Skip to main content

Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces

  • Chapter
  • First Online:
Complex Macromolecular Systems I

Part of the book series: Advances in Polymer Science ((POLYMER,volume 227))

Abstract

This contribution reviews recent findings on nonlithographic approaches for topographical structuring of polymeric surfaces and application of the resulting surfaces for creating hierarchical structures. External mechanical fields are used to induce a so-called buckling instability, which causes the formation of wrinkles with well-defined wavelength. We introduce the theoretical foundations of the phenomenon. The universality of the principle and the range of wavelengths between fractions of a micrometer and hundreds of microns that can be achieved are discussed. In the following we focus on the application of these surfaces as templates for the deposition of colloidal particles such as artificial particles (polystyrene beads, gold-nanoparticles or polymeric core-shell particles) and bionanoparticles (tobacco mosaic virus). We demonstrate how patterns can be transferred from the supporting wrinkled surfaces onto a broad variety of flat surfaces like glass or silicon wafers by stamping, where the complex colloidal patterns are accessible for studying their optical, electronic or other physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoogenboom JP, Retif C, de Bres E, de Boer MV, van Langen-Suurling AK, Romijn J, van Blaaderen A (2004) Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett 4:205–208

    Article  CAS  Google Scholar 

  2. Hoogenboom JP, van Langen-Suurling AK, Romijn J, van Blaaderen A (2003) Hard-sphere crystals with hcp and non-close-packed structure grown by colloidal epitaxy. Phys Rev Lett 90:1–4

    Article  Google Scholar 

  3. Hoogenboom JP, van Langen-Suurling AK, Romijn J, van Blaaderen A (2004) Epitaxial growth of a colloidal hard-sphere hcp crystal and the effects of epitaxial mismatch on crystal structure. Phys Rev E 69:051602–051617

    Article  CAS  Google Scholar 

  4. Hynninen AP, Thijssen JHJ, Vermolen ECM, Dijkstra M, Van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202–205

    Article  CAS  Google Scholar 

  5. van Blaaderen A (2004) Colloids under external control. MRS Bull 29:85–90

    Article  Google Scholar 

  6. van Blaaderen A, Hoogenboom JP, Vossen DLJ, Yethiraj A, van der Horst A, Visscher K, Dogterom M (2003) Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization. Faraday Discuss 123:107–119

    Article  Google Scholar 

  7. Vossen DLJ, Fific D, Penninkhof J, van Dillen T, Polman A, van Blaaderen A (2005) Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography. Nano Lett 5:1175–1179

    Article  CAS  Google Scholar 

  8. Bechert DW, Bruse M, Hage W (2000) Experiments with three-dimensional riblets as an idealized model of shark skin. Exp Fluids 28:403–412

    Article  Google Scholar 

  9. Reif WE (1985) Morphology and hydrodynamic effects of the scales of fast swimming sharks. Fortschr Zool 30:483–485

    Google Scholar 

  10. Wainwright SA, Vosburgh F, Hebrank JH (1978) Shark skin – function in locomotion. Science 202:747–749

    Article  CAS  Google Scholar 

  11. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  CAS  Google Scholar 

  12. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956–961

    Article  Google Scholar 

  13. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  14. del Campo A, Arzt E (2008) Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev 108:911–945

    Article  Google Scholar 

  15. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149

    Article  CAS  Google Scholar 

  16. Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett 75: 2557–2559

    Article  CAS  Google Scholar 

  17. Chua DBH, Ng HT, Li SFY (2000) Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane. Appl Phys Lett 76:721–723

    Article  CAS  Google Scholar 

  18. Genzer J, Groenewold J (2006) Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2:310–323

    Article  CAS  Google Scholar 

  19. Huck WTS, Bowden N, Onck P, Pardoen T, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16:3497–3501

    Article  CAS  Google Scholar 

  20. Volynskii AL, Bazhenov S, Lebedeva OV, Bakeev NF (2000) Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J Mater Sci 35:547–554

    Article  CAS  Google Scholar 

  21. Bandyopadhyay D, Sharma A, Shankar V (2008) Instabilities and pattern miniaturization in confined and free elastic-viscous bilayers. J Chem Phys 128:154909–154912

    Article  Google Scholar 

  22. Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90:1–4

    Article  Google Scholar 

  23. Cerda E, Ravi-Chandar K, Mahadevan L (2002) Thin films – wrinkling of an elastic sheet under tension. Nature 419:579–580

    Article  CAS  Google Scholar 

  24. Chen X, Hutchinson JW (2004) Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech 71:597–603

    Article  Google Scholar 

  25. Groenewold J (2001) Wrinkling of plates coupled with soft elastic media. Physica A 298: 32–45

    Article  Google Scholar 

  26. Huang ZY, Hong W, Suo Z (2004) Evolution of wrinkles in hard films on soft substrates. Phys Rev E 70:030601–030604

    Article  Google Scholar 

  27. Im SH, Huang R (2008) Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J Mech Phys Solids 56:3315–3330

    Article  Google Scholar 

  28. Lin PC, Yang S (2007) Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl Phys Lett 90:241903

    Article  Google Scholar 

  29. Mei HX, Huang R, Chung JY, Stafford CM, Yu HH (2007) Buckling modes of elastic thin films on elastic substrates. Appl Phys Lett 90:151902–151903

    Article  Google Scholar 

  30. Sridhar N, Srolovitz DJ, Suo Z (2001) Kinetics of buckling of a compressed film on a viscous substrate. Appl Phys Lett 78:2482–2484

    Article  CAS  Google Scholar 

  31. Biot MA (1937) Bending of an infinite beam on an elastic foundation. J Appl Mech 4:A-1

    Google Scholar 

  32. Biot MA (1965) Mechanics of incremental deformation. Wiley, New York

    Google Scholar 

  33. Landau LD, Lifshitz EM (1965) Theorie of elasticity. Butterworth-Heinemann, Moscow

    Google Scholar 

  34. Yoo PJ, Lee HH (2008) Complex pattern formation by adhesion-controlled anisotropic wrinkling. Langmuir 24:6897–6902

    Article  CAS  Google Scholar 

  35. Singamaneni S, Bertoldi K, Chang S, Jang JH, Thomas EL, Boyce MC, Tsukruk VV (2009) Instabilities and pattern transformation in periodic, porous elastoplastic solid coatings. Appl Mater Interfaces 1:42–47

    Article  CAS  Google Scholar 

  36. Singamaneni S, Bertoldi K, Chang S, Jang JH, Young SL, Thomas EL, Boyce MC, Tsukruk VV (2009) Bifurcated mechanical behavior of deformed periodic porous solids. Adv Funct Mater 19:1426–1436

    Article  CAS  Google Scholar 

  37. Zhang Y, Matsumoto EA, Peter A, Lin PC, Kamien RD, Yang S (2008) One-step nanoscale assembly of complex structures via harnessing of elastic instability. Nano Lett 8:1192–1196

    Article  CAS  Google Scholar 

  38. Lu C, Möhwald H, Fery A (2008) Large-scale regioselective formation of well-defined wrinkles of multilayered films via embossing. Chem Mater 20:7052–7059

    Article  CAS  Google Scholar 

  39. Martin GC, Su TT, Loh IH, Balizer E, Kowel ST, Kornreich P (1982) The metallization of silicone polymers in the rubbery and the glassy state. J Appl Phys 53:797–799

    Article  CAS  Google Scholar 

  40. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315

    Article  CAS  Google Scholar 

  41. Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  CAS  Google Scholar 

  42. Khang DY, Rogers JA, Lee HH (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19:1526–1536

    Article  CAS  Google Scholar 

  43. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12:1591–1596

    Article  CAS  Google Scholar 

  44. Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290:2130–2133

    Article  CAS  Google Scholar 

  45. Efimenko K, Genzer J (2001) How to prepare tunable planar molecular chemical gradients. Adv Mater 13:1560–1563

    Article  CAS  Google Scholar 

  46. Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297

    Article  CAS  Google Scholar 

  47. Lin CB, Lin CC, Lee S, Chou YT (2008) The effect of dislocations on crack propagation in wrinkled gold film deposited on polydimethylsiloxane. J Appl Phys 104:016106.1-016106.3

    Google Scholar 

  48. Pretzl M, Schweikart A, Hanske C, Chiche A, Zettl U, Horn A, Boker A, Fery A (2008) A lithography-free pathway for chemical microstructuring of macromolecules from aqueous solution based on wrinkling. Langmuir 24:12748–12753

    Article  CAS  Google Scholar 

  49. Chiche A, Stafford CM, Cabral JT (2008) Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter 4:2360–2364

    Article  CAS  Google Scholar 

  50. Huang R (2005) Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53:63–89

    Article  Google Scholar 

  51. Jiang HQ, Khang DY, Song JZ, Sun YG, Huang YG, Rogers JA (2007) Finite deformation mechanics in buckled thin films on compliant supports. Proc Nat Acad Sci USA 104: 15607–15612

    Article  CAS  Google Scholar 

  52. Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101–2118

    Article  CAS  Google Scholar 

  53. Harrison C, Stafford CM, Zhang WH, Karim A (2004) Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 85:4016–4018

    Article  CAS  Google Scholar 

  54. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3:545–550

    Article  CAS  Google Scholar 

  55. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348

    Article  CAS  Google Scholar 

  56. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  57. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process. 3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831–835

    Article  Google Scholar 

  58. Picart C, Bernard S, Sengupta K, Dubreuil F, Fery A (2007) Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques. Colloids Surf A Physicochem Eng Asp 303:30–36

    Article  CAS  Google Scholar 

  59. Lu C, Donch I, Nolte M, Fery A (2006) Au nanoparticle-based multilayer ultrathin films with covalently linked nanostructures: spraying layer-by-layer assembly and mechanical property characterization. Chem Mater 18:6204–6210

    Article  CAS  Google Scholar 

  60. Jiang CY, Wang XY, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, Naik RR, Tsukruk VV (2007) Mechanical properties of robust ultrathin silk fibroin films. Adv Funct Mater 17: 2229–2237

    Article  CAS  Google Scholar 

  61. Huang H, Chung JY, Nolte AJ, Stafford CM (2007) Characterizing polymer brushes via surface wrinkling. Chem Mater 19:6555–6560

    Article  CAS  Google Scholar 

  62. Karade Y, Pihan SA, Brunger WH, Dietzel A, Berger R, Graf K (2009) Determination of cross-link density in ion-irradiated polystyrene surfaces from rippling. Langmuir 25:3108–3114

    Article  CAS  Google Scholar 

  63. Jiang C, Singamaneni S, Merrick E, Tsukruk VV (2006) Complex buckling instability patterns of nanomembranes with encapsulated gold nanoparticle arrays. Nano Lett 6:2254–2259

    Article  CAS  Google Scholar 

  64. Dönch I (2008) Mechanische eigenschaften von polyelektolyt-multilagen bei verschiedenen ladungsdichten und hydratationszuständen. Potsdam, Germany

    Google Scholar 

  65. Blockcopolymers were a gift from Laschewsky and Ott FIfAPR. Golm, Germany

    Google Scholar 

  66. Nolte AJ, Cohen RE, Rubner MF (2006) A two-plate buckling technique for thin film modulus measurements: applications to polyelectrolyte multilayers. Macromolecules 39:4841–4847

    Article  CAS  Google Scholar 

  67. Nolte AJ, Rubner MF, Cohen RE (2005) Determining the Young’s modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities. Macromolecules 38:5367–5370

    Article  CAS  Google Scholar 

  68. Jiang XY, Takayama S, Qian XP, Ostuni E, Wu HK, Bowden N, LeDuc P, Ingber DE, Whitesides GM (2002) Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18:3273–3280

    Article  CAS  Google Scholar 

  69. Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res 75A:668–680

    Article  CAS  Google Scholar 

  70. Lu CH, Mohwald H, Fery A (2007) A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3:1530–1536

    Article  CAS  Google Scholar 

  71. Allard M, Sargent EH, Lewis PC, Kumacheva E (2004) Colloidal crystals grown on patterned surfaces. Adv Mater 16:1360–1364

    Article  CAS  Google Scholar 

  72. Cui Y, Bjork MT, Liddle JA, Sonnichsen C, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1093–1098

    Article  CAS  Google Scholar 

  73. Dziomkina NV, Vancso GJ (2005) Colloidal crystal assembly on topologically patterned templates. Soft Matter 1:265–279

    Article  CAS  Google Scholar 

  74. Juillerat F, Solak HH, Bowen P, Hofmann H (2005) Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16:1311–1316

    Article  CAS  Google Scholar 

  75. Maury P, Escalante M, Reinhoudt DN, Huskens J (2005) Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv Mater 17:2718–2723

    Article  CAS  Google Scholar 

  76. Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11:95–104

    Article  CAS  Google Scholar 

  77. vanBlaaderen A, Ruel R, Wiltzius P (1997) Template-directed colloidal crystallization. Nature 385:321–324

    Article  CAS  Google Scholar 

  78. Varghese B, Cheong FC, Sindhu S, Yu T, Lim CT, Valiyaveettil S, Sow CH (2006) Size selective assembly of colloidal particles on a template by directed self-assembly technique. Langmuir 22:8248–8252

    Article  CAS  Google Scholar 

  79. Winkleman A, Gates BD, McCarty LS, Whitesides GM (2005) Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv Mater 17: 1507–1511

    Article  CAS  Google Scholar 

  80. Xia DY, Brueck SRJ (2004) A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating. Nano Lett 4:1295–1299

    Article  CAS  Google Scholar 

  81. Aizenberg J, Braun PV, Wiltzius P (2000) Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys Rev Lett 84:2997–3000

    Article  CAS  Google Scholar 

  82. Chen KM, Jiang XP, Kimerling LC, Hammond PT (2000) Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 16:7825–7834

    Article  CAS  Google Scholar 

  83. Jonas U, del Campo A, Kruger C, Glasser G, Boos D (2002) Colloidal assemblies on patterned silane layers. Proc Natl Acad Sci USA 99:5034–5039

    Article  CAS  Google Scholar 

  84. Decher G, Schlenoff JB (2003) Multilayer thin films. Wiley, Weinheim

    Google Scholar 

  85. Horn A, Schoberth HG, Hiltl S, Chiche A, Wang Q, Schweikart A, Fery A, Böker A (2009) Nanostructured wrinkled surfaces for templating bionanoparticles. Faraday Discuss. 143:143–150

    Article  CAS  Google Scholar 

  86. Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DM, Kuhnke K, Kern K (2004) Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 20:441–447

    Article  CAS  Google Scholar 

  87. Kuncicky DM, Naik RR, Velev OD (2006) Rapid deposition and long-range alignment of nanocoatings and arrays of electrically conductive wires from tobacco mosaic virus. Small 2:1462–1466

    Article  CAS  Google Scholar 

  88. Radloff C, Vaia RA, Brunton J, Bouwer GT, Ward VK (2005) Metal nanoshell assembly on a virus bioscaffold. Nano Lett 5:1187–1191

    Article  CAS  Google Scholar 

  89. Royston E, Lee SY, Culver JN, Harris MT (2006) Characterization of silica-coated tobacco mosaic virus. J Colloid Interface Sci 298:706–712

    Article  CAS  Google Scholar 

  90. Soto CM, Blum AS, Wilson CD, Lazorcik J, Kim M, Gnade B, Ratna BR (2004) Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: application to the purification of cowpea mosaic virus and colloidal gold complex. Electrophoresis 25:2901–2906

    Article  CAS  Google Scholar 

  91. Wargacki SP, Pate B, Vaia RA (2008) Fabrication of 2D ordered films of tobacco mosaic virus (TMV): processing morphology correlations for convective assembly. Langmuir 24: 5439–5444

    Article  CAS  Google Scholar 

  92. Yoo PJ, Nam KT, Belcher AM, Hammond PT (2008) Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies. Nano Lett 8:1081–1089

    Article  CAS  Google Scholar 

  93. Chung S, Lee JH, Moon MW, Han J, Kamm RD (2008) Non-lithographic wrinkle nanochannels for protein preconcentration. Adv Mater 20:3011–3016

    Article  CAS  Google Scholar 

  94. Kumar A, Whitesides GM (1994) Patterned condensation figures as optical diffraction gratings. Science 263:60–62

    Article  CAS  Google Scholar 

  95. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–373

    Article  CAS  Google Scholar 

  96. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551–575

    Article  Google Scholar 

  97. Pompe T, Fery A, Herminghaus S, Kriele A, Lorenz H, Kotthaus JP (1999) Submicron contact printing on silicon using stamp pads. Langmuir 15:2398–2401

    Article  CAS  Google Scholar 

  98. Xia YN, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99:1823–1848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from German science foundation within SFB 481, “Complex Macromolecular and Hybrid Systems in Internal and External Fields” and within project Fe 600/4–1 “Structure–mechanical property relations of polyelectrolyte multilayer and free-standing membranes.” A.H. and A.B. acknowledge support by the Lichtenberg-Program of the Volkswagen Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schweikart, A., Horn, A., Böker, A., Fery, A. (2009). Controlled Wrinkling as a Novel Method for the Fabrication of Patterned Surfaces. In: Müller, A., Schmidt, HW. (eds) Complex Macromolecular Systems I. Advances in Polymer Science, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_2009_22

Download citation

Publish with us

Policies and ethics