Skip to main content

Organic Field-Effect Transistors for CMOS Devices

  • Chapter
  • First Online:

Part of the book series: Advances in Polymer Science ((POLYMER,volume 223))

Abstract

Organic field-effect transistors (OFETs) are the key elements of future low cost electronics such as radio frequency identification tags. In order to take full advantage of organic electronics, low power consumption is mandatory, requiring the use of a complementary metal oxide semiconductor (CMOS) like technique. To realize CMOS-devices p-type and n-type organic field-effect transistors on one substrate have to be provided. Here, the latest concepts to produce in a straightforward way complementary acting OFETs for CMOS-like elements are illustrated on basis of the inverter. Starting from a simple description of thin-film transistors, the basic design rules for the development of complementary OFETs are given and some realizations of CMOS-like inverters are discussed. A CMOS-like inverter based on two identical field-effect transistors disclosing almost unipolar p-type and n-type behavior is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shockley W, Sparks M, Teal GK (1951) p-n junction transistor. Phys Rev 83:151–162

    Article  Google Scholar 

  2. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  3. Bauer H, Jelting S, Benson N, Fruehauf N (2006) An LTPS active-matrix process with PECVD doped N+ drain/source areas. J SID 14:119–126

    Google Scholar 

  4. Cuscunà M, Bonfiglietti A, Carluccio R, Mariucci L, Mecarini F, Pecora A, Stanizzi M, Valetta A, Fortunato G (2002) A novel fabrication process for polysilicon thin film transistors with source/drain contacts formed by deposition and lift-off of highly doped layers. Solid-State Elektron 46:1351–1358

    Article  Google Scholar 

  5. Sera K, Okumura F, Uchida H, Itoh S, Kaneko S, Hotta K (1989) High-performance TFT’s fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film. IEEE Trans Electron Device 36:2868–2872

    Article  CAS  Google Scholar 

  6. Pope M, Swenberg CE (1982) Electronic processes in organic crystals. Clarendon, New York

    Google Scholar 

  7. Dresner J, Goodman AM (1970) Anthracene electroluminescent cells with tunnel-injection cathode. Proc IEEE 58:1868–1869

    Article  CAS  Google Scholar 

  8. Helfrich W, Schneider WG (1965) Recombination radiation in anthracene crystals. Phys Rev Lett 14:229–231

    Article  CAS  Google Scholar 

  9. Pope M, Magnante P, Kallman HP (1963) Electroluminescence in organic crystals. J Chem Phys 38:2042

    Article  CAS  Google Scholar 

  10. Vincett PS, Barlow WA, Hann RA, Roberts GG (1982) Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 94:171–183

    Article  CAS  Google Scholar 

  11. Barbe DF, Westgate CR (1970) Surface state parameters of metal-free phthalocyanine single crystals. J Phys Chem Solids 31:2679–2687

    Article  CAS  Google Scholar 

  12. Heilmeier GH, Zanoni LA (1964) Surface studies of alpha-copper phthalocyanine films. J Phys Chem Solids 25:603

    Article  CAS  Google Scholar 

  13. Kudo K, Yamashina M, Moriizumi T (1984) Field effect measurement of organic dye films. Jpn J Appl Phys 23:130

    Article  CAS  Google Scholar 

  14. Tsumura A, Koezuka H, Ando T (1986) Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210–1212

    Article  CAS  Google Scholar 

  15. Dimitrakopoulos CD, Malenfant RL (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117

    Article  CAS  Google Scholar 

  16. Knipp D, Street RA, Völkel A, Ho JJ (2003) Pentacene thin film transistors on inorganic dielectrics: morphology, structural properties, and electronic transport. J Appl Phys 93:347–355

    Article  CAS  Google Scholar 

  17. Lin YY, Gundlach DJ, Nelson SF, Jackson TN (1997) Stacked Pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Lett 18:606–608

    Article  CAS  Google Scholar 

  18. Salleo A, Chabinyc ML, Yang MS, Street RA (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81:4383–4385

    Article  CAS  Google Scholar 

  19. Shankar K, Jackson TN (2004) Morphology and electrical transport in pentacene films on silylated oxide surfaces. J Mater Res 19:2003–2007

    Article  CAS  Google Scholar 

  20. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685–688

    Article  CAS  Google Scholar 

  21. Sariciftci NS, Braun D, Zang C, Srdanov V, Heeger AJ, Stucky G, Wudl F (1993) Semiconducting polymer-buckminsterfullerene heterojunctions: diodes, photodiodes, and photovoltaic cells. Appl Phys Lett 62:585–587

    Article  CAS  Google Scholar 

  22. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficiency organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  CAS  Google Scholar 

  23. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (1995) C60 thin film transistors. Appl Phys Lett 67:121–123

    Article  CAS  Google Scholar 

  24. Waldauf C, Schilinsky P, Perisutti M, Hauch J, Brabec CJ (2003) Solution-processed organic n-type thin-film transistor. Adv Mater 15:2084–2088

    Article  CAS  Google Scholar 

  25. de Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF (1997) Stability on n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met 87:53–59

    Article  Google Scholar 

  26. Ling M-M, Erk P, Gomez M, Könemann M, Locklin J, Bao Z (2007) Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater 19:1123–1127

    Article  CAS  Google Scholar 

  27. de Vusser S, Steudel S, Myny K, Genoe J, Heremans P (2006) Low voltage complementary organic inverters. Appl Phys Lett 88:16116

    Google Scholar 

  28. Kitamura M, Arakawa Y (2007) Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates. Appl Phys Lett 91:053505

    Article  CAS  Google Scholar 

  29. Klauk H, Zschieschang U, Pflaum J, Halik M (2007) Ultralow-power organic complementary cricuits. Nature 445:745–748

    Article  CAS  Google Scholar 

  30. Ling M-M, Bao Z, Erk P, Koenemann M, Gomez M (2007) Complementary inverter using high mobility air-stable perylene di-imide derivatives. Appl Phys Lett 90:093508

    Article  CAS  Google Scholar 

  31. Kawase T, Shimoda T, Newsome C, Sirringhaus H, Friend RH (2003) Inkjet printing of polymer thin film transistors. Thin Solid Films 438–439:279–287

    Article  CAS  Google Scholar 

  32. Knobloch A, Manuelli A, Bernds A, Clemens W (2004) Fully printed integrated circuits from solution processable polymers. J Appl Phys 96:2286–2291

    Article  CAS  Google Scholar 

  33. Subramanian V, Chang PC, Lee JB, Molesa SE, Volkman SK (2005) Printed organic transistors for ultra-low-cost RFID applications. IEEE Trans Components Packaging Technol 28:742–747

    Article  CAS  Google Scholar 

  34. Clemens W, Fix W, Ficker J, Knobloch A, Ullmann A (2004) From polymer transistors towards printed electronics. J Mater Res 19:1963–1973

    Article  CAS  Google Scholar 

  35. Meijer EJ, De Leeuw DM, Setayesh S, van Veenendaal E, Huisman B-H, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM (2003) Solution-processed ambipolar organic field-effect transistors and inverters. Nat Mater 2:678–682

    Article  CAS  Google Scholar 

  36. Benson N, Schidleja M, Melzer C, Schmechel R, von Seggern H (2006) Complementary organic field effect transistors by utraviolet dielectric interface modification. Appl Phys Lett 89:182105

    Article  CAS  Google Scholar 

  37. Schmechel R, Ahles M, von Seggern H (2005) A pentacene ambipolar transistor: experiment and theory. J Appl Phys 98:084511

    Article  CAS  Google Scholar 

  38. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323

    Article  CAS  Google Scholar 

  39. Schmechel R (2002) Gaussian disorder model for high carrier densities: theoretical aspects and application to experiment. Phys Rev B 66:235206

    Article  CAS  Google Scholar 

  40. Schmechel R (2003) Hopping transport in doped organic semiconductors: a theoretical approach and its application to p-doped zinc-phthalocyanine. J Appl Phys 93:4653–4660

    Article  CAS  Google Scholar 

  41. Vissenberg MCJM, Matter M (1998) Theory of the field-effect mobility in amorphous organic transistors. Phys Rev B 57:12964–12967

    Article  CAS  Google Scholar 

  42. Tanase C, Blom PWM, de Leeuw DM, Meijer EJ (2004) Charge carrier density dependence of the hole mobility in poly(p-phenylene vinylene). Phys Stat Solidi A 201:1236–1245

    Article  CAS  Google Scholar 

  43. Melzer C, von Seggern H (2008) Field-effect transistors for organic CMOS technology. Inform Technol 50:(3), 158–166

    Google Scholar 

  44. Zaumseil J, Friend RH, Sirringhaus H (2006) Spatial control of the recombination zone in an ambipolar light-emitting organic transistors. Nat Mater 5:69–74

    Article  CAS  Google Scholar 

  45. Hepp A, Heil H, Weise W, Ahles M, Schmechel R, von Seggern H (2003) Light-emitting field-effect transistor based on a tetracene thin film. Phys Rev Lett 91:157406

    Article  CAS  Google Scholar 

  46. Benson N, Melzer C, Schmechel R, von Seggern H (2008) Electronic states at the dielectric/semiconductor interface in organic field effect transistors. Phys Stat Solidi A 205:475–487

    Article  CAS  Google Scholar 

  47. Silinsh EA, Capek V (1994) Organic molecular crystals. AIP, New York

    Google Scholar 

  48. Dodabalapur A, Torsi L, Katz HE (1995) Organic transistors – 2-dimensional transport and improved electrical characteristics. Science 268:270–271

    Article  CAS  Google Scholar 

  49. Kline RJ, Mc Gehee MD, Toney MF (2006) Highly oriented crystals at the buried interface in polythiopene thin-film transistors. Nat Mater 5:222–228

    Article  CAS  Google Scholar 

  50. Ruiz R, Papadimitratos A, Mayer AC, Malliaras GG (2005) Thickness dependence of mobility in pentacene thin-film transistors. Adv Mater 17:1795–1798

    Article  CAS  Google Scholar 

  51. Sandberg HGO, Frey GL, Shkunov MN, Sirringhaus H, Friend RH, Nielsen MM, Kumpf C (2002) Ultrathin regioregular poly (3-hexyl thiophene) field effect transistor. Langmuir 18:10176–10182

    Article  CAS  Google Scholar 

  52. Li T, Balk JW, Ruden PP, Campbell IH, Smith DL (2002) Channel formation in organic field-effect transistors. J Appl Phys 91:4312–4318

    Article  CAS  Google Scholar 

  53. Yang SY, Shin K, Park CE (2005) The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv Funct Mater 15: 1806–1814

    Article  CAS  Google Scholar 

  54. Meyer zu Heringdorf F-J, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517–520

    Article  CAS  Google Scholar 

  55. Halik M, Klauk H, Zschieschang U, Schmid G, Dehm C, Schutz M, Maisch S, Effenberger F, Brunnbauer M, Stellacci F (2004) Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431:963–966

    Article  CAS  Google Scholar 

  56. Klauk H, Zschieschang U, Pflaum J, Halik M (2007) Ultralow-power organic complementary circuits. Nature 445:745–748

    Article  CAS  Google Scholar 

  57. Hulea IN, Fratini S, Xie H, Mulder CL, Iossad NN, Rastelli G, Ciuchin S, Morpurgo AF (2006) Tunable Fröhlich polaron in organic single-crystal transistors. Nat Mater 5:982–986

    Article  CAS  Google Scholar 

  58. Veres J, Ogier S, Lloyd G, de Leeuw D (2004) Gate insulators in organic field-effect transistors. Chem Mater 16:4543–4555

    Article  CAS  Google Scholar 

  59. Veres J, Ogier SD, Leeming SW, Cupertino DC, Khaffaf SM (2003) Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv Funct Mater 13:199–204

    Article  CAS  Google Scholar 

  60. Ahles M, Schmechel R, von Seggern H (2005) Complementary inverter based on interface doped pentacene. Appl Phys Lett 87:113505

    Article  CAS  Google Scholar 

  61. Benson N, Schidleja M, Siol C, Melzer C, von Seggern H (2007) Dielectric interface modification by UV irradiation: a novel method to control OFET charge carrier transport properties. Proc SPIE 6658:0W1–9

    Google Scholar 

  62. Ahles M, Schmechel R, von Seggern H (2004) n-Type organic field-effect transistor based on interface-doped pentacene. Appl Phys Lett 85:4499–4501

    Article  CAS  Google Scholar 

  63. Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199

    Article  CAS  Google Scholar 

  64. Benson N, Gassmann A, Mankel E, Mayer T, Melzer C, Schmechel R, von Seggern H (2008) The role of Ca traces in the passivation of silicon dioxide dielectrics for electron transport in pentacene organic field effect transistors. J Appl Phys 104:054505

    Article  CAS  Google Scholar 

  65. Kumaki D, Ando S, Shimono S, Yamashita Y (2007) Significant improvement of electron mobility in organic thin-film transistors based on thiazolothiazole derivative by employing self-assembled monolayer. Appl Phys Lett 90:053606

    Google Scholar 

  66. Hoshino S, Nagamatsu S, Chikamatsu M, Misaki M, Yoshida Y, Tanigaki N, Yase K (2002) Device performance of an n-channel organic thin-film transistor with LiF/Al bilayer source and drain electrodes. Jpn J Appl Phys 41:808–810

    Article  CAS  Google Scholar 

  67. Gundlach DJ, Pernistich KP, Wilckens G, Gruter M, Haas S, Batlogg B (2005) High mobility n-channel organic thin-film transistor and complementary inverters. J Appl Phys 98:064502

    Article  CAS  Google Scholar 

  68. Schmechel R, Hepp A, Heil H, Ahles M, Weise W, von Seggern H (2003) Light emitting field-effect transistor: simple model and underlying functional mechanisms. Proc SPIE 5217:101–111

    Article  CAS  Google Scholar 

  69. Zaumseil J, Baldwin KW, Rogers JA (2003) Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination. J Appl Phys 93:6117–6124

    Article  CAS  Google Scholar 

  70. Bürgi L, Sirringhaus H, Friend RH (2002) Noncontact potentiometry of polymer field-effect transistors. Appl Phys Lett 80:2913–2915

    Article  CAS  Google Scholar 

  71. Anthopoulos TD, de Leeuw DM, Cantatore E, Setayesh S, Meijer EJ, Tanase C, Hummelen JC, Blom PWM (2004) Organic complementary-like inverters employing methanofullerene-based ambipolar field-effect transistors. Appl Phys Lett 85:4205–4207

    Article  CAS  Google Scholar 

  72. Katz HE, Lovinger AJ, Johnson J, Kloc C, Siegrist T, Li W, Lin Y-Y, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404: 478–481

    Article  CAS  Google Scholar 

  73. Locklin J, Shinbo K, Onishi K, Kaneko F, Bao ZN, Advincula RC (2003) Ambipolar organic thin film transistor-like behavior of cationic and anionic phthalocyanines fabricated using layer-by-layer deposition from aqueous solution. Chem Mater 15:1404–1412

    Article  CAS  Google Scholar 

  74. Opitz A, Bronner M, Brütting W (2007) Ambipolar charge carrier transport in miced organic layers of phthalocyanine and fullerene. J Appl Phys 101:063709

    Article  CAS  Google Scholar 

  75. Wang J, Wang HB, Yan XJ, Huang HC, Yan DH (2005) Organic heterojunction and its application for double channel field-effect transistors. Appl Phys Lett 87:093507

    Article  CAS  Google Scholar 

  76. Ye RB, Baba M, Oishi Y, Mori K, Suzuki K (2005) Air stable ambipolar organic thin-film tarnsistors based on an organic homostructure. Appl Phys Lett 86:253505

    Article  CAS  Google Scholar 

  77. Scharnberg M, Zaporojtchenko V, Adelung R, Faupel F (2007) Tuning the threshold voltage of organic field-effect transistors by an electret encapsulation layer. Appl Phys Lett 90:013501

    Article  CAS  Google Scholar 

  78. Singh TB, Marjanovic N, Matt GJ, Sariciftci NS, Schwödiauer R, Bauer S (2004) Nonvolatile organic field-effect transistor memory element with a polymeric gate electret. Appl Phys Lett 85:5409–5411

    Article  CAS  Google Scholar 

  79. Singh TB, Marjanovic N, Stadler P, Auinger M, Matt GJ, Günes S, Sariciftci NS, Schwödiauer R, Bauer S (2005) Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors. J Appl Phys 97:083714

    Article  CAS  Google Scholar 

  80. Holländer A, Klemberg-Sapieha JE, Wertheimer MR (1994) Vacuum-ultraviolet-induced oxidation of polyethylene. Macromolecules 27:2893–2895

    Article  Google Scholar 

  81. Torikai A, Ohno M, Fueki K (1990) Photodegradation of poly(methyl methacrylate) by monochromatic light – quantum yield, effect of wavelength, and light-intensity. J Appl Polym Sci 41:1023

    Article  CAS  Google Scholar 

  82. Wei SY, Vaidya B, Patel AB, Soper SA, Mc Carley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytic devices. J Phys Chem B 109:16988–16996

    Article  CAS  Google Scholar 

  83. Clarisse C, Riou MT, Gauneau M, Le Contellec M (1988) Field-effect transistor with diphthalocyanine thin film. Electron Lett 24:674–675

    Article  Google Scholar 

  84. Assadi A, Svensson C, Willander M, Inganaes O (1988) Field-effect mobility of poly(3-hexylthiophene). Appl Phys Lett 53:195–197

    Article  CAS  Google Scholar 

  85. Horowitz G, Fichou D, Peng X, Xu Z, Garnier F (1989) A field-effect transistor based on conjugated alpha-sexithienyl. Solid Stat Commun 72:381–384

    Article  CAS  Google Scholar 

  86. Horowitz G, Peng XZ, Fichou D, Garnier F (1992) Role of the semiconductor insulator interface in the characteristics of Pi-conjugated-oligomer-based thin-film transistors. Synth Met 51:419–424

    Article  CAS  Google Scholar 

  87. Garnier F, Yassar A, Hajlaoui R, Horowitz G, Deloffre F, Servet B, Ries S, Alnot P (1993) Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers. J Am Chem Soc 115:8716–8721

    Article  CAS  Google Scholar 

  88. Garnier F, Hajlaoui R, Yassar A, Srivastava P (1994) All-polymer field-effect transistor realized by printing techniques. Science 265:1684–1686

    Article  CAS  Google Scholar 

  89. Dimitrakopoulos CD, Brown AR, Pomp A (1996) Molecular beam deposited thin films of pentacene for organic field effect transistor applications. J Appl Phys 80:2501–2508

    Article  CAS  Google Scholar 

  90. Bao Z, Lovinger AJ, Dodabalapur A (1996) Organic field-effect transistors with high mobility based on copper phthalocyanine. Appl Phys Lett 69:3066–3068

    Article  CAS  Google Scholar 

  91. Bao Z, Dodabalapur A, Lovinger AJ (1996) Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl Phys Lett 69:4108–4110

    Article  CAS  Google Scholar 

  92. Dimitrakopoulos CD, Furman BK, Graham T, Hegde S, Purushothaman S (1998) Field-effect transistors comprising molecular beam deposited alqha, omega-di-hexyl-hexathienylene and polymeric insulator. Synth Met 82:47–52

    Article  Google Scholar 

  93. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronc devices based on conjugated polymers. Science 280:1741–1744

    Article  CAS  Google Scholar 

  94. Katz HE, Lovinger AJ, Laquindanum JG (1998) Alpha, omega-dihexylquaterthiophene: a second thin film single-crystal organic semiconductor. Chem Mater 10:457–459

    Article  CAS  Google Scholar 

  95. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W (2002) High-mobility polymer gate dielectric pentacene thin film transistors. J Appl Phys 92:5259–5263

    Article  CAS  Google Scholar 

  96. Hajlaoui ME, Granier F, Hassine L, Kouki F, Bouchriha H (2002) Growth conditions effects on morphology and transport properties of an oligothiophene semiconductor. Synth Met 129:215–220

    Article  CAS  Google Scholar 

  97. Wang G, Swensen J, Moses D, Heeger AJ (2003) Increased mobility from regioregular poly(3-hexylthiophene) field-effect transistor. J Appl Phys 93:6137–6141

    Article  CAS  Google Scholar 

  98. Okuda T, Shintoh S, Terada N (2004) Copper-phthalocyanine field-effect transistor with a low driving voltage. J Appl Phys 96:3586–3588

    Article  CAS  Google Scholar 

  99. Lee S, Koo B, Shin J, Lee E, Park H (2006) Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance. Appl Phys Lett 88:162109

    Article  CAS  Google Scholar 

  100. Mc Culloch I, Heeney M, Bailey C, Genevicius K, Mac Donald I, Shkunov M, Sparrowe D, Tierney S, Wagner R, Zhang WM, Chabinyc ML, Kline RJ, Mc Gehee MD, Toney MF (2006) Liquid-crystalline semiconductor polymer with high charge-carrier mobility. Nat Mater 5:328–333

    Article  CAS  Google Scholar 

  101. Hamadani BH, Gundlach DJ, Mc Culloch I, Heeney M (2007) Undoped polythiophene field-effect transistor with mobility of 1cm2/(Vs). Appl Phys Lett 91:243512

    Article  CAS  Google Scholar 

  102. Butko VY, Chi X, Lang DV, Ramirez AP (2003) Field-effect transistor on pentacene single crystal. Appl Phys Lett 83:4773–4775

    Article  CAS  Google Scholar 

  103. Podzorov V, Sysoev SE, Loginova E, Pudalov VM, Gershenson ME (2003) Single-crystal organic field effect transistor with the hole mobility ~ 8 cm2/ Vs. Appl Phys Lett 83: 3504–3506

    Article  CAS  Google Scholar 

  104. Goldmann C, Haas S, Krellner C, Pernstich KP, Gundlach DJ, Batlogg B (2004) Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique. J Appl Phys 96:2080–2086

    Article  CAS  Google Scholar 

  105. Podzorov V, Menard E, Borissov A, Kiryukhin V, Rogers JA, Gershenson ME (2004) Intrinsic charge transport on the surface of organic semiconductors. Phys Rev Lett 93:086602

    Article  CAS  Google Scholar 

  106. Roberson LB, Kowalik J, Tolbert LM, Kloc C, Zeis R, Chi X, Fleming R, Wilkins C (2005) Pentacene disproportionation during sublimation for field-effect transistors. J Am Chem Soc 127:3069–3075

    Article  CAS  Google Scholar 

  107. Reese C, Chung W-J, Ling M-M, Roberts M, Bao Z (2006) High-performance microscale single-crystal transistors by lithography on an elastomer dielectric. Appl Phys Lett 89:202108

    Article  CAS  Google Scholar 

  108. Jurchescu OD, Popinciuc M, van Wees BJ, Palstra TTM (2007) Interface-controlled, high-mobility organic transistor. Adv Mater 19:688–692

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft (DFG) and the Bundesministerium für Bildung und Forschung (BMBF) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz von Seggern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melzer, C., Seggern, H.v. (2009). Organic Field-Effect Transistors for CMOS Devices. In: Grasser, T., Meller, G., Li, L. (eds) Organic Electronics. Advances in Polymer Science, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_9

Download citation

Publish with us

Policies and ethics