Polymer Informatics

  • Nico AdamsEmail author
Part of the Advances in Polymer Science book series (POLYMER, volume 225)


Polymers are arguably the most important set of materials in common use. The increasing adoption of both combinatorial as well as high-throughput approaches, coupled with an increasing amount of interdisciplinarity, has wrought tremendous change in the field of polymer science. Yet the informatics tools required to support and further enhance these changes are almost completely absent. In the first part of the chapter, a critical analysis of the challenges facing modern polymer informatics is provided. It is argued, that most of the problems facing the field today are rooted in the current scholarly communication process and the way in which chemists and polymer scientists handle and publish data. Furthermore, the chapter reviews existing modes of representing and communicating polymer information and discusses the impact, which the emergence of semantic technologies will have on the way in which scientific and polymer data is published and transmitted. In the second part, a review of the use of informatics tools for the prediction of polymer properties and in silico design of polymers is offered.


Information systems Machine learning Ontology Polymer markup language Polymer informatics QSPR RDF Semantic web 



American Chemical Society


Artificial neural network


Bisphenol A Polycarbonate


Chemical Abstracts Service


Fourier Transform Infrared Spectroscopy


Genealogical Retrieval by Magnetic Tape Storage


Hamiltonian Interaction Modeling


High Throughput Experimentation


International Union of Pure and Applied Chemistry


Lower Critical Solution Temperature


Low Density Polyethylene


Linear Low Density Polyethylene


Web Ontology Language


Principal Component Analysis


Principal Component Regression


Portable document format


Polydispersity Index


Poly(ethylene terephthalate)


Polymer Documentation System of IDC with Inclusion of Analytical and Synthetic Concept Relations


Poly(vinyl alcohol)


Quantitative Structure Property Relationship


Correlation coefficient


Cross-validated correlation coefficient


Radial Basis Function


Resource Description Framework


Root Mean Square Error


Scientific, technical, medical


Glass transition temperature


Time-of-Flight Secondary Ion Mass Spectrometry


Topological Representation of Synthetic and Analytical Relations of Concepts


Upper Critical Solution Temperature




World Wide Web


eXtensible Markup Language


  1. 1.
    Yoshida M, Langer R, Lendlein A et al. (2006) From advanced biomedical coatings to multi-functionalized biomaterials. Polym Rev 46:347–375Google Scholar
  2. 2.
    Dewez JL, Lhoest JB, Detrait E et al. (1998) Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on defined patterns. Biomaterials 19:1441–1445CrossRefGoogle Scholar
  3. 3.
    Brocchini S, James K, Tangpasuthadol V et al. (1998) Structure-property coorrelations in a combinatorial library of degradable biomaterials. J Biomed Mat Res 42:66–75CrossRefGoogle Scholar
  4. 4.
    Cuchelkar V, Kopecek J (2006) Polymer-drug conjugates. In: Uchegbu IF and Schaetzlein AG (ed) Polym Drug Deliv, CRC Press, Boca RatonGoogle Scholar
  5. 5.
    Torchilin VP (2006) Polymorphic micelles as pharmaceutical carriers. Polym Drug Deliv 111–130Google Scholar
  6. 6.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Edn 45:1198–1215CrossRefGoogle Scholar
  7. 7.
    Khandare J, Minko T (2006) Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci 31:359–397CrossRefGoogle Scholar
  8. 8.
    Way JL, Petrikovics I, Jiang J et al. (2001) Application of dendrimeric polymers as a drug carrier in pharmacology. Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, United States, April 1–5, 2001 IEC-316Google Scholar
  9. 9.
    Kataoka K, Kwon GS, Yokoyama M et al. (1993) Block copolymer micelles as vehicles for drug delivery. J Contr Rel 24:119–132CrossRefGoogle Scholar
  10. 10.
    Malmsten M (2006) Soft drug delivery systems. Soft Matter 2:760–769CrossRefGoogle Scholar
  11. 11.
    Qiu LY, Bae YH (2006) Polymer architecture and drug delivery. Pharm Res 23:1–30CrossRefGoogle Scholar
  12. 12.
    Kang HC, Lee M, Bae YH (2007) Polymeric gene delivery vectors. In: Peppas NA, Hilt JZ, Thomas JB (ed) Nanotechnology in therapeutics Taylor and Francis, New YorkGoogle Scholar
  13. 13.
    Alexis F, Zeng J, Wang S (2007) PEI nanoparticles for targeted gene delivery. Gene Transfer 473–478Google Scholar
  14. 14.
    Leong KW (2006) Polymer design for nonviral gene delivery. BioMEMS Biomed Nanotechnol 1:239–263CrossRefGoogle Scholar
  15. 15.
    Mahato RI (2005) Water insoluble and soluble lipids for gene delivery. Adv Drug Deliv Rev 57:699–712CrossRefGoogle Scholar
  16. 16.
    Mahato RI, Kim SW (2005) Water soluble lipopolymers for gene delivery. In: Ammiji MM (ed) Polym Gene Deliv, CRC Press, Boca RatonGoogle Scholar
  17. 17.
    Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355CrossRefGoogle Scholar
  18. 18.
    Wagner E, Kloeckner J (2006) Gene delivery using polymer therapeutics. Adv Polym Sci 192:135–173CrossRefGoogle Scholar
  19. 19.
    Joester D, Losson M, Pugin R et al. (2003) Amphiphilic dendrimers: novel self-assembling vectors for efficient gene delivery. Angew Chem Int Ed 42:1486–1490CrossRefGoogle Scholar
  20. 20.
    Bjornerg HC, Derici L, Haggman BH et al. (2006) Hair care compositions comprising a dendritic polymer. 2005-EP7017 2006018064Google Scholar
  21. 21.
    Derici L, Harcup JP, Khoshdel E (2006) Hair care composition comprising a dendritic macromolecule. 2005-EP7016 2006018063Google Scholar
  22. 22.
    Goosey M (2007) An overview of polymers as key enablers in electronics assembly-a printed circuit board perspective. Polymers in Electronics 2007: Paper9/1-Paper9/5, Munich, GermanyGoogle Scholar
  23. 23.
    Rost H (2007) Printed electronic circuits. Kunstst 97:97–101Google Scholar
  24. 24.
    Xing R-b, Ding Y, Han Y-c (2007) Patterning of polymer by inkjet printing and its application in the fabrication of organic electronic devices. Fenzi Kexue Xuebao 23:75–81Google Scholar
  25. 25.
    Liang Z, Wang Q (2007) Patterning of conjugated polymers for organic electronics and optoelectronics. In: Naiwa HS (ed) Polym Nanostruct Their Appl, American Scientific Publishers, Stevenson Ranch, CaliforniaGoogle Scholar
  26. 26.
    Bock K (2005) Polytronics – electronics and systems on flexible substrates. IEEE VLSI-TSA International Symposium on VLSI Technology, Hsinchu, Taiwan, pp 53–56Google Scholar
  27. 27.
    Stafford N (2007) Large-scale biopolymer production. News/2007/May/14050701.asp, Accessed Dec 12 2008
  28. 28.
    Zhang H, Hoogenboom R, Meier MAR et al. (2004) High-throughput experimentation in polymer chemistry. Trans Mater Res Soc Jpn 29:319–324Google Scholar
  29. 29.
    Zhang H, Hoogenboom R, Meier MAR et al. (2005) Combinatorial and high-throughput approaches in polymer science. Meas Sci Technol 16:203–211CrossRefGoogle Scholar
  30. 30.
    Hoogenboom R, Fijten MWM, Wijnans S et al. (2006) High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. J Comb Chem 8:145–148CrossRefGoogle Scholar
  31. 31.
    Hoogenboom R, Schubert US (2005) High-throughput synthesis equipment applied to polymer research. Review of Scientific Instruments 76:062202/062201–062202/062207CrossRefGoogle Scholar
  32. 32.
    Brocchini S, James K, Tangpasuthadol V et al. (1997) A combinatorial approach for polymer design. J Am Chem Soc 119:4553CrossRefGoogle Scholar
  33. 33.
    Wiesbrock F, Hoogenboom R, Leenen MAM et al. (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl-, 2-ethyl-, 2-nonyl-, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034CrossRefGoogle Scholar
  34. 34.
    Wiesbrock F, Hoogenboom R, Abeln CH et al. (2004) Single-mode microwave ovens as new reaction devices: accelerating the living polymerization of 2-ethyl-2-Oxazoline. Macromol Rapid Commun 25:1895–1899CrossRefGoogle Scholar
  35. 35.
    Gilman JW, Bourbigot S, Shields JR et al. (2003) High throughput methods for polymer nanocomposites research: extrusion, NMR characterization and flammability property screening. J Mat Sci 38:4451Google Scholar
  36. 36.
    Davis RD, Bur AJ, McBearty M et al. (2004) Dielectric spectroscopy during extrusion processing of polymer nanocomposites: a high-throughput processing/characterization method to measure layered silicate content and exfoliation. Polymer 45:6487–6493CrossRefGoogle Scholar
  37. 37.
    Gilman JW, Davis RD, Bellayer S et al. (2005) Use of optical probes and laser scanning confocal fluorescence microscopy for high-throughput characterization of dispersion in polymer layered silicate nanocomposites. PMSE Prepr 92:168–169Google Scholar
  38. 38.
    Gilman JW, Davis RD, Shields JR et al. (2004) Development of high-throughput methods for polymer flammability property characterization. International SAMPE Symposium and Exhibition:460–469Google Scholar
  39. 39.
    Gilman JW, Maupin PH, Harris RH et al. (2004) High throughput methods for nanocomposite materials research. Extrusion and visible optical probes. PMSE Prepr. 90:717–718Google Scholar
  40. 40.
    Adams N, Moneke M, Gulmus SA et al. (2006) Combinatorial compounding. Mater Res Soc Symp Proc 894:171–179Google Scholar
  41. 41.
    Kranenburg JM, Tweedie CA, Hoogenboom R et al. (2007) Elastic moduli for a diblock copoly(2-oxazoline) library obtained by high-throughput screening. J Mater Chem 17:2713–2721CrossRefGoogle Scholar
  42. 42.
    Kranenburg JM, van Duin M, Schubert US (2007) Screening of EPDM cure states using depth-sensing indentation. Macromol Chem Phys 208:915–923CrossRefGoogle Scholar
  43. 43.
    Cheung K-H, Yip KY, Townsend JP et al. (2008) HCLS 2.0/3.0: health care and life sciences data mashup using Web 2.0/3.0. J Biomed Inform 41:694–705CrossRefGoogle Scholar
  44. 44.
    Walkingshaw AD, White TOH, Day NE et al. (2008) Representing, indexing and mining scientific data with XML and RDF: Golem and CrystalEye. XTech 2008: Dublin, IrelandGoogle Scholar
  45. 45.
    Ma H, Melillo G, Oliva L et al. (2005) Aluminum alkyl complexes supported by [OSSO] type bisphenolato ligands: synthesis, characterization and living polymerization of rac-lactide. Dalton Trans 721–727Google Scholar
  46. 46.
    Huggins ML (1969) Macromolecular nomenclature: general background and perspective. J Chem Doc 9:230–231CrossRefGoogle Scholar
  47. 47.
    Livingston HK, Fox RB (1969) Nomenclature of organic polymers. J Chem Doc 9:232–234CrossRefGoogle Scholar
  48. 48.
    Cohn WE (1969) Representation of macromolecules and polymers of biological importance. J Chem Doc 9:235–241CrossRefGoogle Scholar
  49. 49.
    Block BP, Thomas PM, Donovan KM (1969) Problems in the nomenclature of inorganic polymers. J Chem Doc 9:242–244CrossRefGoogle Scholar
  50. 50.
    Bikales NM (1969) Polymer nomenclature in industry. J Chem Doc 9:245–247CrossRefGoogle Scholar
  51. 51.
    Loening KL, Metanomski WV, Powell WH (1969) Indexing of polymers in Chemical Abstracts. J Chem Doc 9:248–251CrossRefGoogle Scholar
  52. 52.
    Metanomski WV (1979) Symposium on retrieval of polymer information: introductory remarks. J Chem Inf Comput Sci 19:59CrossRefGoogle Scholar
  53. 53.
    Langstaff EM, Ostrum K (1979) Access to polymer information in chemical abstracts. J Chem Inf Comput Sci 19:60–64CrossRefGoogle Scholar
  54. 54.
    Fugmann R (1979) POLIDCASYR: the polymer documentation system of IDC. J Chem Inf Comp Sci 19:64–68CrossRefGoogle Scholar
  55. 55.
    Donaruma LG (1979) Some problems encountered in interdisciplinary searches of the polymer literature. J Chem Inf Comp Sci 19:68–70CrossRefGoogle Scholar
  56. 56.
    Nardone J (1979) Computerized numeric data for polymers. J Chem Inf Comp Sci 19:71–73CrossRefGoogle Scholar
  57. 57.
    Roush PF, Seitz JT, Young LF (1979) An on-line system for storage and retrieval of polymer data. J Chem Inf Comp Sci 19:73–76CrossRefGoogle Scholar
  58. 58.
    Skolnik H (1979) A classification system for polymer literature in an industrial environment. J Chem Inf Comp Sci 19:76–79CrossRefGoogle Scholar
  59. 59.
    Zurbach Balent M, Lotz JW (1979) Polymers and patents don’t mix-easily. J Chem Inf Comp Sci 19:80–83CrossRefGoogle Scholar
  60. 60.
    Fugmann R (1974) Representation of concept relations using the TOSAR system of the IDC. J Am Soc Inf Sci 25:287–307CrossRefGoogle Scholar
  61. 61.
    Manola F, Miller E (2004) RDF Primer. Accessed Jul 10 2007
  62. 62.
    Brickley D, Guha RV (2004) RDF vocabulary description language 1.0: RDF schema. Accessed Dec 30 2008
  63. 63.
    McGuiness D, van Harmelen F (2004) OWL web ontology language overview. Dec 30 2008
  64. 64.
    Ranganathan SR (1963) Colon classification. Asia Publishing House, Bombay, IndiaGoogle Scholar
  65. 65.
    Metanomski WV (1991) Compendium of macromolecular nomenclature (the purple book). Blackwell Scientific Publications, OxfordGoogle Scholar
  66. 66.
    Kaback SM (1991) Polymer information: storage for retrieval, or hide and seek? Introduction. J Chem Inf Comput Sci 31:439–443CrossRefGoogle Scholar
  67. 67.
    Gushurst AJ, Nourse JG, Hounshell WD et al. (1991) The substance module: the representation, storage and searching of complex structures. J Chem Inf Comp Sci 31:447–454CrossRefGoogle Scholar
  68. 68.
    Kaback SM (1991) There’s more to a polymer than just its build. J Chem Inf Comput Sci 31:439–443CrossRefGoogle Scholar
  69. 69.
    Briggs JA, Ferns EA, Shenton KE (1991) Improvements in Derwent Plasdoc system. J Chem Inf Comput Sci 31:454–458CrossRefGoogle Scholar
  70. 70.
    Rieder MD (1991) The IFI polymer indexing system: its past, present and future. J Chem Inf Comput Sci 31:458–462CrossRefGoogle Scholar
  71. 71.
    Green C (1991) The Rapra abstracts rubber and plastics database. J Chem Inf Comput Sci 31:476–481CrossRefGoogle Scholar
  72. 72.
    Herz M (1991) Polymer searching in different databases. J Chem Inf Comput Sci 31:469–475CrossRefGoogle Scholar
  73. 73.
    Lambert N (1991) Online searching of polymer patents: precision and recall. J Chem Inf Comput Sci 31:443–446CrossRefGoogle Scholar
  74. 74.
    Wilke RN, Buntrock RE (1991) Condensation polymer information: problems and opportunities. J Chem Inf Comput Sci 31:463–468CrossRefGoogle Scholar
  75. 75.
    Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284:34–44CrossRefGoogle Scholar
  76. 76.
    Bray T, Paoli J, Sperberg-McQueen CM et al. (2006) Extensible markup language (XML) 1.1 (Second Edition). Jul 10 2007
  77. 77.
    W3C (2004) XML schema part 0: primer. Second edition Accessed Dec 12 2008
  78. 78.
    Holliday GL, Murray-Rust P, Rzepa HS (2006) Chemical markup, XML, and the world wide web. 6. CMLReact, an XML vocabulary for chemical reactions. J Chem Inf Model 46:145–157CrossRefGoogle Scholar
  79. 79.
    Murray-Rust P, Rzepa HS, Williamson MJ et al. (2004) Chemical markup, XML, and the world wide web. 5. Applications of chemical metadata in RSS aggregators. J Chem Inf Comput Sci 44:462–469CrossRefGoogle Scholar
  80. 80.
    Murray-Rust P, Rzepa HS (2003) Chemical markup, XML, and the world wide web. 4. CML schema. J Chem Inf Comput Sci 43:757–772CrossRefGoogle Scholar
  81. 81.
    Gkoutos GV, Murray-Rust P, Rzepa HS et al. (2001) Chemical markup, XML and the world-wide web. 3. Toward a signed semantic chemical web of trust. J Chem Inf Comput Sci 41:1124–1130CrossRefGoogle Scholar
  82. 82.
    Murray-Rust P, Rzepa HS (2001) Chemical markup, XML and the world-wide web. 2. Information objects and the CMLDOM. J Chem Inf Comput Sci 41:1113–1123CrossRefGoogle Scholar
  83. 83.
    Murray-Rust P, Rzepa H (1999) Chemical markup, XML, and the world-wide web. 1. Basic principles. J Chem Inf Comput Sci 39:928–942CrossRefGoogle Scholar
  84. 84.
    Frenkel M, Chiroco RD, Diky V et al. (2006) XML-based IUPAC standard for experimental, predicted, and critically evaluated thermodynamic property data storage and capture (ThermoML) (IUPAC Recommendations 2006). Pure Appl Chem 78:541–612CrossRefGoogle Scholar
  85. 85.
    Sankar P, Aghila G (2006) Design and development of chemical ontologies for reaction representation. J Chem Inf Model 46:2355–2368CrossRefGoogle Scholar
  86. 86.
    Sankar P, Aghila G (2007) Ontology aided modeling of organic reaction mechanisms with flexible and fragment based XML markup procedures. J Chem Inf Model 47:1747–1762CrossRefGoogle Scholar
  87. 87.
    Microsoft (2008) Chem4Word project. Accessed Dec 30 2008
  88. 88.
    Adams N, Murray-Rust P (2008) Engineering polymer informatics: towards the computer-aided design of polymers. Macromol Rapid Commun 29:615–632CrossRefGoogle Scholar
  89. 89.
    Adams N, Murray-Rust P, Winter J et al. (2008) Chemical markup, XML and the world wide web. 8. Polymer Markup Language. J Chem Inf Model 48:2118–2128CrossRefGoogle Scholar
  90. 90.
    Clark J (1999) XSL Transformations (XSLT). Accessed Aug 04 2008
  91. 91.
    de Matos P, Ennis M, Zbinden M et al. (2006) ChEBI – Chemical entities of biological interest., Accessed Dec 12 2008
  92. 92.
    Kanehisa M, Goto S, Kawashima S et al. (2004) The KEGG resource for decipering the genome. Nucleic Acids Res 32:D277–D280CrossRefGoogle Scholar
  93. 93.
    Fleischmann A, Darsow M, Degtyarenko K et al. (2004) IntEnz, the integrated relational enzyme database. Nucleic Acids Res 32:D434–D437CrossRefGoogle Scholar
  94. 94.
    Degtyarenko K (2007) The Rex ontology.$=$rex, Accessed Dec 30 2008
  95. 95.
    Degtyarenko K (2007) The FIX ontology.$=$fix, Accessed Dec 30 2008
  96. 96.
    Feldman HJ, Dumontier M, Lng S et al. (2005) CO: a chemical ontology for identification of functional groups and semantic comparison of small molecules. FEBS Lett 579:4685–4691CrossRefGoogle Scholar
  97. 97.
    Frey JG, Hughes GV, Mills HR et al. (2003) Less is more: lightweight ontologies and user interfaces for smart labs. UK e-Science All Hands Meeting:500–507, Nottingham, UKGoogle Scholar
  98. 98.
    Frey JG, de Roure D, Schraefel MC et al. (2003) Context slicing the chemical aether. First International Workshop on Hypermedia and the Semantic Web:9, Nottingham, UKGoogle Scholar
  99. 99.
    Taylor KR, Gledhill RJ, Essex JW et al. (2006) Bringing chemical data onto the semantic web. J Chem Inf Model 46:939–952CrossRefGoogle Scholar
  100. 100.
    Soldatova LN, Clare A, Sparkes A et al. (2006) An ontology for a robot scientist. Bioinformatics 22:e464–e471CrossRefGoogle Scholar
  101. 101.
    Niles I, Pease A (2001) Towards a standard upper ontology. Proceedings of the 2nd International Conference on Formal Ontology in Information Systems (FOIS-2001): Ogunquit, Maine, United StatesGoogle Scholar
  102. 102.
    Heller B, Herre H (2004) Ontological categories in GOL. Axiomathes 14:57–76CrossRefGoogle Scholar
  103. 103.
    Brandrup J, Immergut EH (1989) Polymer handbook. Wiley, New YorkGoogle Scholar
  104. 104.
    King J (2008) Text content in pdf files. _in_pdf_files.html. Accessed Dec 28 2008
  105. 105.
    Fenniri H, Chun S, Terreau O et al. (2007) Preparation and infrared/Raman classification of 630 spectroscopically encoded styrene copolymers. J Comb Chem 10:31–36CrossRefGoogle Scholar
  106. 106.
    Hall SR, Allen FH, Brown ID (1991) The Crystallographic Information File (CIF): a new standard archive file for crystallography. Acta Cryst A 47:655–685CrossRefGoogle Scholar
  107. 107.
    CCDC (2008) The Cambridge Crystallographic Data Centre. Accessed Dec 12 2008
  108. 108.
    Day NE (2008) CrystalEye. Accessed Dec 12 2008
  109. 109.
    Corbett P, Murray-Rust P (2006) High-throughput identification of chemistry in life science texts. Computational Life Sciences II. Lecture Notes in Computer Science, vol 4216, pp 107–118Google Scholar
  110. 110.
    Atkinson D (1992) The evolution of medical research writing from 1735 to 1985: the case of the Edinburgh Medical Journal. Appl Linguist 13:337–374CrossRefGoogle Scholar
  111. 111.
    Zaye DF, Metanomski WV (1986) Scientific communication pathways: an overview and introduction to a symposium. J Chem Inf Comput Sci 26:43–44CrossRefGoogle Scholar
  112. 112.
    Suh C, Rajagopalan A, Li X et al. (2002) The application of principal component analysis to materials science data. Data Sci J 1:19CrossRefGoogle Scholar
  113. 113.
    Bajorath J (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis and virtual screening. J Chem Inf Comput Sci 41:233CrossRefGoogle Scholar
  114. 114.
    Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2:37CrossRefGoogle Scholar
  115. 115.
    Vanden Eynde X, Bertrand P (1997) ToF-SIMS quantification of polystyrene spectra based on principal component analysis (PCA). Surf Interface Anal 25:878CrossRefGoogle Scholar
  116. 116.
    Coullerez G, Lundmark S, Malmstroem E et al. (2003) ToF-SIMS for the characterization of hyperbranched aliphatic polyesters: probing their molecular weight on surfaces based on principal component analysis (PCA). Surf Interface Anal 35:693–708CrossRefGoogle Scholar
  117. 117.
    Batur C, Vhora MH, Cakmak M et al. (1999) On-line crystallinity measurement using laser Raman spectrometer and neural network. ISA Trans 38:139–148CrossRefGoogle Scholar
  118. 118.
    Miranda TMR, Goncalves AR, Amorim MTP (2001) Ultraviolet-induced crosslinking of poly(vinyl alcohol) evaluated by principal component analysis of FTIR spectra. Polym Int 50:1068–1072CrossRefGoogle Scholar
  119. 119.
    Vazquez C, Boeykens S, Bonadeo H (2002) Total reflection X-ray fluorescence polymer spectra: classification by taxonomy statistic tools. Talanta 57:1113–1117CrossRefGoogle Scholar
  120. 120.
    Tuchbreiter A, Marquardt J, Zimmermann J et al. (2001) High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection fourier transform infrared spectroscopy. J Comb Chem 3:598–603CrossRefGoogle Scholar
  121. 121.
    Lukasiak BM, Faria R, Zomer S et al. (2006) Pattern recognition for the analysis of polymeric materials. Analyst 131:73–80CrossRefGoogle Scholar
  122. 122.
    van Krevelen DW (1990) Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions. Elsevier, AmsterdamGoogle Scholar
  123. 123.
    Bicerano J (2002) Prediction of polymer properties. Marcel Dekker Ltd, New YorkCrossRefGoogle Scholar
  124. 124.
    Stevens MP (1990) Polymer chemistry. An introduction. Oxford University Press, OxfordGoogle Scholar
  125. 125.
    Koehler MG, Hopfinger AJ (1989) Molecular modelling of polymers: 5. Inclusion of intermolecular energetics in estimating glass and crystal-melt transition temperatures. Polymer 30:116–126Google Scholar
  126. 126.
    Hopfinger AJ, Koehler MG, Pearlstein RA (1988) Molecular modling of polymers. IV. Estimation of glass transition temperatures. J Polym Sci Part B 26:2007–2028CrossRefGoogle Scholar
  127. 127.
    Katritzky AR, Rachwal P, Law KW et al. (1996) Prediction of polymer glass transition temperatures using a general quantitative structure-property relationship treatment. J Chem Inf Comput Sci 36:879–884CrossRefGoogle Scholar
  128. 128.
    Ivanciuc O (1997) CODESSA version 2.13 for Windows. J Chem Inf Comput Sci 37:405–406CrossRefGoogle Scholar
  129. 129.
    Katritzky AR, Sild S, Lobanov V et al. (1998) Quantitative structure-property relationship (QSPR) correlation of glass transition temperatures of high molecular weight polymers. J Chem Inf Comput Sci 38:300–304CrossRefGoogle Scholar
  130. 130.
    Cao C, Lin Y (2003) Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers. J Chem Inf Comput Sci 43:643–650CrossRefGoogle Scholar
  131. 131.
    Reynolds CH (1999) Designing diverse and focused combinatorial libraries of synthetic polymers. J Comb Chem 1:297–306CrossRefGoogle Scholar
  132. 132.
    Brown WM, Martin S, Rintoul MD et al. (2006) Designing novel polymers with targeted properties using the signature molecular descriptor. J Chem Inf Model 46:826–835CrossRefGoogle Scholar
  133. 133.
    Gurney K (1997) An introduction to neural networks. Routledge, LondonCrossRefGoogle Scholar
  134. 134.
    Sumpter BG, Getino C, Noid DI (1994) Theory and applications of neural computing in chemical science. Annu Rev Phys Chem 45:439–481CrossRefGoogle Scholar
  135. 135.
    Joyce SJ, Osguthorpe DJ, Padgett JA et al. (1995) Neural network prediction of glass-transition temperatures from monomer structure. J Chem Soc Faraday Trans 91:2491–2496CrossRefGoogle Scholar
  136. 136.
    Mattioni BE, Jurs PC (2002) Prediction of glass transition temperatures from monomer and repeat unit structure using computational neural networks. J Chem Inf Comput Sci 42:232–240CrossRefGoogle Scholar
  137. 137.
    Ulmer II CW, Smith DA, Sumpter BG et al. (1998) Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates. Comput Theor Polym Sci 8:311–321CrossRefGoogle Scholar
  138. 138.
    Schweizer KS, Curro JG (1994) PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys. Adv Polym Sci 116:319–377CrossRefGoogle Scholar
  139. 139.
    Porter D (1995) Group interaction modeling of polymer properties. Marcel Dekker, New YorkGoogle Scholar
  140. 140.
    Afantitis A, Melagraki G, Makridima K et al. (2005) Prediction of high weight polymers glass transition temperature using RBF neural networks. J Mol Struct: THEOCHEM 716:192–198CrossRefGoogle Scholar
  141. 141.
    Yu X, Yi B, Wang X et al. (2007) Correlation between the glass transition temperatures and multipole moments for polymers. Chem Phys 332:115–118CrossRefGoogle Scholar
  142. 142.
    Gao J, Wang X, Li X et al. (2006) Prediction of polyamide properties using quantum-chemical methods and BP artificial neural networks. J Mol Model 12:513–520CrossRefGoogle Scholar
  143. 143.
    Liu W, Yi P, Tang Z (2006) QSPR Models for various proeprties of polymethacrylates based on quantum chemical descriptors. QSAR Comb Sci 25:936–943CrossRefGoogle Scholar
  144. 144.
    Liu A, Wang X, Wang L et al. (2007) Prediction of dielectric constants and glass transition temperatures of polymers by quantitative structure-property relationships. Eur Polym J 43:989–995CrossRefGoogle Scholar
  145. 145.
    Duce C, Michell A, Starita A et al. (2006) Prediction of polymer properties from their structure by recursive neural networks. Macromol Rapid Commun 27:711–715CrossRefGoogle Scholar
  146. 146.
    Katritzky AR, Sild S, Karelson M (1998) Correlation and prediction of the refractive indices of polymers by QSPR. J Chem Inf Comput Sci 38:1171–1176CrossRefGoogle Scholar
  147. 147.
    Xu J, Chen B, Zhang Q et al. (2004) Prediction of refractive indices of linear polymers by a four descriptor QSPR model. Polymer 45:8651–8659CrossRefGoogle Scholar
  148. 148.
    Yu X, Yi B, Wang X (2007) Prediction of the refractive index of vinyl polymers by using density functional theory. J Comp Chem 28:2336–2341CrossRefGoogle Scholar
  149. 149.
    Xu J, Liang H, Chen B et al. (2008) Linear and nonlinear QSPR models to predict refractive indices of polymers from cyclic dimer structures. Chemom Intell Lab Syst 92:152–156CrossRefGoogle Scholar
  150. 150.
    Gao J, Xu J, Chen B et al. (2007) A quantitative structure-property relationship study for refractive indices of conjugated polymers. J Mol Model 13:573–578CrossRefGoogle Scholar
  151. 151.
    Liu H, Zhong C (2005) Modeling of the theta (lower critical solution temperature) in polymer solutions using molecular connectivity indices. Eur Polym J 41:139–147CrossRefGoogle Scholar
  152. 152.
    Liu H, Zhong C (2005) General correlation for the prediction of theta (lower critical solution temperature) in polymer solutions. Ind Eng Chem Res 44:634–638CrossRefGoogle Scholar
  153. 153.
    Melagraki G, Afantitis A, Sarimveis H et al. (2007) A novel QSPR model for predicting theta (lower critical solution temperature) in polymer solutions using molecular descriptors. J Mol Model 15:55–64Google Scholar
  154. 154.
    Xu J, Liu L, Xu W et al. (2007) A general QSPR model for the prediction of theta (lower critical solution temperature) in polymer solutions with topological indices. J Mol Graph Model 26:352–359CrossRefGoogle Scholar
  155. 155.
    Xu J, Chen B, Liang H (2008) Accurate prediction of theta (lower critical solution temperature) in polymer solutions based in 3D descriptors and artificial neural networks. Macromol Theory Simul 17:109–120CrossRefGoogle Scholar
  156. 156.
    Rushing TS, Hester RD (2004) Semi-empirical model for polyelectrolyte intrinsic viscosity as a function of ionic strength and polymer molecular weight. Polymer 45:6587–6594CrossRefGoogle Scholar
  157. 157.
    Afantitis A, Melagraki G, Sarimveis H et al. (2006) Prediction of intrinsic viscosity in polymer-solvent combinations using a QSPR model. Polymer 47:3240–3248CrossRefGoogle Scholar
  158. 158.
    Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701CrossRefGoogle Scholar
  159. 159.
    Duncan R, Ringsdorf H, Satchi-Fainaro R (2006) Polymer therapeutics: polymers as drugs, drug and protein conjugates and gene delivery systems: past, present and future opportunities. Adv Polym Sci 192:1–8CrossRefGoogle Scholar
  160. 160.
    G.S. Kwon, K. Kataoka (1995) Block copolymer micelles as long-circulating drug vehicles. Adv Drug Delivery Rev 16:295CrossRefGoogle Scholar
  161. 161.
    Hoffman AS, Stayton PS (2004) Bioconjugates of smart polymers and proteins: synthesis and applications. Macromol Symp 207:139–151CrossRefGoogle Scholar
  162. 162.
    Putnam D (2006) Polymers for gene delivery across length scales. Nat Mater 5:439–451CrossRefGoogle Scholar
  163. 163.
    Godbey WT, Wu KK, Mikos AG (1999) Poly(ethylenimine) and its role in gene delivery. J Controlled Release 60:149–160CrossRefGoogle Scholar
  164. 164.
    Hunter R, Strickland F, Kezdy F (1981) The adjuvant activity of nonionic block polymer surfactants. J Immunol 127:1244–1250Google Scholar
  165. 165.
    Hunter RL, Bennett B (1984) The adjuvant activity of nonionic block polymer surfactants. II. Antibody formation and inflammation related to the structure of the triblock and octablock copolymer. J Immunol 133:3167–3175Google Scholar
  166. 166.
    Brocchini S (2001) Combinatorial chemistry and biomedical polymer development. Adv Drug Delivery Rev 53:123–130CrossRefGoogle Scholar
  167. 167.
    Kholodovych V, Gubskaya A, Bohrer M et al. (2008) Prediction of biological response for large combinatorial libraris of biodegradable polymers: polymethacrylates as a test case. Polymer 49:2435–2439CrossRefGoogle Scholar
  168. 168.
    Yu X, Yi B, Liu F et al. (2008) Prediction of the dielectric dissipation factor tan delta of polymers with an ANN model based on DFT calculation. React Funct Polym 68:1557–1562CrossRefGoogle Scholar
  169. 169.
    Yu X, Wang X, Wang H et al. (2006) Prediction of solubility parameters for polymers by a QSPR model. QSAR Comb Sci 25:156–161CrossRefGoogle Scholar
  170. 170.
    Yu X, Xie Z, Yi B et al. (2007) Prediction of the thermal decomposition property of polymers using quantum chemical descriptors. Eur Polym J 818–823Google Scholar
  171. 171.
    Toropov AA, Nurgaliev IN, Balakhonenko OI et al. (2004) QSPR modeling of vitrification temperatures for polyarylene oxides. J Struct Chem 45:706–712CrossRefGoogle Scholar
  172. 172.
    Nantasenamat C, Isarankura-Na-Ayudhya I, Naenna T et al. (2007) Quantitative structure-imprinting factor relationship of molecularly imprinted polymers. Biosens Bioelectron 2007:3309–3317CrossRefGoogle Scholar
  173. 173.
    Si HZ, Zhang KJ, Hu ZD et al. (2007) QSAR model for prediction capacity factor of molecular imprinting polymer based on gene expression programming. QSAR Comb Sci 26:41–50CrossRefGoogle Scholar
  174. 174.
    Hamoudeh M, Faraj AA, Canet-Soulas E et al. (2007) Elaboration of PLLA-based superparamagnetic nanoparticles: characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int J Pharm 338:248–257CrossRefGoogle Scholar
  175. 175.
    Service CA (1997) Chemical Abstracts Index Guide 1997. ColumbusGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Unilever Centre for Molecular Science InformaticsUniversity Chemical Laboratory, University of CambridgeCambridgeUK

Personalised recommendations