Polycarbosilanes Based on Silicon-Carbon Cyclic Monomers

Part of the Advances in Polymer Science book series (POLYMER, volume 235)


This review is devoted to analysis of the scientific data concerning polycarbosilanes and some of their functional derivatives, primarily, published in the last ten years. The scope is limited to highly molecular weight products of the above-mentioned type, prepared via polymerization of cyclic monomers as the most effective and flexible synthetic approach. The chapter consists of two main parts: heterochain and carbochain polycarbosilanes. It includes description of ring-opening polymerization (ROP) via rupture of endocyclic Si–C bonds in strained silacarbocycles, ring-opening metathesis polymerization (ROMP) via rupture of endocyclic C = C bond in silylcycloolefins, and vinyl type addition polymerization (AP) of silylnorbornenes. The review pays much attention to structure and physical chemical properties of the obtained polymers as well as possible ways for their applications. The mechanisms of some polymerization processes are also discussed.


Addition polymerization ROMP ROP Silylnorbornenes Strain silacarbocycles 



This work was supported by The Russian Foundation of Basic Research (Project 09–03–00342-a).


  1. 1.
    Bazant V, Chvalovsky V, Rathousky J (1960) Silicones. Goskhimizdat, MoscowGoogle Scholar
  2. 2.
    Knoth WH (1958) Carbosilane ring-opening polymerization. US Patent 2850514Google Scholar
  3. 3.
    Ushakov NV, Finkel’shtein ESh, Babich ED (1995) Polymerization of silacyclobutanes. Polym Sci SerA 37:470–492Google Scholar
  4. 4.
    Lebedev BV, Rabinovich IV, Lebedev NK, Ushakov NV (1978) Thermodinamics of polymerization of silacycloalkanes range. Dokl Acad Nauk SSSR 239:1140–1143Google Scholar
  5. 5.
    Vilkov LV, Kusakov MM, Nametkin NS, Oppengeim VD (1968) The electronographical study of molecular structure of 1,1,3,3-tetrachloro-1,3-disilacyclobutane. Dokl Acad Nauk SSSR 183:830–833Google Scholar
  6. 6.
    Alexanyan VT, Kuz’yanz GM, Vdovin VM et al. (1969) IR- spectra of some silacyclobutane derivatives and structure of silacyclobutane ring. Zhurn Strukt Khimii 10:481–484Google Scholar
  7. 7.
    Krapivin AM, Magi M, Svergun VI et al. (1980) The NMR study and CNDO/2 molecular orbital calculation of silacyclobutanes. J Organomet Chem 190:9–33Google Scholar
  8. 8.
    D’yachenko OA, Sokolova Yu A, Atovmyan LO, Ushakov NV (1982) The planar silicon–carbon heterocycle in dinaphthylsilacyclobutane. Izv Acad Nauk SSSR Ser Khim 9:2060–2065Google Scholar
  9. 9.
    D’yachenko OA, Sokolova Yu A, Atovmyan LO, Ushakov NV (1984) X-Ray study of 1,1-bi(1-α-naphthyl-1-silacyclobutyl) – first monosilacyclobutane derivative with Si–Si bond. Izv Acad Nauk SSSR Ser Khim 6:1314–1319Google Scholar
  10. 10.
    D’yachenko OA, Sokolova Yu A, Atovmyan LO, Ushakov NV (1985) The structure of 1,1,3,3-bis(trimethylene)-1,3-di-α-naphthyldisiloxane. Izv Acad Nauk SSSR Ser Khim 5:1030–1034Google Scholar
  11. 11.
    Babich ED, Pozdnyakova IV, Karelova II, Vdovin VM, Nametkin NS (1969) A molecular complexation of small silicon-carbon heterocycles and their analogues. Khim Geterotsikl Soedin 4:736–739Google Scholar
  12. 12.
    Nametkin NS, Oppengeim VD, Zav’yalov VI et al. (1965) IR-spectra of 1,1-substituted silacyclobutanes, silacyclopentanes and corresponding polymers. Izv Akad Nauk SSSR Ser Khim 9:1547–1553Google Scholar
  13. 13.
    Babich ED (1966). Multifuctional derivatives of 1-silacyclobutane. Ph.D. Thesis, Academy of Sciences of the SSSR, Topchiev Institute of Petrochemical Synthesis MoscowGoogle Scholar
  14. 14.
    Nametkin NS, Vdovin VM, Zav’alov VI, Grinberg PL (1969) The polymers with silicon–carbon chains and pendant silacycloalkane groups. Khim Geterotsikl Soedin 2:357–363Google Scholar
  15. 15.
    Finkel’shtein ESh, Ushakov NV, Pritula NA et al. (1992) Synthesis of polysil-trimethylenes with trimethylsilyl groups in the side-chain. Izv Acad Nauk SSSR Ser Khim 1:223–225Google Scholar
  16. 16.
    Ushakov NV, Yarysheva AYu, Tal’roze RV et al. (1992) The first representative of polysilmethylenes with mesogen in pendant group. Dokl Acad Sci Russia 325:964–966Google Scholar
  17. 17.
    Nametkin NS, Ushakov NV, Vdovin VM (1971) Polymers with silicon-carbon chains and functional groups containing carbon substituted at the silicon atom. Vysokomolek Soedin A13:29–37Google Scholar
  18. 18.
    Radugina Yu E, Sakharova IN, Avilov GV et al. (1973) The method for preparation of thermoplasticity material for an information recording. USSR Patent 225015 Bull of Inventions 10Google Scholar
  19. 19.
    Ushakov NV, Fedorova GK, Finkelshtein ESh (1995) Synthesis and polymerization of Si-substituted silacyclobutanes. Izv Acad Nauk Ser Khim 2:2475–2477Google Scholar
  20. 20.
    Nametkin NS, Vdovin VM, Zav’yalov VI (1965) Polymerization of 1,1-substituted silacyclobutanes. Izv Acad Nauk Ser Khim 8:1448–1453Google Scholar
  21. 21.
    Finkelshtein ESh, Ushakov NV, Krasheninnikov EG, Yampolskii Yu P (2004) New polysilalkylenes: synthesis and gas-separation properties. Russ Chem Bull Int Ed 53:2604–2610 transl from Izv Acad Nauk Ser Khim 11:2497–2503Google Scholar
  22. 22.
    Radugina Yu E, Ushakov NV, Malakhova IA, Pritula NA (1991) 9-Carbozolyl-containing polyorganosiltrimethylene as a photoconductor of electrical-photographic material. USSR Patent 1680714 Bull of Inventions 36Google Scholar
  23. 23.
    Ushakov NV, Pritula NA, Rebrov AI (1993) Synthesis and polymerization of 9-carbazolyl-containing 1-silacyclobutane derivatives. Russ Chem Bull 42:1372–1376 [translated from (1993) Izv Acad Nauk Ser Khim 8:1437–1441]Google Scholar
  24. 24.
    MacLachlan MJ, Lough AJ, Manners I (1996) Spirocyclic [1]ferrocenophanes: novel cross-linking agents for ring-opened poly(ferrocenes). Macromolecules 29:8562–8564Google Scholar
  25. 25.
    Ushakov NV, Portnykh EB, Pritula NA, Finkelshtein ESh (1989) Synthesis of silicon–carbon spiranes by metathesis reaction with alumina-rhenium catalyst. Izv Acad Nauk SSSR Ser Khim 12:2797–2803Google Scholar
  26. 26.
    Makarov IG, Kasakova VM, Zhil’tsov VV et al. (1983) The study of anion-radical structures of organosilicon compounds. VII. ESR spectra of alkylarylsilacyclobutane anion-radicals. Zhurnal Obshchei Khimii 53:1315–1320Google Scholar
  27. 27.
    Ushakov NV (2010) unpublished resultsGoogle Scholar
  28. 28.
    Radugina YuE, Sakharova IN, Avilov GV et al. (1973) The method of preparation of thermoplasticity material for an information recording. USSR Patent 228525 Bull of Inventions 5Google Scholar
  29. 29.
    Babich ED, Paraszcak J, Hatzakis M et al. (1985) A comparison of the electron beam sensitivities and relative oxygen plasma etch rates of various organosilicon polymers Microelectronic Eng 3:279–291Google Scholar
  30. 30.
    Babich ED, Paraszcak J, Hatzakis M et al. (1989) A comparison of the E-beam sensitivities and relative O2-plasma stabilities of organosilicon polymers. Part III. Lithographic characteristics of poly-1,1,3-trimethyl-1-sila- and poly-1,1,3,3-tetramethyl-1,3-disilacyclobutenes and related silmethylene polymers. Microelectronic Eng 9:537–542Google Scholar
  31. 31.
    Gringolts M, Ushakov NV, Rogan Yu, Finkelshtein ESh (2007) ROMP, ROP and addition polymerization of silico-containing cyclic monomers a way to new membrane materials. NATO Science II. Math Phys Chem 243:395–411Google Scholar
  32. 32.
    Finkelshtein Sh, Ushakov NV, Yampolskii YuP (2003) The method of higher hydrocarbons removal from natural and petroleum gases. Patent Russian Federation 2218979 Bull of Inventions 15Google Scholar
  33. 33.
    Finkelshtein ESh, Ushakov NV, Portnykh EB et al. (1993) Ring-opening metathesis and thermoinitiated polymerization of 1-methyl-1-norbornenylmethyl-1-silacyclobutane. Vysokomolec Soedin A35:242–247Google Scholar
  34. 34.
    Sommer LH (1965) Stereochemistry mechanism and silicon. McGraw-Hill Book Company, USAGoogle Scholar
  35. 35.
    Vdovin VM (1968) Investigation in the field of compounds with silicon–carbon heterocycles. PhD Thesis Academy of Sciences of the USSR, Topchiev Institute of Petrochemical Synthesis, MoscowGoogle Scholar
  36. 36.
    Nametkin NS, Bespalova NB, Ushakov NV, Vdovin VM (1973) Polymerization of monosilacyclobutanes initiated with n-butyllitium. Dokl Acad Nauk SSSR 209:621–623Google Scholar
  37. 37.
    Ushakov NV, Vdovin VM, Pozdnyakova MV, Pritula NA (1983) Interaction of Li diphenylphosphide with monosilacyclobutanes. Izv Acad Nauk SSSR Ser Khim 9:2125–2129Google Scholar
  38. 38.
    Matsumoto K, Shimazu H, Deguchi M, Yamaoka H (1997) Polymerization of sila-cyclobutanes. J Polym Sci Part A Polym Chem 35:3207–3215Google Scholar
  39. 39.
    Liao Ch X, Weber WP (1992) Synthesis and characterization of poly(1-methyl-1-vinyl-1-silabutane), poly(1-phenyl-1-vinyl-1-silabutane),and poly(1,1-divinyl-1-silabutane). Macromolecules 25:1639–1641Google Scholar
  40. 40.
    Gilman H, Zeuch EA (1957) Some selective reactions of the silicon–hydrogen group with organometallic compouns. J Am Chem Soc 79:4560–4561Google Scholar
  41. 41.
    Ushakov NV, Pritula NA (1992) Synthesis of asymmetrically substituted 1-silacyclobutane and 1-sila-3-cyclopentene derivatives. Zhurnal Obshchei Khimii 62:1318–1324Google Scholar
  42. 42.
    Liao Ch X, Weber WP (1992) Synthesis and characterization of poly(1-methyl-1-silabutane), poly(1-phenyl-silabutane) and poly(1-silabutane). Polym Bull 28:281–286Google Scholar
  43. 43.
    Matsumoto K, Miyagawa K, Yamaoka H (1997) Anionic polymerization of 3-methylene- silacyclobutanes and reactivity of poly(3-methylenesilabutane)s. Macromolecules 30:2524–2526Google Scholar
  44. 44.
    Matsumoto K, Shinohata M, Yamaoka H (2000) Synthesis and anionic polymerization of silacyclobutanes bearing naphthyl or biphenyl groups at the 3-position. Polym J 32:1022–1029Google Scholar
  45. 45.
    Matsumoto K, Shinohata M, Yamaoka H (2000) Anionic ring-opening polymerization of phenylsilacyclobutanes. Polym J 32:354–360Google Scholar
  46. 46.
    Komuro K, Kawakami Y (1999) Polymerization of 1,1,2-trimethylsilacyclobutane. Polym J 31:138–142Google Scholar
  47. 47.
    Matsumoto K, Shimazu H, Yamaoka H (1998) Synthesis and characterization of polysilabutane having oligo(oxyethylene)phenyl groups on the silicon atom. J Polym Sci Part A Polym Chem 36:225–231Google Scholar
  48. 48.
    Jain R, Brunskill APJ, Sheridan JB, Lalancette RA (2005) A planar silacyclobutane, 1-(rac-1,1’-bi-2-naphthoxy)-1-silacyclobutane and its unusual reaction with bis(1,5-cyclooctadiene)platinum(0). J Organomet Chem 690:2272–2277Google Scholar
  49. 49.
    Kawakami Y, Park SY, Uenishi K et al. (2003) Controlled synthesis of silicon-containing polymers by metal catalysts. Polym Int 52:1619–1624Google Scholar
  50. 50.
    Matsumoto K, Miyagawa K, Matsuoka H, Yamaoka H (1999) Synthesis and solution behavior of the silicon-containing amphiphilic block copolymer, polystyrene-b-poly(3-hydroxymethyl-silacyclobutane. Polym J 31:609–613Google Scholar
  51. 51.
    Matsumoto K, Mizuno U, Matsuoka H, Yamaoka H (2002) Synthesis of novel silicon-containing amphiphilic diblock copolymers and their self-assembly formation in solution and at air–water interface. Macromolecules 35:555–565Google Scholar
  52. 52.
    Nametkin NS, Vdovin VM, Poletaev VA, Alekhin NN et al. (1973) New method of synthesis of organosilicon derivatives of alkali-metals. Izv Akad Nauk SSSR Ser Khim 6:1434Google Scholar
  53. 53.
    Alekhin NN (1975) Investigation of polymerization of 1,1-dimethyl-1-silacyclobutane in the presence of alkali-metal silanolates, alkoholates, and alkalis. Ph D Thesis Academy of Sciences of the SSSR Topchiev Institute of Petrochemical Synthesis, MoscowGoogle Scholar
  54. 54.
    Sheikh MRK, Tharanikkarasu K, Imae I, Kawakami YY (1999) Application of silacyclobutanes as “Carboanion Pump”. Anionic polymerization of styrene using potassium-tert-butoxide and silacyclobutanes. 1st International Workshop on Silicon Chemistry-Polymers (May 29–31 1999, Tatsunokuchi, Japan) [Poster presentation]Google Scholar
  55. 55.
    Sheikh Md RK, Imae I, Tharanikkarasu K et al. (2000) Silacyclobutanes as “Carbanion pump” in anionic polymerization. I. Anionic polymerization of styrene by potassium t-butoxide in the presense of silacyclobutanes. Polym J 32:527–530Google Scholar
  56. 56.
    Hyun J-Y, Kawakami Y (2004) Silacyclobutane as “Carbanion pump” in anionic polymerization. III. Synthesis of di- and tri-block copolymer by “diphenylsilacyclobutane-potassium tert-butoxide system.” Polym J 36:856–865Google Scholar
  57. 57.
    Sheikh Md RK, Tharanikkarasu K, Imae I, Kawakami Y (2001) Silacyclobutanes as “Carbanion pump” in anionic polymerization. 2. Effective trapping of the initially formed carbanion by diphenylethylene. Macromolecules 34:4384–4389Google Scholar
  58. 58.
    Komuro K, Toyokawa S, Kawakami Y (1998) Synthesis and polymerization of 1-trimethylsiloxy- or 1-triphenylsiloxysilacyclobutanes. Polym Bull 40:715–720Google Scholar
  59. 59.
    Komuro K, Kawakami Y (1999) Synthesis and characterization of side-chain liquid crystalline polycarbosilanes with siloxane spacer. Polym Bull 42:669–674Google Scholar
  60. 60.
    Greenberg S, Clendenning SB, Liu K et al. (2005) Synthesis and lithographic patterning of polycarbosilanes with pendant cobalt carbonyl clusters. Macromolecules 38:2023–2026Google Scholar
  61. 61.
    Yamashita H, Tanaka M, Honda K (1995) Oxidative addition of the Si–C bonds of silacyclobutanes to Pt(PEt3)3 and highly selective platinum (0)-catalyzed di- or polymerization of 1,1-dimethyl-1-silacyclobutane. J Am Chem Soc 117:8873–8874Google Scholar
  62. 62.
    Nametkin NS, Vdovin VM (1974) Ring-opening reactions of silacyclobutanes. Izv Acad Nauk SSSR Ser Khim 23:1153–1169Google Scholar
  63. 63.
    Nametkin NS, Poletaev VA, Zav’yalov VI, Vdovin VM (1971) Kinetic investigation of thermoinitiated polymerization of 1,1,3,3-tetramethyl-1,3-disilacyclobutane. Dokl Acad Nauk SSSR 198:1096–1098Google Scholar
  64. 64.
    Nametkin NS, Vdovin VM, Zelenaya AV (1997) Preparation of silmethylene polymers. Patent SSSR 214809 Bull of Inventions 21Google Scholar
  65. 65.
    Nametkin NS, Vdovin VM, Zelenaya AV (1997) Preparation and the use of silmethylene polymers bearing alkenyl pendant groups. Patent SSSR 216269 Bull of Inventions 21Google Scholar
  66. 66.
    Nametkin NS, Zav’yalov VI, Zelenaya AV et al. (1997) Synthesis of polymers having silicon–carbon main chain and F-atom in pendant groups. Patent SSSR 269485 Bull of inventions 21Google Scholar
  67. 67.
    Nametkin NS, Babich ED, Karel’skii VN, Vdovin VM (1969) Synthesis of 1,3-disilacyclopentane derivatives. Izv Akad Nauk SSSR Ser Khim 6:1336–1342Google Scholar
  68. 68.
    Nametkin NS, Vdovin VM, Zav’yalov VI (1965) Silylmethylene elastomers. Vysokomolek Soedin 7:757Google Scholar
  69. 69.
    Nametkin NS, Vdovin VM, Zelenaya AV (1966) 1,3-Disilacyclobutanes and their polymers. Dokl Akad Nauk SSSR 170:1088–1091Google Scholar
  70. 70.
    Song G, Yamagushi M, Nishimura O, Suzuki M (2006) Investigation of metal nanoparticles produced by laser ablation and their catalytic activity. Appl Surf Sci 253:3093–3097Google Scholar
  71. 71.
    Ogawa T, Murakami M (1996) Synthesis, thermal and mechanical properties of poly(methylphenylsimethylene)s. Chem Mater 8:1260–1267Google Scholar
  72. 72.
    Ogawa T (1998) Polymerization and copolymerization behavior of phenyl-substituted 1,3-disilacyclobutanes. Polymer 39:2715–2723Google Scholar
  73. 73.
    Nametkin NS, Vdovin VM, Zav’yalov VI (1964) The catalysts of polymerization of silacyclobutanes. Izv Akad Nauk Ser Khim 1:203Google Scholar
  74. 74.
    Nametkin NS, Vdovin VM, Zav’yalov VI (1965) Polymerization of 1,1,3,3-tetraphenyl-1,3-disilikacyclobutane. Dokl Akad Nauk SSSR 162:824–826Google Scholar
  75. 75.
    Zundel T, Tronc F, Lestel L, Boileau S (1996) Polydimethylsilmethylene: synthesis and chemical modification. XI Internation Symposium on Organosilicon Chemistry, Montpellier, France, 1–6 September 1996. Abstr PA-106.Google Scholar
  76. 76.
    Zungel T, Baran J, Mazurek M et al. (1998) Climbing back up the nucleophilic reactivity scale. Use of cyclosila derivatives as reactivity boosters in anionic polymerization. Macromolecules 31:2724–2731Google Scholar
  77. 77.
    Matsumoto K, Nishimura M, Yamaoka H (2000) Organolithium-induced anionic polymerization of 1,1,3,3-tetramethyl-1,3-disilacyclobutane in the presence of hexa-methylphosphoramide. Macromol Chem Phys 201:805–808Google Scholar
  78. 78.
    Wu X, Neckers DC (1999) Photocatalyzed ring-opening polymerization of 1,1,3,3-tetramethyl-1,3-disilacyclobutane. Macromolecules 32:6003–6007Google Scholar
  79. 79.
    Gomez-Elipe P, Resendes R, Macdonald PM, Manners I (1998) Transition metal catalyzed ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes: facile molecular weight control and the remarkably convenient synthesis of poly(ferrocenes) with regioregular, comb, star, and block architectures. J Am Chem Soc 120:8348–8356Google Scholar
  80. 80.
    Nametkin NS, Vdovin VM, Poletaev VA, Zav’yalov VI (1974) The compounds containing elements I-B group as catalysts of polymerization 4-membered silicon–carbon heterocycles. Patent SSSR 216270 Bull of Inventions 15Google Scholar
  81. 81.
    Poletaev VA, Vdovin VM, Nametkin NS (1973) Catalytic polymerization of silacyclobutane monomers in the presence of transition metal halides. Dokl Akad Nauk SSSR 208:1112–1115Google Scholar
  82. 82.
    Nametkin NS, Vdovin VM, Finkelshtein ESh et al. (1969) Synthesis of new high molecular weight heterochain polymer with phenylen rings in the main chain. Vysokomol Soedin Part B 11:207–209Google Scholar
  83. 83.
    Salamone JC, Fitch WL (1971) Ring-opening polymerization of 1,1-dimethyl-2,3-benzo-1-silacyclobutene. J Polym Sci PartA-1 Polym Chem 9:1741–1745Google Scholar
  84. 84.
    Ushakov NV, Finkelshtein ESh (1993) Thermoinitiated polymerization of dimethyl-silacyclobutene. Xth International Symposium on Organosilicon Chemistry, Poznan, Poland, 15–20 August 1993. Abstracts P-159:279Google Scholar
  85. 85.
    Theurig M, Sargeant SJ, Manuel G, Weber WP (1992) Anionic ring-opening polymerization of 2,3-benzo-1-silacyclobutene. Characterization of poly(2,3-benzo-1-silabutenes). Macromolecules 25:3834–3837Google Scholar
  86. 86.
    Kakihana Y, Uenishi K, Imae I, Kawakami Y (2005) Anionic ring-opening polymerization of optically pure 1-methyl-1-(1-naphthyl)-2,3-benzosilacyclobut-2-ene. Macromolecules 38:6321–6326Google Scholar
  87. 87.
    Bamford WR, Lovie JC, Watt JAC et al. (1966) Preparation and properties of polysilmethylenes: use of various compounds of group VIII metals as catalysts. J Chem Soc C 13:1137–1140Google Scholar
  88. 88.
    Uenishi K, Imae I, Shirakawa E, Kawakami Y (2002) Synthesis of stereoregular and optically active poly[{methyl(1-naphthyl)silylene}(o-phenylene)methylene] by platinum-catalyzed ring-opening polymerization. Macromolecules 35:2455–2460Google Scholar
  89. 89.
    Sheridan JB, Gomez-Elipe P, Manners I (1996) Transition metal-catalysed ring-opening copolymerization of silicon-bridged [1]ferrocenophanes and sila- or disilacyclobutanes: synthesis of poly(ferrocenylsilane)-poly(carbosilane) random copolymers. Macromol Rapid Commun 17:319–324Google Scholar
  90. 90.
    Vdovin VM, Nametkin NS, Finkelshtein ESh (1964) The transformation of vinylben-zylderivatives of silicium in the presence of alkylation catalysts. Izv Akad Nauk SSSR Ser Khim 9:458–464Google Scholar
  91. 91.
    Nametkin NS, Vdovin VM, Finkelshtein ESh (1964) Synthesis of 3,4-benzosila-cyclobutenes. Dokl Akad Nauk SSSR 154:383–386Google Scholar
  92. 92.
    Nametkin NS, Vdovin VM, Finkelshtein ESh (1965) Polymerization of 3,4-benzo-1,1-dimethylsilacyclopentene. Dokl Akad Nauk SSSR 162:585–588Google Scholar
  93. 93.
    Finkelshtein ESh (1966) Ph.D. Thesis Academy of Sciences of the USSR Topchiev Institute of Petrochemical Synthesis, MoscowGoogle Scholar
  94. 94.
    Park Y-H, Zhou SQ, Weber WP (1989) Anionic ring opening polymerization of 3,4-benzo-1,1-dimethyl-1-silapentene). Polym Bull 26:349–353Google Scholar
  95. 95.
    Zhou SQ, Weber WP (1990) Anionic ring opening polymerization of 2-methyl-2-silaindan. Characterization of the polymer and mechanism of polymerization. Macromol Chem Rapid Commun 11:19–24Google Scholar
  96. 96.
    Ko Y-H, Weber WP (1991) Synthesis and characterization of poly(3,4-benzo-1-phenyl-1-silapentene) and poly(3,4-benzo-1-1-silapentene). Polym Bull 26:487–492Google Scholar
  97. 97.
    Hirao A, Hatayama T, Nakahama S (1987) Polymerization of monomers containing functional silyl groups. 3. Anionic living polymerization of (4-vinylphenyl)dimethylsilane. Macromolecules 20:1505–1509Google Scholar
  98. 98.
    Park Y-T, Kim SO (1997) Synthesis and properties of novel poly[3,4-(silylisopropyl)benzo-1-silapentene]. Bull Korean Chem Soc 18:232–235Google Scholar
  99. 99.
    Park Y-T, Park SU, Kim HC, Lee K (1998) Synthesis and properties of organosilicon polymers containing 3,4-benzo-1-silacyclopentene derivatives. Bull Korean Chem Soc 19:328–332Google Scholar
  100. 100.
    Horvath RF, Chan TH (1987) Metalation reactions of 1-silacyclo-3-pentenes. J Org Chem 52:4489–4494Google Scholar
  101. 101.
    Zhang X, Zhou SQ, Weber WP et al. (1988) Anionic ring-opening polymerization of sila- and germacyclopent-3-enes. Macromolecules 21:1563–1566Google Scholar
  102. 102.
    Weber WP, Park Y-T, Zhou SQ (1991) Mechanism of anionic ring-opening polymerization of silacyclopent-3-enes. Makromol Chem Macromol Symp 42/43:259–267Google Scholar
  103. 103.
    Sargeant SJ, Zhou SQ, Manuel G, Weber WP (1992) Anionic dimerization and ring opening polymerization of 1,1-divinyl-1-silacyclopent-3-ene. Macromolecules 25:2832–2836Google Scholar
  104. 104.
    Liao X, Weber WP (1991) Synthesis of poly(1-methyl-1-phenyl-1-silapentane) by chemical reduction of poly(1-methyl-1-phenyl-1-sila-cis-pent-3-ene with diimide. Polym Bull 25:621–624Google Scholar
  105. 105.
    Liao X, Leibfried RT, Weber WP (1991) Anionic ring opening polymerization of 1-phenyl-1-vinyl-1-silacyclopent-3-ene. Polym Bull 26:625–628Google Scholar
  106. 106.
    Liao X, Ko Y-H, Manuel G, Weber WP (1991) Synthesis and microstructure of poly(1-phenyl-1-sila-cis-pent-3-ene). Polym Bull 25:63–69Google Scholar
  107. 107.
    Zhou SQ, Weber WP (1990) Anionic polymerization of 1-methyl-1-silacyclopent-3-ene. Characterization of poly(1-methyl-1-sila-cis –pent-3-ene) by 1H, 13C, and 29Si NMR spectroscopy and mechanism of polymerization. Macromolecules 23:1915–1917Google Scholar
  108. 108.
    Park YT, Manuel G, Weber WP (1990) Anionic ring-opening polymerization of 1,1,3-trimethyl-1-silacyclopent-3-ene. Effect of temperature on poly(1,1,3-trimethyl-1-sila-cis-pent-3-ene) microctructure. Macromolecules 23:1911–1915Google Scholar
  109. 109.
    Park YT, Zhou SQ, Manuel G, Weber WP (1991) Synthesis and polymerization of 5-silaspiro[4.4]nona-2,7-dienes. Macromolecules 24:3221–3226Google Scholar
  110. 110.
    Wang L, Ko Y-H, Weber WP (1992) Dimerization and polymerization of 2,3-benzo-5-silaspiro[4.4]nona-2,7-diene. Macromolecules 25:2828–2831Google Scholar
  111. 111.
    Sargeant SJ, Weber WP (1993) Synthesis of carbosilane monomers and polymers with mesogenic pendant groups. Preparation and characterization of aryloxy-subtituted poly(1-sila-cis-pent-3-enes). Macromolecules 26:2400–2407Google Scholar
  112. 112.
    Wang L, Weber WP (1993) Synthesis and properties of novel comb polymers: unsaturated carbosilane polymers with pendant oligo(oxyethylene) groups. Macromolecules 26:969–974Google Scholar
  113. 113.
    Liao X, Weber Mazerolles WPP et al. (1991) Synthesis and characterization of poly[(3,4,c)furano-1-germa-1,1-dimethylpentane]. Polym Bull 26:499–502Google Scholar
  114. 114.
    Ushakov NV, Finkelshtein ESh (2009) Synthesis, dimerization and oligomerization of 5-silaspiro[4,4]non-2-ene. Izv Acad Nauk Ser Khim 5:923–925Google Scholar
  115. 115.
    Zhou Q, Manuel G, Weber WP (1990) Copolymerization of 1,1-dimethyl-1-silacyclopent-3-ene and 1,1-diphenyl-1-silacyclopent-3-ene. Characterization of copolymer micro-structures by 1H, 13C and 29Si NMR spectroscopy. Macromolecules 23:1583–1589Google Scholar
  116. 116.
    Sargeant SJ, Farahi JB, Weber WP (1993) Anionic ring-opening block copolymerization of 1,1-dimethyl-1-silacyclopent-3-ene and 1-methyl-1-phenyl-1-silacyclopent-3-ene. Macromolecules 26:4729–4731Google Scholar
  117. 117.
    Weber WP, Zhou SQ (1992) Crosslinkable poly(unsaturated carbosilane) copolymers and rization methods of making same. US Patent 5 171 810Google Scholar
  118. 118.
    Weber WP, Liao X (1992) Crosslinkable saturated and unsaturated carbosilane polymers and formulations. US Patent 5 171 792Google Scholar
  119. 119.
    Ushakov NV, Finkelshtein ESh (2000) Anionic copolymerization of 1-silacyclobutanes with 1,1-dimethyl-1-silacyclopent-3-ene. 33rd Symposium on Organosilicon Chemistry, Saginaw, Michigan, USA. Abstracts PB-24Google Scholar
  120. 120.
    Lammens H, Sartori G, Siffert J et al. (1971) Ring-opening polymerization of 1,1-dimethyl-1-silacyclopent-3-ene. J Polym Sci Part B Polym Lett 9:341–345Google Scholar
  121. 121.
    Finkelshtein ESh, Portnykh EB, Ushakov NV, Vdovin VM (1981) Metathesis of dialkenylsilanes and polymerization of 1,1-dimethyl-1-silacyclopent-3-ene in the presence alumina-rhenium catalysts. Izv Akad Nauk SSSR Ser Khim 3:641–645Google Scholar
  122. 122.
    Bykova TA, Lebedev BV, Ushakov NV, Finkelshtein ESh (2000) Thermodynamics of metathesis polymerization of 1,1-dimethyl-1-silacyclopent-3-ene in bulk and the thermodynamic properties of the resulting polymer in the 0–340 K range. Vysokomolek Soedin A42:1307–1315Google Scholar
  123. 123.
    Nefedov OM, Kolesnikov SP, Okhrimenko NI, Povarov SL (1979) W-carben complexes in reactions with 1,3-dienes and cycloolefines. I. Vsesoyuznaya konfer po metalloorg Khimii 1979 Moscow Tezisy dokl Chast’ II:263Google Scholar
  124. 124.
    Fink W, Nang B-Z, Faucher DA (1993) The polymerization behavior of [1]- and [2]ferrocenophanes containing silicon atoms in the bridge: comparison of the molecular structure of the strained, polymerizable cyclic ferrocenylsilane Fe(.eta.-C5H4)2(SiMe2) with that of the cyclic ferrocenyldisilane Fe(.eta.-C5H4)2(SiMe2)2. Organometallics 12:823–829Google Scholar
  125. 125.
    Pudelski JK, Rulkens R, Foucher DA et al. (1995) Synthesis and properties of poly(ferrocenyldihydrosilane) non random copolymers. Macromolecules 28:7301–7308Google Scholar
  126. 126.
    Elschenbroich C, Hurley J, Metz B (1990) Metal.π.-complexes of benzene derivatives. 34. Tetraphenylsilane as a chelating ligand: synthesis, structural characterization, and reactivity of the tilted bis(arene) metal complexes [(C6H5)2Si(.eta.6- C6H5)2]M (M – vanadium, chromium). Organometallics 9:889–897Google Scholar
  127. 127.
    Hultzsch KG, Nelson JM, Lough AJ, Manners I (1995) Synthesis, characterization, and homopolymerization and copolymerization behavior of the silicon-bridged [1]chromarenophane Cr(η–C6H5)2SiMe2. Organometallics 14:5496–5502Google Scholar
  128. 128.
    Elschenbroich C, Bzetschneider-Hurley A, Hurley J (1993) [μ(1,1,2,2-Tetrakis(η6-phenyl)-1,2-diphenyldisilane]-divanadium: long distance exchange interaction mediated through a > SiPh-SiPh < Unit. Inorg Chem 32:5421–5424Google Scholar
  129. 129.
    Elschenbroich C, Bzetschneider-Hurley A, Hurley J et al. (1995) Metal complexes of benzene derivatives. 45. Dinuclear bis(.eta.6-arene)vanadium and chromium complexes containing 1,3-disilacyclobutane as a spacer. An EPR study of intermetallic communication. Inorg Chem 34:743–745Google Scholar
  130. 130.
    Foucher DA, Tang B-Z, Manners I (1992) Ring-opening polymerization of strained, ring-titled ferrocenophanes: a route to high molecular weight poly(ferrocenylsilanes). J Am Chem Soc 114:6246–6248Google Scholar
  131. 131.
    Rulkens R, Ni Y, Lough AJ, Manners I (1994) Anionic ring-opening oligomerization and polymerization of silicon-bridged [1]ferrocenophanes: characterization of short-chain models for poly(ferrocenylsilane) high polymers. J Am Chem Soc 116:797–798Google Scholar
  132. 132.
    Rulkens R, Ni Y, Lough AJ, Manners I (1994) Living anionic ring-opening polymerization of silicon-bridged [1]ferrocenophanes: synthesis and characterization of poly(ferrocenylsilane)-polysiloxane block copolymers. J Am Chem Soc 116:12121–12122Google Scholar
  133. 133.
    Ni Y, Rulkens R, Pudelski JK, Manners I (1995) Transition metal catalyzed ring-opening polymerization of silicon-bridged [1]ferrocenophanes at ambient temperature. Macromol Chem Rapid Commun 16:637–641Google Scholar
  134. 134.
    Reddy NP, Yamashita H, Tanaka M (1995) Platinum- or palladium-catalysed ring-opening homo- and co-polymerization of silicon- and germanium-bridged [1]ferrocenophanes. J Chem Soc Chem Commun 1995:2263–2264Google Scholar
  135. 135.
    Foucher DA, Ziembinski R, Nang B-Z et al. (1993) Synthesis, characterization, glass transition behavior, and the electronic structure of high-molecular-weight, symmetrically substituted poly(ferrocenylsilanes) with alkyl or aryl side groups. Macromolecules 26:2878–2884Google Scholar
  136. 136.
    Temple K, Jakle F, Sheridan JB, Manners I (2001) The nature of the active catalyst in late transition metal-mediated ring-opening polymerization (ROP) reactions: mechanistic studies of the platinum-catalysed ROP of silicon-bridged [1]ferrocenophanes. J Am Chem Soc 123:1355–1364Google Scholar
  137. 137.
    Ni Y, Rulkens R, Manners I (1996) Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymerization of silicon-bridged [1]ferrocenophanes. J Am Chem Soc 118:4102–4114Google Scholar
  138. 138.
    Hultzsch KG, Nelson JM, Lough AJ, Manners I (1995) Synthesis, characterization, and homopolymerization and copolymerization behavior of the silicon-bridged [1]chrom-arenophane Cr(.ete.-C6H5)2SiMe. Organometallics 14:5496–5502Google Scholar
  139. 139.
    Pudelski JM, Manners I (1995) A heterolytic cyclopentadienyl carbon–silicon bond cleavage mechanism for the thermal ring-opening polymerization of silicon-bridged [1]ferrocenophanes. J Am Chem Soc 117:7265–7266Google Scholar
  140. 140.
    Bartle-Scott A, Resendes R, Manners I (2003) Transition metal-catalyzed ring-opening polymerization of silicon-bridged [1]ferrocenophanes in the presence of functional silanes: molecular weight control and synthesis of telechelic poly(ferrocenylsilanes). Macromol Chem Phys 204:1259–1268Google Scholar
  141. 141.
    Bao M, Hatanaka Y, Shimada S (2004) The first synthesis and X-ray structure of [1.1]silaferrocenophane containing pentacoordinate silicon moieties. Chem Lett 33:520Google Scholar
  142. 142.
    Sharma HK, Cervantes-Lee F, Pannell KH (2004) Isolation and ring-opening of new 1-sila-metallacyclobutanes (η5-C5H4Fe)(CO)2CH2SiR2 leading to a new class of organometallic polymer. J Am Chem Soc 126:1326–1327Google Scholar
  143. 143.
    Wang L, Chen T, Wang X-J et al. (2006) Study on synthesis and properties of poly(N-ferrocenylnbuthylmethylsilane) with unsymmetrical silicon substitution groups. Eur Pol J 42:843–848Google Scholar
  144. 144.
    Elschenbroich C, Paganelli F, Nowotny M et al. (2004) Trovacene Chemistry. 10[1] The[1] – and [2]silatrovacenophanes (η7-C7H6)V(5-C5H4SiR2) and (η7–C7H6)V(5-C5H4SiR2SiR2) (R = Me,Ph):Synthesis, structure, and ring opening. Zeitschrift anorg Und allgemeine Chemie 630:1599–1609Google Scholar
  145. 145.
    Bartole-Scott A, Braunschweig H, Kupfer T et al. (2006) Synthesis of ansa-[n]silacyclo-pentadienyl-cycloheptatrienyl-chromium complexes (n = 1, 2): novel precursors for polymers bearing chromium in the backbone. Chem Eur J 12:1266–1273Google Scholar
  146. 146.
    Braunschweig H, Kupfer T, Lutz M, Radacki K (2007) Ansa[1]trochrocenophanes and their related unstrained 1,1’-disubstituted counterparts: synthesis and electronic structure. J Am Chem Soc 129:8893–8906Google Scholar
  147. 147.
    Braunschweig H, Kupfer T, Radacki K (2007) Selective dimetalation of Mn(C5H5)(C6H6)]: crystal structure and conversion to strained [n]metalloarenophanes (n = 1, 2). Angew Chem 119:1655–1658Google Scholar
  148. 148.
    Peckman TJ, Nguyen P, Bourke SC et al. (2001) Ring-opening polymerization behavior of ansa- and spirocyclic ansa-Zirconocene complexes. Organometallics 20:3035–3043Google Scholar
  149. 149.
    Wang Z, Masson G, Peiris FC et al. (2007) Living photolytic ring-opening polymerization of amino-functionalized [1]ferrocenophanes: synthesis and layer-by-layer self-assembly of well-defined water-soluble polyferrocenylsilane polyelectrolytes. Chem -A Eur J 13:9372–9383Google Scholar
  150. 150.
    Tanabe M, Manners I (2004) Photolitic living anionic ring-opening polymerization (ROP) of silicon-bridged [1]ferrocenophanes via an iron-cyclopentadienyl bond cleavage mechanism. J Am Chem Soc 126:11434–11435Google Scholar
  151. 151.
    Tanabe M, Vandermeulen GWM, Chan WY et al. (2006) Photocontrolled living poly-merizations. Nat Mater 5:467–470Google Scholar
  152. 152.
    Baumgartner T, Jakle F, Rulkens R et al. (2002) Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [1]ferrocenophanes. J Am Chem Soc 124: 10062–10070Google Scholar
  153. 153.
    Ivin KJ, Mol JC (1997) Olefin metathesis and metathesis polymerization. Academic Press, San Diego, LondonGoogle Scholar
  154. 154.
    Grubbs RH (ed) (2003) Handbook of metathesis. Wiley-VCH, WeinheimGoogle Scholar
  155. 155.
    Buchmeizer MR (2000) Homogenous metathesis polymerization by well-defined group VI and group VIII transition-metal alkylidenes: fundamentals and applications in the preparation of advanced materials. Chem Rev 100:1565–1604Google Scholar
  156. 156.
    Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization. Prog Polym Sci 32:1–29Google Scholar
  157. 157.
    Buchmeiser MR (2009) Ring-opening metathesis polymerization. In: Dubois Ph, Coulembier O, Raquez J-M (eds) Handbook of ring-opening polymerization, 1st edn. Wiley-VCH, WeinheimGoogle Scholar
  158. 158.
    Schleyer RVR, Williams JE, Blanchard KR (1970) Evaluation of strain in hydrocarbons. The strain in adamantane and its origin. J Am Chem Soc 92:2377–2386Google Scholar
  159. 159.
    Lebedev BV, Lityagov VY (1977) Thermodynamics of the reactions of polypentenamer synthesis. Vysokomol Soedin B19:558–560Google Scholar
  160. 160.
    Lebedev B, Smirnova N, Kiparisova Y, Makovetssky K (1992) Thermodynamics of norbornene, of its polymerization process and of polynorbornene from 0 to 400 K at standard pressure. Makromol Chem 193:1399–1411Google Scholar
  161. 161.
    North M (2002) ROMP of norbornene derivatives of amino-ester and amino-acids. In: Khosravi E, Szymanska-Buzar T (eds) Ring opening metathesis polymerization and related chemistry. NATO Sci Ser II, vol 56. Kluwer, Dordrecht, pp 157–166Google Scholar
  162. 162.
    Finkelshtein ESh, Marciniec B (1995) Preparation of organosilicon oligomers and polymers via the reaction of olefin metathesis. In: Marciniec B, Choinowski J (eds) Progress in organosilicon chemistry. Gordon and Breach Publication, Amsterdam, pp 445–465Google Scholar
  163. 163.
    Finkelshtein ESh (1995) Metathesis polymerization of unsaturated organosilicon compounds. Polym Sci B 37:185–202Google Scholar
  164. 164.
    Finkelshtein ESh (1998) Olefin metathesis in organosilicon chemistry In: Imamoglu Y (ed) Metathesis polymerization of olefins and polymerization of alkynes, NATO ASI Series C, vol 506. Kluwer, Dordrecht, pp 201–224Google Scholar
  165. 165.
    Matloka PP, Wagener KB (2006) The acyclic diene metathesis (ADMET) polymerization approach to silicon containing materials. J Mol Cat A Chem 257:89–98 and references hereinGoogle Scholar
  166. 166.
    Dragutan V, Dragutan I, Fischer H (2008) Synthesis of metal-containing polymers via ring opening metathesis polymerization (ROMP). Part I. Polymers containing main group metals. J Inorg Organomet Polym 18:18–31Google Scholar
  167. 167.
    Katz TJ, Lee SJ, Shippey MA (1980) Preparations of polymers using metal-carbenes. J Mol Catal 8:219–226Google Scholar
  168. 168.
    Ginsburg EJ, Gorman ChB, Marder SR, Grubbs RH (1989) Poly (trimethylsilylcyc1ooctatetraene): a soluble conjugated polyacetylene via olefin metathesis. J Am Chem Soc 11:7621–7622Google Scholar
  169. 169.
    Gorman C, Ginsburg E, Grubbs R (1993) Soluble, highly conjugated derivatives of polyacetylene from the ring-opening metathesis polymerization of monosubstituted cyclooctatetraenes: synthesis and the relationship between polymer structure and physical properties. J Am Chem Soc 115:1397–1409Google Scholar
  170. 170.
    Streck R (1982) Some applications of the olefin metathesis reaction to polymer synthesis. J Mol Catal 15:3–19Google Scholar
  171. 171.
    Anderson AW, Merckling NG (1955) Polymeric bicyclo[2.2.1]-2-heptene. US Patent 2721189. Chem Abstr(1956) 50:3008Google Scholar
  172. 172.
    Schrock RR (1990) Living ring opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc Chem Res 23:158–165Google Scholar
  173. 173.
    Khosravi E, Szymanska-Buzar T (eds) (2000) Ring opening metathesis polymerization and related chemistry. NATO Science Ser.II: mathematics, physics and chemistry, vol 56. Kluwer Academic Publishers, DordrechtGoogle Scholar
  174. 174.
    Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G (2002) The Diels–Alder reaction in total synthesis. Angew Chem Int Ed 41:1668–1698Google Scholar
  175. 175.
    Onischenko AS (1963) Diene synthesis. Akad Sci SSSR Press, MoscowGoogle Scholar
  176. 176.
    Mol JC (2004) Olefin metathesis: early days. J Mol Cat 213:39–45Google Scholar
  177. 177.
    Cunico RF (1971) The diels-alder reaction of a,β-unsaturated trihalosilanes with cyclopentadiene. J Org Chem 36:929–932Google Scholar
  178. 178.
    Kuivila HG, Warner CR (1964) Trimethylsilyl-substituted norbornenes, norbornanes, and nortricyclene. J Org Chem 29:2845–2851Google Scholar
  179. 179.
    Stosur M, Szymanska-Buzar T (2008) Facile hydrosilylation of norbornadiene by silanes R3SiH and R2SiH2 with molybdenum catalysts. J Mol Cat A Chem 286:98–105Google Scholar
  180. 180.
    Park JH, Ryu BG, Kim JY et al. (2008) Norbornene-based silsesquioxane copolymers, norbornene-based silane used for preparation of the same and method of preparing low dielectric insulating film comprising the same. IPN WO 2008/082128 A1, PCT/KR2007/006794Google Scholar
  181. 181.
    Kenndoff J, Polborn K, Szeimies G (1990) Generation and trapping of 1,5-dehydroquadricyclane. J Am Chem Soc 112:6117–6118Google Scholar
  182. 182.
    Makovetsky KL, Finkelshtein ESh, Ostrovskaya IYa, Portnykh EB et al. (1992) Ring-opening metathesis polymerization of substituted norbornenes. J Mol Cat 76:107–121Google Scholar
  183. 183.
    Finkelshtein ESh, Portnykh EB, Makovetskii KL et al. (1998) Synthesis of membrane materials by ROMP of norbornenes. In: Imamoglu Y (ed) Metathesis polymerization of olefins and polymerization of alkynes. NATO ASI Series C, vol 506. Kluwer, Dordrecht, pp 189–199Google Scholar
  184. 184.
    Jones RG, Ando W, Chojnowski J (eds) (2000) Silicon containing polymers: the science and technology of their synthesis and applications. Kluwer Academic Publishers, DordrechtGoogle Scholar
  185. 185.
    Yamada S, Cho S, Lee JH et al. (2004) Design and study of silicone-based materials for bilayer resist application. J Photopolym Sci Technol 17:511–518Google Scholar
  186. 186.
    Ganachaud F, Boileau S, Boury B (eds) (2008) Silicon based polymers: advances in synthesis and supramolecular organization. Springer, The NetherlandsGoogle Scholar
  187. 187.
    Finkelshtein ESh, Makovetskii KL, Yampolskii YuP, Portnykh EB et al. (1991) Ring-opening metathesis polymerization of norbornenes with organosilicon substituents. Gas permeability of polymers obtained. Makromol Chem 192:1–9Google Scholar
  188. 188.
    Gringolts ML, Bermeshev MV, Starannikova LE et al. (2009) Synthesis and gas separation properties of metathesis polynorbornenes with one and two groups SiMe3 in monomer unit. Polym Sci Ser A 51:1233–1240Google Scholar
  189. 189.
    Finkelshtein ESh, Portnykh EB, Ushakov NV, Greengolts ML et al. (1994) Synthesis of polymers containing carbazolyl groups via ring-opening metathesis polymerization (ROMP) of a carbazolylsubstituted norbornene derivative. Macromol Rapid Commun 15:155–159Google Scholar
  190. 190.
    Gratt J, Cohen RE (1997) Synthesis of block copolymers containing pendant carbazole groups via living ring-opening metathesis polymerization. Macromolecules 30:3137–3140Google Scholar
  191. 191.
    Pearson JM, Stolka M (1981) Poly(N-vinylcarbazole). Gordon and Breach Science Publishers, New YorkGoogle Scholar
  192. 192.
    Gill WD (1972) Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J Appl Phys 43:5033–5040Google Scholar
  193. 193.
    Zhang C, von Seggern H, Pakbaz K, Kraabel B et al. (1994) Blue emission from polymer light-emitting diodes using non-conjugated polymer blends with air-stable electrodes. Synth Met 62:35–40Google Scholar
  194. 194.
    Kwark UJ, Bravo-Vasquez JP, Ober ChK (2003) Novel silicon containing polymers as photoresist materials for extreme UV lithography. In: Fedynyshyn TH (ed) Advances in resist technology and processing XX, Proceedings of SPIE, vol 5039, pp 1204–1211Google Scholar
  195. 195.
    Scherman OA, Kim HM, Grubbs RH (2002) Synthesis of well-defined poly((vinyl alcohol)2-alt-methylene) via ring-opening metathesis polymerization. Macromolecules 35:5366–5371Google Scholar
  196. 196.
    Gringolts ML, Bermeshev MV, Finkelshtein ESh (2010) unpublished resultsGoogle Scholar
  197. 197.
    Aoki T, Ohshima M, Shinohara K et al. (1997) Enantioselective permeation of racemates through a solid ( + )-poly{2-[dimethyl(10-pinanyl)silyl]norbornadiene}membrane. Polymer 38:235–238Google Scholar
  198. 198.
    Stonish DA, Weber WP (1991) Synthesis and characterization of poly[(2-trimethylsilyl-2-cyclopentene-1,4-diyl)vinylene]. Polym Bull 26:493–497Google Scholar
  199. 199.
    Finkelshtein ESh, Gringolts ML, Ushakov NV et al. (2003) Synthesis and gas permeation properties of new ROMP polymers from silyl substituted norbornadienes and norbornenes. Polymer 44:2843–2851Google Scholar
  200. 200.
    Gringolts ML, Bermeshev MV, Neliubina YuV, Finkel’shtein ESh (2009) Catalytic transformations of mono- and bis-silylsubstituted norbornadienes. Petrol Chem 49:369–376Google Scholar
  201. 201.
    Stonish DA, Weber WP (1991) Synthesis and characterization of poly[(2-dimethylsilyl-2-cyclopentene-1,4-diyl)vinylene]. Polym Bull 27:243–249Google Scholar
  202. 202.
    Mera G (2005) Contributions to the synthesis of silicon-rich oligocarbosilanes and their use as precursors for electrically conductive films. Diss Ruhr-Universität Bochum Chair of Inorganic Chemistry IGoogle Scholar
  203. 203.
    Bermeshev MV, Gringolts ML, Lakhtin VG, Finkel’shtein ESh (2008) Synthesis and metathesis polymerization of 5,5-bis(trimethylsilyl)norbornene-2. Petrol Chem 48:302–308Google Scholar
  204. 204.
    Kawakami Y, Toda H, Higashino M, Yamashita Y (1988) Polynorbornenes with oligodimethylsiloxanyl substituents for selectively oxygen permeable membrane material. Polymer J 20:285–292. doi:10.1295/polymj.20.285Google Scholar
  205. 205.
    Bondar V, Kukharskii Yu, Yampolskii Yu, Finkelshtein E et al. (1993) Permeation and sorption in polynorbornenes with organosilicon substituents. J Polym Sci Part B Polym Phys 31:1273–1283Google Scholar
  206. 206.
    Katsumata T, Shiotsuki M, Sanda F, Masuda T (2009) Synthesis and properties of polynorbornenes bearing oligomeric siloxane pendant groups. Polymer 50:1389–1394Google Scholar
  207. 207.
    Yampolskii Yu, Freeman BD, Pinnau I (eds) (2006) Materials science of membranes for gas and vapor separation. Wiley, ChichesterGoogle Scholar
  208. 208.
    Xu W, Chung Ch, Kwon Y (2007) Synthesis of novel block copolymers containing polyhedral oligomeric silsesquioxane (POSS) pendent groups via ring-opening metathesis polymerization (ROMP). Polymer 48:6286–6293Google Scholar
  209. 209.
    Mather PT, Jeon HG, Romo-Uribe A (1999) Mechanical relaxation and microstructure of poly(norbornyl-POSS) copolymers. Macromol 32:1194–1203Google Scholar
  210. 210.
    Pan G (2007) Polyhedral oligomeric silsesquioxane (POSS). In: Physical properties of polymers handbook. Springer, New YorkGoogle Scholar
  211. 211.
    Rutenberg IM, Scherman OA, Grubbs RH, Jiang W et al. (2004) Synthesis of polymer dielectric layers for organic thin film transistors via surface-initiated ring-opening metathesis polymerization. J Am Chem Soc 126:4062–4063Google Scholar
  212. 212.
    Harada Y, Girolami GS, Nuzzo RG (2003) Catalytic amplification of patterning via surface-confined ring-opening metathesis polymerization on mixed primer layers formed by contact printing. Langmuir 19:5104–5114Google Scholar
  213. 213.
    Juang A, Scherman OA, Grubbs RH, Lewis NS (2001) Formation of covalently attached polymer overlayers on Si(111) surfaces using ring-opening metathesis polymerization methods. Langmuir 17:1321–1323Google Scholar
  214. 214.
    Jordi MA, Seery TAP (2005) Quantitative determination of the chemical composition of silica-poly(norbornene) nanocomposites. J Am Chem Soc 127:4416–4422Google Scholar
  215. 215.
    Kim NY, Jeon NL, Choi IS, Takami S et al. (2000) Quantitative determination of the chemical composition of silica-poly(norbornene) nanocomposites. Macromol 33:2793–2795Google Scholar
  216. 216.
    Weck M, Jackiw JJ, Rossi RR et al. (1999) Ring-opening metathesis polymerization from surfaces. J Am Chem Soc 121:4088–4089Google Scholar
  217. 217.
    Feng J, Stoddart SS, Kanchana A, Weerakoon Chen KAW (2007) An efficient approach to surface-initiated ring-opening metathesis polymerization of cyclooctadiene. Langmuir 23:1004–1006Google Scholar
  218. 218.
    Jeon NL, Choi IS, Whitesides GM, Kim NY et al. (1999) Patterned polymer growth on silicon surfaces using microcontact printing and surface-initiated polymerization. Appl Phys Lett 75:4201–4203Google Scholar
  219. 219.
    Makovetskii KL (2008) Catalytic addition polymerization of norbornene and its derivatives and copolymerization of norbornene with olefins. Polym Sci Ser C 50:22–38Google Scholar
  220. 220.
    Blank F, Janiak Ch (2009) Metal catalysts for the vinyl/addition polymerization of norbornene. Coord Chem Rev 253:827–861Google Scholar
  221. 221.
    Janiak C, Lassahn PG (2001) Metal catalysts for the vinyl polymerization of norbornene. J Mol Catal A Chem 166:193–209Google Scholar
  222. 222.
    BL (2003) Cycloaliphatic polymers via late transition metal catalysis. In: Rieger BL, Saunders B, Kacker S, Striegler S (eds) Late transition metal polymerization catalysis. Wiley-VCH, WeinheimGoogle Scholar
  223. 223.
    Hennis AD, Polley JD, Long GS, Sen A et al. (2001) Novel, efficient, palladium-based system for the polymerization of norbornene derivatives: scope and mechanism. Organometallics 20:2802–2812Google Scholar
  224. 224.
    Funk JK, Andes CE, Sen A (2004) Addition polymerization of functionalized norbornenes: the effect of size, stereochemistry, and coordinating ability of the substituent. Organometallics 23:1680–1683Google Scholar
  225. 225.
    Myagmarsuren G, Lee Ki-Soo, Jeong O-Yong, Ihm Son-Ki (2005) Homopolymerization of 5-alkyl-2-norbornenes and their copolymerization with norbornene over novel Pd(acac)2/PPh3/BF3OEt2 catalyst system. Polymer 46:3685–3692Google Scholar
  226. 226.
    Kaita Sh, Matsushita K, Tobita M, Maruyama Y, Wakatsuki Y (2006) Cyclopentadienyl nickel and palladium complexes/activator system for the vinyl-type copolymerization of norbornene with norbornene carboxylic acid esters: control of polymer solubility and glass transition temperature. Macromol Rapid Commun 27:1752–1756Google Scholar
  227. 227.
    Jung IG, Seo J, Chung YK, Shin DM et al. (2007) Polymerization of carboxylic ester functionalized norbornenes catalyzed by (η3-allyl)palladium complexes bearing N-heterocyclic carbene ligands. J Polym Sci Part A Polym Chem 45:3042–3052Google Scholar
  228. 228.
    Lipian J, Mimna RA, Fondran JC, Yandulov D et al. (2002) Addition polymerization of norbornene-type monomers. High activity cationic allyl palladium catalysts. Macromol 35:8969–8977Google Scholar
  229. 229.
    Barnes DA, Benedikt GM, Goodall BL, Huang SS et al. (2003) Addition polymerization of norbornene-type monomers using neutral nickel complexes containing fluorinated aryl ligands. Macromol 36:2623–2632Google Scholar
  230. 230.
    Park S, Krotine J, Allen SAB, Kohl PA (2006) Electron-beam hardening of thin films of functionalized polynorbornene copolymer. J Electronic Mat 35:1112–1121Google Scholar
  231. 231.
    Grove N, Kohl P, Allen S, Jayaraman S et al. (1999) Functionalized polynorbornene dielectric polymers: adhesion and mechanical properties. J Polym Sci Polym Phys 37:3003–3010Google Scholar
  232. 232.
    Ahmed S, Bidstrup-Allen S, Kohl P, Ludovice P (1998) Prediction of stereoregularpoly(norbornene) structure using a long-range RIS model. Macromol Symp 133:1–10Google Scholar
  233. 233.
    Karafilidis Ch, Hermann H, Rufinska A, Gabor B et al. (2004) Metallocene-catalyzed C7-linkage in the hydrooligomerization of norbornene by s-bond metathesis: insight into the microstructure of polynorbornene. Angew Chem Int Ed 43:2444–2446Google Scholar
  234. 234.
    Finkelshtein ESh, Makovetskii KL, Gringolts ML, Rogan YV et al. (2006) Addition polymerization of silyl-containing norbornenes in the presence of Ni-based catalysts J Mol Catal A Chem 257:9–13Google Scholar
  235. 235.
    Mathew JP, Reinmuth A, Melia J, Swords N, Risse W (1996) (η3-Allyl)palladium(II) and palladium(II) nitrile catalysts for the addition polymerization of norbornene derivatives with functional groups. Macromolecules 29:2755–2763Google Scholar
  236. 236.
    Green M, Hancock R (1967) The stereochemistry of the reaction of bicyclo [2.2.1] heptadiene-palladium chloride with methoxide anions. J Chem Soc A 12:2054–2057Google Scholar
  237. 237.
    Finkelshtein E, Makovetskii K, Gringolts M, Rogan Yu et al. (2006) Addition-type polynorbornenes with Si(CH3)3 side groups: synthesis, gas permeability and free volume. Macromol 39:7022–7029Google Scholar
  238. 238.
    Gringolts ML, Bermeshev MV, Makovetsky KL, Finkelshtein ESh (2009) Effect of substituents on addition polymerization of norbornene derivatives with two Me3Si-groups using Ni(II)/MAO catalyst. Eur Polym J 45:2142–2149Google Scholar
  239. 239.
    Sanders DP, Connor EF, Grubbs RH, Hung RJ et al. (2003) Metal-catalyzed addition polymers for 157 nm resist applications. Synthesis and polymerization of partially fluorinated, ester-functionalized tricyclo[,5]non-7-enes. Macromolecules 36:1534–1542Google Scholar
  240. 240.
    Gringolts ML, Bermeshev MV, Kaz’min AG, Finkelshtein ESh (2009) New quadricyclane-based cyclic polycarbosilanes. Dokl Chem 424:49–51 Google Scholar
  241. 241.
    Zhao Ch, Ribeiro MR, de Pinho MN, Subrahmanyam VS et al. (2001) Structural characteristics and gas permeation properties of polynorbornenes with retained bicyclic structure. Polymer 42:2455–2462Google Scholar
  242. 242.
    Wilks BR, Chung WJ, Ludovice PJ, Rezac MR et al. (2003) Impact of average free-volume element size on transport in stereoisomers of polynorbornene. I. Properties at 35 C. J Polym Sci: Part B Polym Phys 41:2185–2199Google Scholar
  243. 243.
    Dorkenoo KD, Pfromm PH, Rezac ME (1998) Gas transport properties of a series of high Tg polynorbornenes with aliphatic pendant groups. J. Polym Sci Part B Polym Phys 36:797–803Google Scholar
  244. 244.
    Poulsen L, Zebger I, Klinger M, Eldrup M et al. (2003) Oxygen diffusion in copolymers of ethylene and norbornene. Macromol 36:7189–7198Google Scholar
  245. 245.
    Tetsuka H, Isobe K, Hagiwara M (2009) Synthesis and properties of addition-type poly(norbornene)s with siloxane substituents. Polym J. doi:10.1295/polymj.PJ2009010Google Scholar
  246. 246.
    Alentiev AYu, Yampolskii YuP, Shantarovich VP et al. (1997) High transport parameters and free volume of perfluorodioxole copolymers. J Membr Sci 126:123–132Google Scholar
  247. 247.
    Morisato A, Pinnau I (1996) Synthesis and gas permeation properties of poly(4-methyl-2-pentyne). J Membr Sci 121:243–250Google Scholar
  248. 248.
    Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions. Prog Polym Sci 26: 721–798Google Scholar
  249. 249.
    Yampolskii YuP, Finkelshtein ESh, Makovetskii KL, Bondar VI et al. (1996) Effects of cis-trans-configurations of the main chains of poly(trimethylsilyl norbornene) on its transport and sorption properties as well as free volume. J Appl Polym Sci 62:349–357Google Scholar
  250. 250.
    Makovetsky KL (1999) Addition polymerization of cycloolefins: new polymeric materials for advanced technologies. Polymer Sci Ser B 41:269–285Google Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.A.V. Topchiev Institute of Petrochemical Synthesis RASMoscowRussia

Personalised recommendations