysis mass spectrometry. J Appl Polym Sci 108:400

    Article  CAS  Google Scholar 

  34. Papila O, Toppare L, Hacaloglu J (2006) Investigation of copolymers of thiophene-functionalized polystyrene with pyrrole by pyrolysis mass spectrometry. J Macromol Sci Pure Appl Chem 43:655

    Article  CAS  Google Scholar 

  35. Levent A, Hacaloglu J, Toppare L (2008) Characterization of conducting copolymer of pyrrole via pyrolysis mass spectrometry. J Macromol Sci Pure Appl Chem 45:201

    Article  CAS  Google Scholar 

  36. Aslan E, Hacaloglu J, Toppare L (2007) A pyrolysis mass spectrometry study of polythiophene copolymers. Polym Degrad Stab 92:822

    Article  CAS  Google Scholar 

  37. Aslan E, Hacaloglu J, Toppare L (2008) Thermal analysis of a new thiophene derivative and its copolymer. J Therm Anal Calorim 92:839

    Article  CAS  Google Scholar 

  38. Hacaloglu J, Tezal F, Kücükyavuz Z (2009) The characterization of polyaniline and polypyrrole composites bypyrolysis mass spectrometry. J Appl Polym Sci 133:3130

    Article  Google Scholar 

  39. Allen DJ, Ishida H (2006) Physical and mechanical properties of flexible polybenzoxazine resins: effect of aliphatic diamine chain length. J Appl Polym Sci 101(5):2798

    Article  CAS  Google Scholar 

  40. TakeichiT KT, Agag T (2008) High performance polybenzoxazines as a novel type of phenolic resin. Polym J 40:1121

    Article  Google Scholar 

  41. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines – new high performance thermosetting resins: synthesis and properties. Prog Polym Sci 32:1344

    Article  CAS  Google Scholar 

  42. Agag T (2006) Preparation and properties of some thermosets derived from allyl-functional naphthoxazines. J Appl Polym Sci 100:3769

    Article  CAS  Google Scholar 

  43. Uyar T, Koyuncu Z, Ishida H, Hacaloglu J (2008) Polymerisation and degradation of an aromatic amine-based naphthoxazine. Polym Degrad Stab 93:2096

    Article  CAS  Google Scholar 

  44. Fam SB, Uyar T, Ishida H, Hacaloglu J (2010) The use of pyrolysis mass spectrometry to investigate polymerization and degradation processes of methyl amine-based benzoxazine. Polym Test 29:520

    Article  Google Scholar 

  45. Fam SB, Kiskan B, Aydogan B, Hacaloglu J, Yagcı Y (2011) Thermal degradation of polysiloxane and polyetherester containing benzoxazine moieties in the main chain. J Anal Appl Pyrol 90:155

    Article  Google Scholar 

  46. Trimpin S, Wijerathne K, Mc Ewen CN (2009) Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry. Anal Chim Acta 654:20

    Article  CAS  Google Scholar 

  47. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  48. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151

    Article  CAS  Google Scholar 

  49. Ren GL, Xu XH, Liu Q, Cheng J, Yuan XY, Wu LL, Wan YZ (2006) Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. React Funct Polym 66:1559

    Article  CAS  Google Scholar 

  50. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89

    Article  CAS  Google Scholar 

  51. Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035

    Article  CAS  Google Scholar 

  52. Uyar T, Hacaloglu J, Besenbacher F (2009) Electrospun polystyrene fibers containing high temperature stable volatile fragrance/flavor facilitated by cyclodextrin inclusion complexes. React Funct Polym 69:145

    Article  CAS  Google Scholar 

  53. Uyar T, Havelund R, Hacaloglu J, Zhou X, Besenbacher F, Kingshott P (2009) The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning. Nanotechnology 20:125605

    Article  Google Scholar 

  54. Uyar T, Nur Y, Hacaloglu J, Besenbacher F (2009) Electrospinning of functional poly(methyl methacrylate) nanofibers containing cyclodextrin-menthol inclusion complexes. Nanotechnology 20:125703

    Article  Google Scholar 

  55. Uyar T, Hacaloglu J, Besenbacher F (2011) Electrospun polyethylene oxide (PEO) nanofibers containing cyclodextrin inclusion complex. J Nanosci Nanotechnol 11:3949–3958

    Google Scholar 

  56. Uyar T, Havelund R, Nur Y, Hacaloglu J, Besenbacher F, Kingshott P (2009) Molecular filters based on cyclodextrin functionalized electrospun fibers. J Membr Sci 333:129

    Article  Google Scholar 

  57. Uyar T, Havelund R, Hacaloglu J, Besenbacher F, Kingshott P (2010) Functional electrospun polystyrene nanofibers incorporating alpha-, beta-, and gamma-cyclodextrins: comparison of molecular filter performance. ACS Nano 4:5121

    Article  CAS  Google Scholar 

  58. Uyar T, Havelund R, Nur Y, Balan A, Hacaloglu J, Toppare L, Besenbacher F, Kingshott P (2010) Cyclodextrin functionalized poly(methyl methacrylate) (PMMA) electrospun nanofibers for organic vapors waste treatment. J Membr Sci 365:409

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jale Hacaloglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hacaloglu, J. (2011). Direct Insertion Probe Mass Spectrometry of Polymers. In: Hakkarainen, M. (eds) Mass Spectrometry of Polymers – New Techniques. Advances in Polymer Science, vol 248. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2011_133

Download citation

Publish with us

Policies and ethics