Processes of Ordered Structure Formation in Polypeptide Thin Film Solutions

  • Ioan Botiz
  • Helmut Schlaad
  • Günter ReiterEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 242)


An experimental study is presented on the hierarchical assembly of α-helical block copolymers polystyrene–poly(γ-benzyl-L-glutamate) into anisotropic ordered structures. We transformed thin solid films into solutions through exposure to solvent vapor and studied the nucleation and growth of ordered three- dimensional structures in such solutions, with emphasis on the dependence of these processes on supersaturation with respect to the solubility limit. Interestingly, polymer solubility could be significantly influenced via variation of humidity in the surrounding gas phase. It is concluded that the interfacial tension between the ordered structures and the solution increased with humidity. The same effect was observed for other protic non-solvents in the surrounding gas phase and is attributed to a complexation of poly(γ-benzyl-L-glutamate) by protic non-solvent molecules (via hydrogen-bonding interactions). This change of polymer solubility was demonstrated to be reversible by addition or removal of small amounts of protic non-solvent in the surrounding gas phase. At a constant polymer concentration, ordered ellipsoidal structures could be dissolved by removing water or methanol present in the solution. Such structures formed once again when water or methanol was reintroduced via the vapor phase.


Humidity Hydrogen bonding Macromolecular self-assembly Nucleation Solvent effects Supersaturation 



We are indebted and grateful to Hildegard Kukula for polymer synthesis. We acknowledge financial support provided through the European Community’s “Marie-Curie Actions” under contract MRTNCT- 2003-505027 [POLYAMPHI]. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    Stryer L (1988) Biochemistry. W H Freeman, New YorkGoogle Scholar
  2. 2.
    Börner HG, Schlaad H (2007) Bioinspired functional block copolymers. Soft Matter 3:394–708CrossRefGoogle Scholar
  3. 3.
    Lee M, Cho B-K, Zin W-C (2001) Supramolecular structures from rod-coil block copolymers. Chem Rev 101:3869–3892CrossRefGoogle Scholar
  4. 4.
    Klok H-A, Lecommandoux S (2006) Solid-state structure, organization and properties of peptide–synthetic hybrid block copolymers. Adv Polym Sci 202:75–111CrossRefGoogle Scholar
  5. 5.
    Muthukumar M, Ober CK, Thomas EL (1997) Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277:1225–1232CrossRefGoogle Scholar
  6. 6.
    Chen JT, Thomas EL, Ober CK, Hwang SS (1995) Zigzag morphology of a poly(styrene-b-hexyl isocyanate) rod-coil block copolymer. Macromolecules 28:1688–1697CrossRefGoogle Scholar
  7. 7.
    Chen JT, Thomas EL, Ober CK, Mao G-P (1996) Self-assembled smectic phases in rod-coil block copolymers. Science 273:343–346CrossRefGoogle Scholar
  8. 8.
    Schlaad H, Krasia T, Antonietti M (2004) Superhelices of poly[2-(acetoacetoxy)ethyl methacrylate]. J Am Chem Soc 126:11307–11310CrossRefGoogle Scholar
  9. 9.
    Vonau F, Suhr D, Aubel D, Bouteiller L, Reiter G, Simon L (2005) Evolution of multilevel order in supramolecular assemblies. Phys Rev Lett 94:066103CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Hall CK, Karplus M (1996) First-order disorder-to-order transition in an isolated homopolymer model. Phys Rev Lett 77:2822–2825CrossRefGoogle Scholar
  11. 11.
    Ludwigs S, Krausch G, Reiter G, Losik M, Antonietti M, Schlaad H (2005) Structure formation of polystyrene-block-poly(γ-benzyl-L-glutamate) in thin films. Macromolecules 38:7532–7535CrossRefGoogle Scholar
  12. 12.
    Minich EA, Nowak AP, Deming TJ, Pochan DJ (2004) Rod–rod and rod–coil self-assembly and phase behavior of polypeptide diblock copolymers. Polymer 45:1951–1957CrossRefGoogle Scholar
  13. 13.
    Schlaad H, Antonietti M (2003) Block copolymers with amino acid sequences: molecular chimeras of polypeptides and synthetic polymers. Eur Phys J E 10:17–23CrossRefGoogle Scholar
  14. 14.
    Botiz I, Grozev N, Schlaad H, Reiter G (2008) The influence of protic non-solvents present in the environment on structure formation of poly(γ-benzyl-L-glutamate) in organic solvents. Soft Matter 4:993–1002CrossRefGoogle Scholar
  15. 15.
    Losik M, Kubowicz S, Smarsly B, Schlaad H (2004) Solid-state structure of polypeptide-based rod-coil block copolymers: Folding of helices. Eur Phys J E 15:407–411CrossRefGoogle Scholar
  16. 16.
    Schlaad H, Smarsly B, Below I (2006) Solid-state structure of polystyrene-block-poly (γ-benzyl-L-glutamate): helix folding vs stretching. Macromolecules 39:4631–4632CrossRefGoogle Scholar
  17. 17.
    Hol WGJ, van Duijnen PT, Berendsen HJC (1979) The α-helix dipole and the properties of proteins. Nature 273:443–446CrossRefGoogle Scholar
  18. 18.
    Kukula H, Schlaad H, Tauer K (2002) Linear and star-shaped polystyrene-block-poly(sodium glutamate)s as emulsifiers in the heterophase polymerization of styrene. Macromolecules 35:2538–2544CrossRefGoogle Scholar
  19. 19.
    Sakamoto R (1984) Phase separation of poly(γ-benzyl-L-glutamate) to liquid crystal and isotropic solution in various helicogenic solvents. Coll Polym Sci 262:788–792CrossRefGoogle Scholar
  20. 20.
    Wee EL, Miller WG (1971) Liquid crystal-isotropic phase equilibriums in the system poly (γ-benzyl α-L-glutamate)-methylformamide. J Phys Chem 75:1446–1452CrossRefGoogle Scholar
  21. 21.
    Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc Lond A234:60–73Google Scholar
  22. 22.
    Robinson C (1956) Liquid-crystalline structures in solutions of a polypeptide. Trans Faraday Soc 52:571–592CrossRefGoogle Scholar
  23. 23.
    Watanabe J, Goto M, Nagase T (1987) Thermotropic polypeptides. 3. Investigation of cholesteric mesophase properties of poly(γ-benzyl-L-glutamate-co-γ-dodecyl-L-glutamates) by circular dichroic measurements. Macromolecules 20:298–304CrossRefGoogle Scholar
  24. 24.
    Russo PS, Miller WG (1983) Coexistence of liquid crystalline phases in poly(γ-benzyl α,L-glutamate)-dimethylformamide. Macromolecules 16:1690–1693CrossRefGoogle Scholar
  25. 25.
    He S-J, Lee C, Gido SP, Yu SM, Tirrell DA (1998) A twist grain boundary-like twisted smectic phase in monodisperse poly(γ-benzyl α,L-glutamate) produced by recombinant DNA techniques. Macromolecules 31:9387–9389CrossRefGoogle Scholar
  26. 26.
    Watanabe J, Imai K, Uematsu I (1978) Light scattering studies of poly(γ-benzyl L-glutamate) solutions and films. Polym Bull 1:67–72Google Scholar
  27. 27.
    Toriumi H, Minakuchi S, Uematsu Y, Uematsu I (1980) Helical twisting power of poly(γ-benzyl-L-glutamate) liquid crystals in mixed solvents. Polym J 12:431–437CrossRefGoogle Scholar
  28. 28.
    Uematsu I (1984) Polypeptide liquid crystals. Adv Polym Sci 59:37–73Google Scholar
  29. 29.
    Robinson C, Ward JC (1957) Liquid-crystalline structures in polypeptides. Nature 180: 1183–1184CrossRefGoogle Scholar
  30. 30.
    Robinson C, Ward JC, Beevers RB (1958) Liquid crystalline structure in polypeptide solutions. Part 2. Discuss Faraday Soc 25:29–42CrossRefGoogle Scholar
  31. 31.
    Hill A, Donald AM (1989) Phase behaviour of poly-(γ-benzyl-L-glutamate) in benzyl alcohol. Liq Cryst 6:93–110CrossRefGoogle Scholar
  32. 32.
    Block H, Shaw CP (1992) Second-harmonic generation in poly(α-amino acid) and poly(isocyanate) films. Polymer 33:2459–2462CrossRefGoogle Scholar
  33. 33.
    Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys Condens Matter 4:7627–7650CrossRefGoogle Scholar
  34. 34.
    Sear RP (2007) Nucleation: theory and applications to protein solutions and colloidal suspensions. J Phys Condens Matter 19:033101CrossRefGoogle Scholar
  35. 35.
    Mohanty R, Bhandarkar S, Estrin J (1990) Kinetics of nucleation from aqueous solution. AIChE J 36:1536–1544CrossRefGoogle Scholar
  36. 36.
    Nielsen AE (1969) Nucleation and growth of crystals at high supersaturation. Kristall und Technik 4:17–38CrossRefGoogle Scholar
  37. 37.
    Russo PS, Miller WG (1984) On the nature of the poly(γ-benzyl glutamate)-dimethylformamide “complex phase”. Macromolecules 17:1324–1331CrossRefGoogle Scholar
  38. 38.
    Brandrup J, Immergut EH (1989) Polymer handbook, 3rd edn. Wiley, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  2. 2.Colloid ChemistryMax Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Physikalisches InstitutUniversität FreiburgFreiburgGermany

Personalised recommendations