Advertisement

LbL Films as Reservoirs for Bioactive Molecules

  • D. VolodkinEmail author
  • A. Skirtach
  • H. Möhwald
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 240)

Abstract

This review presents recent progress in utilizing polymeric films made by the layer-by-layer (LbL) technique (so-called multilayered films) as reservoirs for hosting and releasing bioactive molecules. This relatively new technique is distinguished by its high modularity and structural control at the nanometer level, giving polymeric surface films with tuneable physicochemical properties. A significant increase in research activities regarding the bioapplications of the multilayered films has taken place over the last decade. In this review, we address the bioapplications of LbL films and will focus on the loading and release of the film-embedded bioactive compounds and their bioactivity. Planar and free-standing 3D multilayered polyelectrolyte films (microcapsules) are considered. Special attention is paid to light-stimulated release, interaction of cells with the LbL films, and intracellular light-triggered delivery.

Keywords

Bioactive Layer-by-layer Multilayered films Polyelectrolyte self-assembly Remote release 

References

  1. 1.
    Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237Google Scholar
  2. 2.
    Decher G, Hong J-D (1991) Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles. Makromol Chem 46:321Google Scholar
  3. 3.
    Cho J, Caruso F (2003) Polymeric multilayer films comprising deconstructible hydrogen-bonded stacks confined between electrostatically assembled layers. Macromolecules 36:2845–2851Google Scholar
  4. 4.
    Sukhishvili SA, Granick S (2000) Layered, erasable, ultrathin polymer films. J Am Chem Soc 122:9550–9551Google Scholar
  5. 5.
    Sukhishvili SA, Granick S (2002) Layered, erasable polymer multilayers formed by hydrogen-bonded sequential self-assembly. Macromolecules 35:301–310Google Scholar
  6. 6.
    Inoue H, Sato K, Anzai J (2005) Disintegration of layer-by-layer assemblies composed of 2-iminobiotin-labeled poly(ethyleneimine) and avidin. Biomacromolecules 6:27–29Google Scholar
  7. 7.
    Ling XY, Malaquin L, Reinhoudt DN et al (2007) An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions. Langmuir 23:9990–9999Google Scholar
  8. 8.
    Suzuki I, Egawa Y, Mizukawa Y et al (2002) Construction of positively-charged layered assemblies assisted by cyclodextrin complexation. Chem Commun:164–165Google Scholar
  9. 9.
    Ling XY, Phang IY, Reinhoudt DN et al (2008) Supramolecular layer-by-layer assembly of 3D multicomponent nanostructures via multivalent molecular recognition. Int J Mol Sci 9:486–497Google Scholar
  10. 10.
    Van der Heyden A, Wilczewski M, Labbe P et al (2006) Multilayer films based on host–guest interactions between biocompatible polymers. Chem Commun:3220–3222Google Scholar
  11. 11.
    Wang ZP, Feng ZQ, Gao CY (2008) Stepwise assembly of the same polyelectrolytes using host–guest interaction to obtain microcapsules with multiresponsive properties. Chem Mater 20:4194–4199Google Scholar
  12. 12.
    Stockton WB, Rubner MF (1997) Molecular-level processing of conjugated polymers. 4. Layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 30:2717–2725Google Scholar
  13. 13.
    Shiratori SS, Rubner MF (2000) pH-Dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33:4213–4219Google Scholar
  14. 14.
    Schlenoff JB, Ly H, Li M (1998) Charge and mass balance in polyelectrolyte multilayers. J Am Chem Soc 120:7626–7634Google Scholar
  15. 15.
    Schlenoff JB, Dubas ST (2001) Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules 34:592–598Google Scholar
  16. 16.
    Sui Z, Salloum D, Schlenoff JB (2003) Effect of molecular weight on the construction of polyelectrolyte multilayers: stripping versus sticking. Langmuir 19:2491–2495Google Scholar
  17. 17.
    Salomäki M, Vinokurov IA, Kankare J (2005) Effect of temperature on the buildup of polyelectrolyte multilayers. Langmuir 21:11232–11240Google Scholar
  18. 18.
    Laugel N, Betscha C, Winterhalter M et al (2006) Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy. J Phys Chem B 110:19443–19449Google Scholar
  19. 19.
    Schonhoff M (2003) Layered polyelectrolyte complexes: physics of formation and molecular properties. J Phys Condens Matter 15:1781–1808Google Scholar
  20. 20.
    Ariga K, Hill JP, Li Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340Google Scholar
  21. 21.
    Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16:1271–1293Google Scholar
  22. 22.
    Wang Y, Angelatos AS, Caruso F (2008) Template synthesis of nanostructured materials via layer-by-layer assembly. Chem Mater 20:848–858Google Scholar
  23. 23.
    Picart C, Mutterer J, Richert L et al (2002) Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci USA 99:12531–12535Google Scholar
  24. 24.
    Jourdainne L, Lecuyer S, Arntz Y et al (2008) Dynamics of poly(l-lysine) in hyaluronic acid/poly(l-lysine) multilayer films studied by fluorescence recovery after pattern photobleaching. Langmuir 24:7842–7847Google Scholar
  25. 25.
    Picart C, Lavalle P, Hubert P et al (2001) Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17:7414–7424Google Scholar
  26. 26.
    Boulmedais F, Ball V, Schwinte P et al (2003) Buildup of exponentially growing multilayer polypeptide films with internal secondary structure. Langmuir 19:440–445Google Scholar
  27. 27.
    Liu GM, Zhao JP, Sun QY et al (2008) Role of chain interpenetration in layer-by-layer deposition of polyelectrolytes. J Phys Chem B 112:3333–3338Google Scholar
  28. 28.
    Picart C (2008) Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem 17:685–697Google Scholar
  29. 29.
    Thomas B, Thomas C, Kefeng R et al (2009) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 21:1–27Google Scholar
  30. 30.
    Lvov Y, Ariga K, Ichinose I et al (1995) Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J Am Chem Soc 117:6117–6123Google Scholar
  31. 31.
    Anzai JI, Hoshi T, Nakamura N (2000) Construction of multilayer thin films containing avidin by a layer-by-layer deposition of avidin and poly(anion)s. Langmuir 16:6306–6311Google Scholar
  32. 32.
    Jessel N, Atalar F, Lavalle P et al (2003) Bioactive coating based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv Mater 15:692–695Google Scholar
  33. 33.
    Ladam G, Schaaf P, Cuisinier FJ et al (2001) Protein adsorption onto auto-assembled polyelectrolyte films. Langmuir 17:878–882Google Scholar
  34. 34.
    Boulmedais F, Ball V, Schwinte P et al (2003) Buildup of exponentially growing multilayer polypeptide films with internal secondary structure. Langmuir 19:440–445Google Scholar
  35. 35.
    Richert L, Lavalle P, Payan E et al (2004) Layer by layer buildup of polysaccharide films: physical chemistry and cellular adhesion aspects. Langmuir 20:448–458Google Scholar
  36. 36.
    Cassier T, Sinner A, Offenhauser A et al (1999) Homogeneity, electrical resistivity and lateral diffusion of lipid bilayers coupled to polyelectrolyte multilayers. Colloids Surf B 15:215–225Google Scholar
  37. 37.
    Moya S, Donath E, Sukhorukov GB et al (2000) Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules. Macromolecules 33:4538–4544Google Scholar
  38. 38.
    Lvov Y, Decher G, Sukhorukov GB (1993) Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(ally1amine). Macromolecules 26:5396–5399Google Scholar
  39. 39.
    Sukhorukov GB, Montrel MM, Petrov AI et al (1996) Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosens Bioelectron 11:913–922Google Scholar
  40. 40.
    Pei R, Cui X, Yang X et al (2001) Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption. Biomacromolecules 2:463–468Google Scholar
  41. 41.
    Zhang J, Chua LS, Lynn DM (2004) Multilayered thin films that sustain the release of functional DNA under physiological conditions. Langmuir 20:8015–8021Google Scholar
  42. 42.
    Jewell CM, Zhang J, Fredin NJ et al (2005) Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. J Control Release 106:214–223Google Scholar
  43. 43.
    Dimitrova M, Arntz Y, Lavalle P et al (2007) Adenoviral gene delivery from multilayered polyelectrolyte architectures. Adv Funct Mater 17:233–245Google Scholar
  44. 44.
    Ariga K, Hill JP, Li Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9:2319–2340Google Scholar
  45. 45.
    Ai H, Jones SA, Lvov YM (2003) Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys 39:23–43Google Scholar
  46. 46.
    Tang Z, Wang Y, Podsiadlo P et al (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18:3203–3224Google Scholar
  47. 47.
    Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: from multilayers to smart containers. Angew Chem Int Ed 43:3762–3783Google Scholar
  48. 48.
    Bertrand P, Jonas A, Laschewsky A et al (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348Google Scholar
  49. 49.
    Hammond PT (2000) Recent explorations in electrostatic multilayer thin film assembly. Curr Opin Colloid Interface Sci 4:430–442Google Scholar
  50. 50.
    Zhang L, Zhao WH, Rudra JS et al (2007) Context dependence of the assembly, structure, and stability of polypeptide multilayer nonofilms. ACS Nano 1:476–486Google Scholar
  51. 51.
    Haynie DT, Balkundi S, Palath N et al (2004) Polypeptide multilayer films: role of molecular structure and charge. Langmuir 20:4540–4547Google Scholar
  52. 52.
    Boulmedais F, Schwinte P, Gergely C et al (2002) Secondary structure of polypeptide multilayer films: an example of locally ordered polyelectrolyte multilayers. Langmuir 18: 4523–4525Google Scholar
  53. 53.
    Onda M, Ariga K, Kunitake T (1999) Activity and stability of glucose oxidase in molecular films assembled alternately with polyions. J Biosci Bioeng 87:69–75Google Scholar
  54. 54.
    Disawal S, Qiu J, Elmore BB et al (2003) Two-step sequential reaction catalyzed by layer-by-layer assembled urease and arginase multilayers. Colloids Surf B 32:145–156Google Scholar
  55. 55.
    Schwinte P, Voegel J-C, Picart C et al (2001) Stabilizing effects of various polyelectrolyte multilayer films on the structure of adsorbed/embedded fibrinogen molecules: an ATR-FTIR study. J Phys Chem B 15:11906–11916Google Scholar
  56. 56.
    Schneider A, Vodouhê C, Richert L et al (2007) Multifunctional polyelectrolyte multilayer films: combining mechanical resistance, biodegradability, and bioactivity. Biomacromolecules 8:139–145Google Scholar
  57. 57.
    Vodouhê C, Le Guen E, Mendez Garza J et al (2006) Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials 27:4149–4156Google Scholar
  58. 58.
    Wang XF, Ji J (2009) Postdiffusion of oligo-peptide within exponential growth multilayer films for localized peptide delivery. Langmuir 25:11664–11671Google Scholar
  59. 59.
    Barenholz Y (2001) Liposome application: problems and prospects. Curr Opin Colloid Interface Sci 6:66–77Google Scholar
  60. 60.
    Christensen SM, Stamou D (2007) Surface-based lipid vesicle reactor systems: fabrication and applications. Soft Matter 3:828–836Google Scholar
  61. 61.
    Patolsky F, Lichtenstein A, Willner I (2001) Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J Am Chem Soc 123:5194–5205Google Scholar
  62. 62.
    Vermette P, Meagher L, Gagnon E et al (2002) Immobilized liposome layers for drug delivery applications: inhibition of angiogenesis. J Control Release 80:179–195Google Scholar
  63. 63.
    Yoshina-Ishii C, Miller GP, Kraft ML et al (2005) General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc 127:1356–1357Google Scholar
  64. 64.
    Xu D, Cheng Q (2002) Surface-bound lipid vesicles encapsulating redox species for amperometric biosensing of pore-forming bacterial toxins. J Am Chem Soc 124:14314–14315Google Scholar
  65. 65.
    Chifen AN, Forch R, Knoll W et al (2007) Attachment and phospholipase A2-induced lysis of phospholipid bilayer vesicles to plasmapolymerized maleic anhydride/Si02 multilayers. Langmuir 23:6294–6298Google Scholar
  66. 66.
    Reviakine I, Brisson A (2000) Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806–1815Google Scholar
  67. 67.
    Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505Google Scholar
  68. 68.
    Seantier B, Breffa C, Félix O et al (2004) In situ investigations of the formation of mixed supported lipid bilayers close to the phase transition temperature. Nano Lett 4:5–10Google Scholar
  69. 69.
    Ruysschaert T, Germain M, Pereira da Silva Gomes JF et al (2004) Liposome-based nanocapsules. IEEE Trans Nanobiosci 3:49–55Google Scholar
  70. 70.
    Katagiri K, Hamasaki R, Ariga K et al (2002) Layer-by-layer self-assembling of liposomal nanohybrid “cerasome” on substrates. Langmuir 18:6709–6711Google Scholar
  71. 71.
    Katagiri K, Hamasaki R, Ariga K et al (2002) Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic–inorganic hybrid. J Am Chem Soc 124: 7892–7893Google Scholar
  72. 72.
    Kabanov VA, Yaroslavov AA (2002) What happens to negatively charged lipid vesicles upon interacting with polycation species? J Control Release 78:267–271Google Scholar
  73. 73.
    Ge L, Mohwald H, Li J (2003) Phospholipid liposomes stabilized by the coverage of polyelectrolyte. Colloids Surf A Physicochem Eng Aspects 221:49–53Google Scholar
  74. 74.
    Quemeneur F, Rammal A, Rinaudo M et al (2007) Large and giant vesicles “decorated” with chitosan: effects of pH, salt or glucose stress, and surface adhesion. Biomacromolecules 8:2512–2519Google Scholar
  75. 75.
    Ciobanu M, Heurtault B, Schultz P et al (2007) Layersome: development and optimization of stable liposomes as drug delivery system. Int J Pharm 344:154–157Google Scholar
  76. 76.
    Germain M, Grube S, Carriere V et al (2006) Composite nanocapsules: lipid vesicles covered with several layers of crosslinked polyelectrolytes. Adv Mater 18:2868–2871Google Scholar
  77. 77.
    Michel M, Izquierdo A, Decher G et al (2005) Layer-by-layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles obtained by spraying: integrity of the vesicles. Langmuir 21:7854–7859Google Scholar
  78. 78.
    Michel M, Vautier D, Voegel J-C et al (2004) Layer-by-layer self-assembled polyelectrolyte multilayers with embedded phospholipid vesicles. Langmuir 20:4835–4839Google Scholar
  79. 79.
    Volodkin D, Ball V, Schaaf P et al (2007) Complexation of phosphocholine liposomes with polylysine. Stabilization by surface coverage versus aggregation. Biochim Biophys Acta 1768:280–290Google Scholar
  80. 80.
    Volodkin D, Mohwald H, Voegel J-C et al (2007) Stabilization of negatively charged liposomes by polylysine surface coating. Drug release study. J Control Release 117:111–120Google Scholar
  81. 81.
    Volodkin DV, Ball V, Voegel J-C et al (2007) Control of the interaction between membranes and vesicles: adhesion, fusion and release of dyes. Colloids Surf A 303:89–96Google Scholar
  82. 82.
    Volodkin DV, Arntz Y, Schaaf P et al (2008) Composite multilayered biocompatible polyelectrolyte films with intact liposomes: stability and triggered dye release. Soft Matter 4:122–130Google Scholar
  83. 83.
    Volodkin DV, Michel M, Schaaf P et al (2008) Liposome embedding into polyelectrolyte multilayers: a new way to create drug reservoirs at solid–liquid interfaces. In: Liu AL (ed) Advances in planar lipid bilayers and liposomes. Elsevier, AmsterdamGoogle Scholar
  84. 84.
    Volodkin D, Schaaf P, Mohwald H et al (2009) Effective embedding of liposomes into polyelectrolyte multilayered films. The relative importance of lipid–polyelectrolyte and interpolyelectrolyte interactions. Soft Matter 5:1394–1405Google Scholar
  85. 85.
    Picart C, Lavalle P, Hubert P et al (2001) Buildup mechanism for poly(l-lysine)/hyaluronic acid films onto a solid surface. Langmuir 17:7414–7424Google Scholar
  86. 86.
    Burke SE, Barrett CJ (2004) pH-Dependent loading and release behavior of small hydrophilic molecules in weak polyelectrolyte multilayer films. Macromolecules 37:5375–5384Google Scholar
  87. 87.
    Dubas ST, Farhat TR, Schlenoff JB (2001) Multiple membranes from “true” polyelectrolyte multilayers. J Am Chem Soc 123:5368–5369Google Scholar
  88. 88.
    Müller M, Kessler B, Adler H-J et al (2004) Reversible switching of protein uptake and release at polyelectrolyte multilayers detected by ATR-FTIR spectroscopy. Macromol Symp 210:157–164Google Scholar
  89. 89.
    Wood KC, Boedicker JQ, Lynn DM et al (2005) Tunable drug release from hydrolytically degradable layer-by-layer thin films. Langmuir 21:1603–1609Google Scholar
  90. 90.
    Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668Google Scholar
  91. 91.
    Wang F, Li D, Li G et al (2008) Electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. Biomacromolecules 9:2645–2652Google Scholar
  92. 92.
    Boulmedais F, Tang CS, Keller B et al (2006) Controlled electrodissolution of polyelectrolyte multilayers: a platform technology towards the surface-initiated delivery of drugs. Adv Funct Mater 16:63–70Google Scholar
  93. 93.
    Ren KF, Ji J, Shen JC (2006) Construction and enzymatic degradation of multilayered poly-l-lysine/DNA films. Biomaterials 27:1152–1159Google Scholar
  94. 94.
    Wang CY, Ye SQ, Dai L et al (2007) Enhanced resistance of polyelectrolyte multilayer microcapsules to pepsin erosion and release properties of encapsulated indomethacin. Biomacromolecules 8:1739–1744Google Scholar
  95. 95.
    Serizawa T, Yamaguchi M, Akashi M (2003) Time-controlled desorption of ultrathin polymer films triggered by enzymatic degradation. Angew Chem Int Ed 42:1115–1118Google Scholar
  96. 96.
    Jensen AW, Desai NK, Maru BS et al (2004) Photohydrolysis of substituted benzyl esters in multilayered polyelectrolyte films. Macromolecules 37:4196–4200Google Scholar
  97. 97.
    Serpe MJ, Yarmey KA, Nolan CM et al (2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6:408–413Google Scholar
  98. 98.
    Volodkin DV, Madaboosi N, Blacklock J et al (2009) Surface-supported multilayers decorated with bio-active material aimed at light-triggered drug delivery. Langmuir 25:14037–14043Google Scholar
  99. 99.
    Volodkin DV, Mohwald H (2009) Polyelectrolyte multilayers for drug delivery. In: Somasundaran P (ed) Encyclopedia of surface and colloid science. Taylor Francis, New YorkGoogle Scholar
  100. 100.
    Volodkin DV, Delcea M, Mohwald H et al (2009) Remote near-IR light activation of a hyaluronic acid/poly(l-lysine) multilayered film and film-entrapped microcapsules. ACS Appl Mater Interfaces 1:1705–1710Google Scholar
  101. 101.
    Thies C (1999) Microspheres, microcapsules and liposomes. Citus Books, LondonGoogle Scholar
  102. 102.
    Donath E, Sukhorukov GB, Caruso F et al (1998) Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed 37:2201–2205Google Scholar
  103. 103.
    Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13:11–22Google Scholar
  104. 104.
    Sukhorukov GB (2001) In: Mobius D, Miller R (ed) Studies in interface science. Elsevier, AmsterdamGoogle Scholar
  105. 105.
    Antipov AA, Sukhorukov GB, Donath E et al (2001) J Phys Chem B 105:2281–2284Google Scholar
  106. 106.
    Trubetskoy VS, Loomis A, Hagstrom JE et al (1999) Layer-by-layer deposition of oppositely charged polyelectrolytes on the surface of condensed DNA particles Nucleic Acids Res 27:3090–3095Google Scholar
  107. 107.
    Balabushevitch NG, Sukhorukov GB, Moroz NA et al (2001) Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates. Biotechnol Bioeng 76:207–213Google Scholar
  108. 108.
    Larionova NI, Volodkin DV, Balabushevitch NG et al (2001) Microcapsules responsive to physiological pH fabricated by layer-by-layer adsorption of polyelectrolytes on protein aggregates. Sci Pharm 69:175–176Google Scholar
  109. 109.
    Volodkin DV, Balabushevitch NG, Sukhorukov GB et al (2003) Model system for controlled protein release: pH-sensitive polyelectrolyte microparticles. STP Pharma Sci 13:163–170Google Scholar
  110. 110.
    Volodkin DV, Balabushevitch NG, Sukhorukov GB et al (2003) Inclusion of proteins in polyelectrolyte microparticles by alternative polyelectrolyte adsorption on protein aggregates. Biochemistry (Moscow) 68:283–289Google Scholar
  111. 111.
    Volodkin DV, Larionova NI, Sukhorukov GB (2004) Protein encapsulation via porous CaCO3microparticles templating. Biomacromolecules 5:1962–1972Google Scholar
  112. 112.
    Volodkin DV, Petrov AI, Prevot M et al (2004) Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir 20:3398–3406Google Scholar
  113. 113.
    Sukhorukov GB, Volodkin DV, Günther AM et al (2004) Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J Mater Chem 14:2073–2081Google Scholar
  114. 114.
    Gao CY, Moya S, Lichtenfeld H et al (2001) The decomposition process of melamine formaldehyde cores: the key step in the fabrication of ultrathin polyelectrolyte multilayer capsules. Macromol Mater Eng 286:355–361Google Scholar
  115. 115.
    Shenoy DB, Antipov AA, Sukhorukov GB et al (2003) Layer-by-layer engineering of biocompatible, decomposable core–shell. Biomacromolecules 4:265–272Google Scholar
  116. 116.
    Petrov AI, Volodkin DV, Sukhorukov GB (2005) Protein–calcium carbonate co-precipitation. A tool for protein encapsulation. Biotechnol Prog 21:918–925Google Scholar
  117. 117.
    Stein EW, Volodkin DV, McShane MJ et al (2006) Real-time assessment of spatial and temporal coupled catalysis within polyelectrolyte microcapsules containing co-immobilized glucose oxidase and peroxidase. Biomacromolecules 7:710–719Google Scholar
  118. 118.
    Lvov Y, Antipov AA, Mamedov A et al (2001) Urease encapsulation in nanoorganized microshells. Nano Lett 1:125–128Google Scholar
  119. 119.
    Antipov AA, Sukhorukov GB, Leporatti S et al (2002) Polyelectrolyte multilayer capsule permeability control. Colloids Surf A 198:535–541Google Scholar
  120. 120.
    Lu Z, Prouty MD, Guo Z et al (2005) Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@Au nanoparticles. Langmuir 21:2042–2050Google Scholar
  121. 121.
    Caruso F, Trau D, Mohwald H et al (2000) Enzyme encapsulation in layer-by-layer engineered polymer multilayer capsules. Langmuir 16:1485–1488Google Scholar
  122. 122.
    Antipov AA, Sukhorukov GB, Donath E et al (2001) Sustained release properties of polyelectrolyte multilayer capsules. J Phys Chem B 105:2281–2284Google Scholar
  123. 123.
    Ai H, Jones SA, Villiers MM et al (2003) Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release 86:59–68Google Scholar
  124. 124.
    Caruso F, Yang W, Trau D et al (2000) Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly. Langmuir 16: 8932–8936Google Scholar
  125. 125.
    Qiu X, Leporatti S, Donath E et al (2001) Studies on the drug release properties of polysaccharide multilayers encapsulated ibuprofen microparticles. Langmuir 17:5375–5380Google Scholar
  126. 126.
    Shi X, Caruso F (2001) Release behavior of thin-walled microcapsules composed of polyelectrolyte multilayers. Langmuir 17:2036–2042Google Scholar
  127. 127.
    Schuler C, Caruso F (2001) Decomposable hollow biopolymer-based capsules. Biomacromolecules 2:921–926Google Scholar
  128. 128.
    Hu S-H, Tsai C-H, Liao C-F et al (2008) Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir 24:11811–11818Google Scholar
  129. 129.
    Sukhorukov GB, Mohwald H (2007) Multifunctional cargo systems for biotechnology. Trends Biotechnol 25:93–98Google Scholar
  130. 130.
    Kohler K, Biesheuvel PM, Weinkamer R et al (2006) Salt-induced swelling-to-shrinking transition in polyelectrolyte multilayer capsules. Phys Rev Lett 97:188301Google Scholar
  131. 131.
    Kohler K, Shchukin DG, Mohwald H et al (2005) Thermal behavior of polyelectrolyte multilayer microcapsules. 1. The effect of odd and even layer number. J Phys Chem B 109:18250–18259Google Scholar
  132. 132.
    Skirtach AG, Javier AM, Kreft O et al (2006) Laser-induced release of encapsulated materials inside living cells. Angew Chem Int Ed 45:4612–4617Google Scholar
  133. 133.
    Volodkin DV, Skirtach AG, Mohwald H (2009) Near-IR remote release from assemblies of liposomes and nanoparticles. Angew Chem Int Ed 48:1807–1809Google Scholar
  134. 134.
    Faure C, Derre A, Neri W (2003) Spontaneous formation of silver nanoparticles in multilamellar vesicles. J Phys Chem B 107:4738–4746Google Scholar
  135. 135.
    Mueller A, Bondurant B, O’Brien DF (2000) Visible-light-stimulated destabilization of PEG-liposomes. Macromolecules 33:4799–4804Google Scholar
  136. 136.
    Regev O, Backov R, Faure C (2004) Gold nanoparticles spontaneously generated in onion-type multilamellar vesicles. Bilayers-particle coupling imaged by cryo-TEM. Chem Mater 16:5280–5285Google Scholar
  137. 137.
    Shum P, Kim J-M, Thompson DH (2001) Phototriggering of liposomal drug delivery systems. Adv Drug Deliv Rev 53:273–284Google Scholar
  138. 138.
    Skirtach AG, Antipov AA, Shchukin DG et al (2004) Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir 20:6988–6992Google Scholar
  139. 139.
    Gorin DA, Portnov SA, Inozemtseva OA et al (2008) Magnetic/gold nanoparticle functionalized biocompatible microcapsules with sensitivity to laser irradiation. Phys Chem Chem Phys 10:6899–6905Google Scholar
  140. 140.
    Skirtach AG, Kreft O (2008) In: de Villiers MM, Aramwit P, Kwon GS (eds) Nanotechnology in drug delivery. Springer, Berlin. doi:10.1007/978-0-387-77667-5Google Scholar
  141. 141.
    Skirtach AG, Karageorgiev P, Bedard MF et al (2008) Reversibly permeable nanomembranes of polymeric microcapsules. J Am Chem Soc 130:11572–11573Google Scholar
  142. 142.
    Skirtach AG, Dejugnat C, Braun D et al (2007) Nanoparticles distribution control by polymers: aggregates versus nonaggregates. J Phys Chem C 111:555–564Google Scholar
  143. 143.
    Skirtach AG, Antipov AA, Shchukin DG et al (2004) Remote activation of capsules containing Ag nanoparticles and IR dye by laser light. Langmuir 20:6988–6992Google Scholar
  144. 144.
    Radt B, Smith TA, Caruso F (2004) Optically addressable nanostructured capsules. Adv Mater 16:2184–2189Google Scholar
  145. 145.
    Muñoz JA, del Pino P, Bedard MF et al (2008) Photoactivated release of cargo from the cavity of polyelectrolyte capsules to the cytosol of cells. Langmuir 24:12517–12520Google Scholar
  146. 146.
    Wu G, Mikhailovsky A, Khant HA et al (2008) Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J Am Chem Soc 130:8175–8177Google Scholar
  147. 147.
    Timothy ST, Sarah JL, Marek R (2009) Light-induced content release from plasmon-resonant liposomes. Adv Mater 21:2334–2338Google Scholar
  148. 148.
    Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55Google Scholar
  149. 149.
    Salloum DS, Schlenoff JB (2004) Protein adsorption modalities on polyelectrolyte multilayers. Biomacromolecules 5:1089–1096Google Scholar
  150. 150.
    Jessel N, Oulad-Abdelghani M, Meyer F et al (2006) Multiple and time-scheduled in situ DNA delivery mediated by β-cyclodextrin embedded in a polyelectrolyte multilayer. Proc Natl Acad Sci USA 103:8618–8621Google Scholar
  151. 151.
    Benkirane-Jessel N, Lavalle P, Meyer F et al (2004) Control of monocyte morphology on and response to model surfaces for implants equipped with anti-inflammatory agent. Adv Mater 16:1507–1511Google Scholar
  152. 152.
    Benkirane-Jessel N, Lavalle P, Hubsch E et al (2005) Short-time tuning of the biological activity of functionalized polyelectrolyte multilayers. Adv Funct Mater 15:648–654Google Scholar
  153. 153.
    Ren K, Crouzier T, Roy C et al (2008) Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cell differentiation. Adv Funct Mater 18:1–12Google Scholar
  154. 154.
    Elbert DL, Herbert CB, Hubbell JA (1999) Thin polymer layers formed by polyelectrolyte multilayer techniques on biological surfaces. Langmuir 15:5355–5362Google Scholar
  155. 155.
    Richter L, Lavalle P, Vautier D et al (2002) Cell interactions with polyelectrolyte multilayer films. Biomacromolecules 3:1170–1178Google Scholar
  156. 156.
    Schneider A, Richert L, Francius G et al (2007) Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films. Biomed Mater 2:S45–S51Google Scholar
  157. 157.
    Chluba J, Voegel J-C, Decher G et al (2001) Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2:800–805Google Scholar
  158. 158.
    Picart C (2008) Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem 17:685–697Google Scholar
  159. 159.
    Thompson MT, Berg MC, Tobias IS et al (2005) Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion. Biomaterials 26:6836–6845Google Scholar
  160. 160.
    Tryoen-Toth P, Vautier D, Haikel Y et al (2002) Viability, adhesion, and bone phenotype of osteoblast-like cells on polyelectrolyte multilayer films. J Biomed Mater Res 60:657–667Google Scholar
  161. 161.
    Picart C, Schneider A, Etienne O et al (2005) Controlled degradability of polysaccharide multilayer films in vitro and in vivo. Adv Funct Mater 15:1771–1780Google Scholar
  162. 162.
    Podsiadlo P, Tang Z, Shim BS et al (2007) Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett 7:1224–1231Google Scholar
  163. 163.
    Kocgozlu L, Lavalle P, Koenig G et al (2010) Selective and uncoupled role of substrate elasticity in the regulation of replication and transcription in epithelial cells. J Cell Sci 123:29–39Google Scholar
  164. 164.
    Discher DE, Janmey P, Wang Y (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143Google Scholar
  165. 165.
    Thierry B, Winnik FM, Merhi Y et al (2003) Bioactive coatings of endovascular stents based on polyelectrolyte multilayers. Biomacromolecules 4:1564–1571Google Scholar
  166. 166.
    Brynda E, Houska M (2000) Ordered multilayer assemblies: albumin/heparin for biocompatible coating and monoclonal antibodies for optical immunosensors. In: Lvov Y, Möhwald H (ed) Protein architecture: interfacial molecular assembly and immobilization biotechnology. Dekker, New YorkGoogle Scholar
  167. 167.
    Malcher M, Volodkin D, Heurtault B et al (2008) Embedded silver ions-containing liposomes in polyelectrolyte multilayers: cargos films for antibacterial agents. Langmuir 24: 10209–10215Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Max-Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations