Skip to main content

Effects of Electric Fields on Block Copolymer Nanostructures

  • Chapter
  • First Online:
Complex Macromolecular Systems I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 227))

Abstract

In this chapter we overview electric-field-induced effects on block copolymer microdomains. First, we will consider the thin film behavior and elucidate the parameters governing electric-field-induced alignment. We describe the structural evolution of the alignment in an electric field via quasi in situ scanning force microscopy (SFM) using a newly developed SFM setup that allows solvent vapor treatment in the presence of high electric fields. Second, we will turn to bulk structures and show novel effects of high field strengths on the block copolymer phase behavior. We will describe a procedure that allows tuning the morphology and size of the nanoscopic patterns by application of high electric fields and present experimental evidence for the electric-field-induced decrease of the order–disorder transition temperature in a block copolymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

CCD:

Charge-coupled device

E :

Electric field

F :

Free energy

M n :

Number-average molecular weight

Mw :

Weight-average molecular weight

ODT:

Order–disorder transition

P 2 :

Orientational order parameter

PHEMA:

Poly(2-hydroxyethyl methacrylate)

PI:

Polyisoprene

PMMA:

Poly(methyl methacrylate)

PS:

Polystyrene

PVP:

Poly(2-vinyl pyridine)

S47H10M43 82 :

Polystyrene-block-poly (2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate)

S50V50 78 :

Polystyrene-block-poly(2-vinyl pyridine)

SAXS:

Small-angle X-ray scattering

SFM:

Scanning force microscopy

SI:

Polystyrene-block-polyisoprene diblock copolymer

TEM:

Transmission electron microscopy

THF:

Tetrahydrofuran

T ODT :

Order–disorder transition temperature

References

  1. Angelescu DE et al (2005) Shear-induced alignment in thin films of spherical nanodomains. Adv Mater 17(15):1878

    Article  CAS  Google Scholar 

  2. Albalak RJ, Thomas EL (1993) Microphase separation of block copolymer solutions in a flow field. J Polym Sci B Polym Phys 31(1):37–46

    Article  CAS  Google Scholar 

  3. Hashimoto T et al (1999) The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition. Macromolecules 32(3):952–954

    Article  CAS  Google Scholar 

  4. Kim SH et al (2004) Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv Mater 16(3):226

    Article  CAS  Google Scholar 

  5. Yoon J, Lee W, Thomas EL (2006) Highly oriented thin-film microdomain patterns of ultrahigh molecular weight block copolymers via directional solidification of a solvent. Adv Mater 18(20):2691

    Article  CAS  Google Scholar 

  6. Segalman RA, Yokoyama H, Kramer EJ (2001) Graphoepitaxy of spherical domain block copolymer films. Adv Mater 13:1152

    Article  CAS  Google Scholar 

  7. Morkved TL et al (1996) Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273:931

    Article  CAS  Google Scholar 

  8. Thurn-Albrecht T et al (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290(5499):2126–2129

    Article  CAS  Google Scholar 

  9. Olszowka V et al (2006) Large scale alignment of a lamellar block copolymer thin film via electric fields: a time-resolved SFM study. Soft Matter 2(12):1089–1094

    Article  CAS  Google Scholar 

  10. Xu T, Wang J, Russell TP (2007) Electric field alignment of diblock copolymer thin films. In: Zvelindovsky AV (ed) Nanostructured soft matter: experiment, theory, simulation and perspectives. Springer, Berlin, pp 171–198

    Chapter  Google Scholar 

  11. Böker A et al (2006) The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers. Polymer 47(3):849–857

    Article  Google Scholar 

  12. Böker A et al (2003) Electric field induced alignment of concentrated block copolymer solutions. Macromolecules 36(21):8078–8087

    Article  Google Scholar 

  13. Thurn-Albrecht T et al (2000) Overcoming interfacial interactions with electric fields. Macromolecules 33:3250–3253

    Article  CAS  Google Scholar 

  14. Xu T, Hawker CJ, Russell TP (2003) Interfacial energy effects on the electric field alignment of symmetric diblock copolymers. Macromolecules 36(16):6178–6182

    Article  CAS  Google Scholar 

  15. Tsori Y, Andelman D (2002) Thin film diblock copolymers in electric field: transition from perpendicular to parallel lamellae. Macromolecules 35(13):5161–5170

    Article  CAS  Google Scholar 

  16. Pereira GG, Williams DRM (1999) Diblock copolymer melts in electric fields: the transition from parallel to perpendicular alignment using a capacitor analogy. Macromolecules 32(24):8115–8120

    Article  CAS  Google Scholar 

  17. Böker A, Müller AHE, Krausch G (2001) Nanoscopic surface patterns from functional ABC triblock copolymers. Macromolecules 34(21):7477–7488

    Article  Google Scholar 

  18. Brandrup J, Immergut EH (1998) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  19. Olszowka V, Tsarkova L, Böker A (2009) 3-Dimensional control over lamella orientation and order in thick block copolymer films. Soft Matter 5(4):812–819

    Article  CAS  Google Scholar 

  20. Olszowka V, Kuntermann V, Böker A (2008) Control of orientational order in block copolymer thin films by electric fields: a combinatorial approach. Macromolecules 41:5515–5518

    Article  CAS  Google Scholar 

  21. Rockford L et al (1999) Polymers on nanoperiodic, heterogeneous surfaces. Phys Rev Lett 82(12):2602–2605

    Article  CAS  Google Scholar 

  22. Kim SO et al (2003) Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424(6947):411–414

    Article  CAS  Google Scholar 

  23. Amundson K et al (1991) Effect of an electric field on block copolymer microstructure. Macromolecules 24(24):6546–6548

    Article  CAS  Google Scholar 

  24. Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamonn, Oxford

    Google Scholar 

  25. Chen ZR et al (1997) Pathways to macroscale order in nanostructured block copolymers. Science 277(5330):1248–1253

    Article  CAS  Google Scholar 

  26. Balsara NP, Hammouda B (1994) Shear effects on solvated block-copolymer lamellae – polystyrene-polyisoprene in dioctyl phthalate. Phys Rev Lett 72(3):360–363

    Article  CAS  Google Scholar 

  27. Winey KI et al (1993) Morphology of a lamellar diblock copolymer aligned perpendicular to the sample plane – transmission electron-microscopy and small-angle X-ray-scattering. Macromolecules 26(16):4373–4375

    Article  CAS  Google Scholar 

  28. Polis DL et al (1999) Shear-induced lamellar rotation observed in a diblock copolymer by in situ small-angle X-ray scattering. Macromolecules 32(14):4668–4676

    Article  CAS  Google Scholar 

  29. Wiesner U (1997) Lamellar diblock copolymers under large amplitude oscillatory shear flow: order and dynamics. Macromol Chem Phys 198:3319–3352

    Article  CAS  Google Scholar 

  30. Böker A et al (2002) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Phys Rev Lett 89(13):135502

    Article  Google Scholar 

  31. Schmidt K et al (2005) Influence of initial order on the microscopic mechanism of electric field induced alignment of block copolymer microdomains. Langmuir 21(25):11974–11980

    Article  CAS  Google Scholar 

  32. Hund M, Herold H (2007) Design of a scanning probe microscope with advanced sample treatment capabilities: an atomic force microscope combined with a miniaturized inductively coupled plasma source. Rev Sci Instrum 78(6):063703

    Article  Google Scholar 

  33. Olszowka V et al (2009) Electric field alignment of a block copolymer nanopattern: direct observation of the microscopic mechanism. ACS Nano 3(5):1091–1096

    Article  CAS  Google Scholar 

  34. Hund M, Herold H (2006) Rastersondenmikroskop. German Patent No. 10 2004 043 191 B4 (24 May 2006); US Patent Application No. US 20080229812 A1 (25 Sep 2008)

    Google Scholar 

  35. Scherdel S et al (2006) Non-linear registration of scanning probe microscopy images. Nanotechnology 17(3):881–887

    Article  CAS  Google Scholar 

  36. Tsarkova L, Knoll A, Magerle R (2006) Rapid transitions between defect configurations in a block copolymer melt. Nano Lett 6:1574–1577

    Article  CAS  Google Scholar 

  37. Horvat A et al (2008) Specific features of defect structure and dynamics in cylinder phase of block copolymers. ACS Nano 2(6):1143–1152

    Article  CAS  Google Scholar 

  38. Constantin D, Oswald P (2000) Diffusion coefficients in a lamellar lyotropic phase: evidence for defects connecting the surfactant structure. Phys Rev Lett 85(20):4297–4300

    Article  CAS  Google Scholar 

  39. Hubbard PL, McGrath KM, Callaghan PT (2005) A study of anisotropic water self-diffusion and defects in the lamellar mesophase. Langmuir 21(10):4340–4346

    Article  CAS  Google Scholar 

  40. Trebin HR (1982) The topology of nonuniform media in condensed matter physics. Adv Phys 31(3):195–254

    Article  CAS  Google Scholar 

  41. Mermin ND (1979) Topological theory of defects in ordered media. Rev Mod Phys 51(3): 591–648

    Article  CAS  Google Scholar 

  42. Hahm J et al (1998) Defect evolution in ultrathin films of polystyrene-block-polymethylmethacrylate diblock copolymers observed by atomic force microscopy. J Chem Phys 109(23):10111–10114

    Article  CAS  Google Scholar 

  43. Hahm J, Sibener SJ (2001) Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology. J Chem Phys 114(10):4730–4740

    Article  CAS  Google Scholar 

  44. Zvelindovsky AV, Sevink GJA (2003) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Comment. Phys Rev Lett 90(4):049601

    Article  CAS  Google Scholar 

  45. Böker A, Abetz V, Krausch G (2003) Microscopic mechanisms of electric-field-induced alignment of block copolymer microdomains. Reply. Phys Rev Lett 90(4):049602

    Article  Google Scholar 

  46. Choi MC et al (2004) Ordered patterns of liquid crystal toroidal defects by microchannel confinement. Proc Natl Acad Sci USA 101(50):17340–17344

    Article  CAS  Google Scholar 

  47. Tsarkova L et al (2006) Defect evolution in block copolymer thin films via temporal phase transitions. Langmuir 22(19):8089–8095

    Article  CAS  Google Scholar 

  48. Winey KI, Thomas EL, Fetters LJ (1991) Swelling a lamellar diblock copolymer with homopolymer – influences of homopolymer concentration and molecular-weight. Macromolecules 24(23):6182–6188

    Article  CAS  Google Scholar 

  49. Winey KI, Thomas EL, Fetters LJ (1991) Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. J Chem Phys 95(12):9367–9375

    Article  CAS  Google Scholar 

  50. Tanaka H, Hasegawa H, Hashimoto T (1991) Ordered structure in mixtures of a block copolymer and homopolymers.1. Solubilization of low-molecular-weight homopolymers. Macromolecules 24(1):240–251

    Article  CAS  Google Scholar 

  51. Jeong UY et al (2003) Precise control of nanopore size in thin film using mixtures of asymmetric block copolymer and homopolymer. Macromolecules 36(26):10126–10129

    Article  CAS  Google Scholar 

  52. Gurovich E (1994) On microphase separation of block-copolymers in an electric-field – 4 universal classes. Macromolecules 27(25):7339–7362

    Article  CAS  Google Scholar 

  53. Gurovich E (1995) Why does an electric-field align structures in copolymers? Phys Rev Lett 74(3):482–485

    Article  CAS  Google Scholar 

  54. Matsen MW, Bates FS (1997) Block copolymer microstructures in the intermediate-segregation regime. J Chem Phys 106(6):2436–2448

    Article  CAS  Google Scholar 

  55. de Gennes PG (1991) Scaling concepts in polymer physics, 4th edn. Cornell University Press, Cornell, p 324

    Google Scholar 

  56. Adachi K, Kotaka T (1993) Dielectric normal-mode relaxation. Prog Polym Sci 18(3):585–622

    Article  CAS  Google Scholar 

  57. Schmidt K et al (2008) Reversible tuning of a block copolymer nanostructure via electric fields. Nat Mater 3(7):142–145

    Article  Google Scholar 

  58. Lodge TP, McLeish TCB (2000) Self-concentrations and effective glass transition temperatures in polymer blends. Macromolecules 33(14):5278–5284

    Article  CAS  Google Scholar 

  59. Furukawa J et al (1969) Stiffness of molecular chain of synthetic rubber. J Appl Polym Sci 13(12):2527

    Article  CAS  Google Scholar 

  60. Huang CI et al (1998) Quantifying the “neutrality” of good solvents for block copolymers: poly(styrene-b-isoprene) in toluene, benzene, and THF. Macromolecules 31(26):9384–9386

    Article  CAS  Google Scholar 

  61. Debye P, Kleboth K (1965) Electrical field effect on the critical opalescence. J Chem Phys 42(9):3155–3162

    Article  CAS  Google Scholar 

  62. Wirtz D, Fuller GG (1993) Phase transitions induced by electric fields in near-critical polymer solutions. Phys Rev Lett 71(14):2236–2239

    Article  CAS  Google Scholar 

  63. Amundson K et al (1994) Alignment of lamellar block-copolymer microstructure in an electric-field. 2. Mechanisms of alignment. Macromolecules 27(22):6559–6570

    Article  CAS  Google Scholar 

  64. Lin C-Y, Schick M, Andelman D (2005) Structural changes of diblock copolymer melts due to an external electric field: a self-consistent-field theory study. Macromolecules 38(13):5766–5773

    Article  CAS  Google Scholar 

  65. Gunkel I et al (2007) Fluctuation effects of the microphase separation of diblock-cpolymers in the presence of an electric field. Macromolecules 40(6):2186–2191

    Article  CAS  Google Scholar 

  66. Onuki A (1995) Electric-field effects in fluids near the critical-point. Europhys Lett 29(8):611–616

    Article  CAS  Google Scholar 

  67. Orzechowski K (1999) Electric field effect on the upper critical solution temperature. Chem Phys 240:275–281

    Article  CAS  Google Scholar 

  68. Reich S, Gordon JM (1979) Electric field dependence of lower critical phase separation behavior in polymer-polymer mixtures. J Polym Sci B Polym Phys 17(3):371–378

    Article  CAS  Google Scholar 

  69. Tsori Y (2004) Demixing in simple fluids induced by electric field gradients. Nature 430:544–547

    Article  CAS  Google Scholar 

  70. Schmidt K et al (2007) Scaling behavior of the reorientation kinetics of block copolymers exposed to electric fields. Soft Matter 3(4):448–453

    Article  CAS  Google Scholar 

  71. Sakamoto N, Hashimoto T (1995) Order-disorder transition of low molecular weight polystyrene-block-polyisoprene. 1. SAXS analysis of two chracteristic temperatures. Macromolecules 28(20):6825–6834

    Article  CAS  Google Scholar 

  72. Schoberth HG et al (2009) Shifting the order-disorder transition temperature of block copolymer systems with electric fields. Macromolecules 42(10):3433–3436

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank D. Andelman, P. Bösecke, E. di Cola, F. Fischer, H. Hänsel, M. Hund, S. Hüttner, G. Krausch, H. Krejtschi, V. Kuntermann, C. Liedel, A. Mihut, T. Narayanan, C. W. Pester, S. Rehse, M. Ruppel, K. A. Schindler, F. Schubert, G. J. A. Sevink, S. Stepanov, M. Sztucki, L. Tsarkova, Y. Tsori, V. Urban, T. M. Weiss, H. Zettl, and A. V. Zvelindovsky for support of this work. We are grateful to the ESRF for provision of synchrotron beam time. This work was carried out in the framework of the Sonderforschungsbereich 481 (TP A2) funded by the German Science Foundation (DFG). AB acknowledges financial support by the Lichtenberg-Program of the VolkswagenStiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Böker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Schoberth, H.G., Olszowka, V., Schmidt, K., Böker, A. (2010). Effects of Electric Fields on Block Copolymer Nanostructures. In: Müller, A., Schmidt, HW. (eds) Complex Macromolecular Systems I. Advances in Polymer Science, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2010_51

Download citation

Publish with us

Policies and ethics