Advertisement

Parallel Optimization and High-Throughput Preparation of Well-Defined Copolymer Libraries Using Controlled/“Living” Polymerization Methods

  • C. Remzi Becer
  • Ulrich S. Schubert
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 225)

Abstract

This chapter highlights the application of controlled/“living” polymerization (CLP) techniques in automated parallel synthesizers for both optimizing reaction parameters as well as preparing copolymer libraries. Special attention is given to the use of CLP techniques for constructing well-defined copolymer libraries. Furthermore, alternative strategies for the preparation of block copolymer libraries are discussed.

Keywords

Automated parallel synthesis Block copolymers High-throughput experimentation Polymer libraries Random copolymers 

Abbreviations

AA

Acrylic acid

AcBr

Acetyl bromide

AcCl

Acetyl chloride

AcI

Acetyl iodide

AFM

Atomic force microscopy

AIBN

α,α-Azobisisobutyronitrile

Amor

N-Acryoyl morpholine

ATRP

Atom transfer radical polymerization

BEB

(1-Bromo ethyl) benzene

bpy

4, 4 -Dialkyl substituted bipyridine

BrEBiB

2-Bromo-2-methylpropanoyl bromide

CBDB

2-Cyano-2-butyl dithio benzoate

CLP

Controlled/“living” polymerization

CROP

Cationic ring opening polymerization

CRP

Controlled radical polymerization

CTA

Chain transfer agent

DMA

N,N-Dimethyl acrylamide

DMAc

N,N-Dimethyl acetamide

DMAEMA

N,N-Dimethyl aminoethyl acrylamide

DMF

N,N-Dimethyl formamide

DP

Degree of polymerization

DSC

Differential scanning calorimetry

EEA

1-Ethoxy ethyl acrylate

EBIB

Ethyl-2-bromo-iso-butyrate

EtOx

2-Ethyl-2-oxazoline

GC

Gas chromatography

HPA

2-Hydoxypropyl acrylate

iPrOx

2-iso-Propyl-2-oxazoline

LCST

Lower critical solution temperature

MA

Methyl acrylate

MAA

Methacrylic acid

MADIX

Macromolecular design via the interchange of xanthates

MBP

Methyl bromo propionate

MMA

Methyl methacrylate

MeOMA

2-Methoxyethyl 2-methylacrylate

MeO2MA

2-(2-Methoxyethoxy)ethyl 2-methylacrylate

MeOx

2-Methyl-2-oxazoline

Mn

Number average molar mass

nBA

n-Butyl acrylate

NIPAM

N-Isopropyl acrylamide

NMP

Nitroxide mediated polymerization

NMR

Nuclear magnetic resonance

NonOx

2-Nonyl-2-oxazoline

OEGMA

Oligo(ethyleneglycol) methyl ether methacrylate

OEGEMA

Oligo(ethylene glycol) ethyl ether methacrylate

PAA

Poly(acrylic acid)

PDI

Polydispersity index

PEEA

Poly(1-ethoxyethyl acrylate)

PEG

Poly(ethyleneglycol)

PEO

Poly(ethylene oxide)

PheOx

2-Phenyl-2-oxazoline

PDMAEMA

Poly(N,N-dimethyl aminoethyl methacrylate)

PMA

Poly(methyl acrylate)

PMMA

Poly(methyl methacrylate)

PnBA

Poly(n-butyl acrylate)

PSt

Poly(styrene)

PtBA

Poly(tert-butyl acrylate)

RAFT

Reversible addition-fragmentation chain transfer

SEC

Size exclusion chromatography

s-BuLi

sec-Butyllithium

SPE

Solid phase extraction

SoyOx

2-“Soyalkyl”-2-oxazoline

St

Styrene

tBA

tert-Butyl acrylate

TEMPO

2,2,6,6-Tetramethyl-1-piperidinyloxy stable radical

Tg

Glass transition temperature

TGA

Thermal gravimetric analysis

TsCl

p-Toluene sulfonyl chloride

Notes

Acknowledgement

Financial support from the Dutch Polymer Institute (DPI project #502) is gratefully acknowledged.

References

  1. 1.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101:3689–3745CrossRefGoogle Scholar
  2. 2.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101: 2921–2990CrossRefGoogle Scholar
  3. 3.
    Hawker CJ, Bosman AW, Harth E (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev 101:3661–3688CrossRefGoogle Scholar
  4. 4.
    Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410CrossRefGoogle Scholar
  5. 5.
    Hadjichristidis N, Pitsikalis M, Pispas S et al. (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792CrossRefGoogle Scholar
  6. 6.
    de Gans BJ, Duineveld P, Schubert US (2004) Ink-jet printing of polymers: state of the art and future developments. Adv Mater 16:203–213CrossRefGoogle Scholar
  7. 7.
    Tekin E, Smith PJ, Schubert US (2008) Inkjet printing of functional materials: from polymers to nanoparticles and molecules. Soft Matter 4:703–713CrossRefGoogle Scholar
  8. 8.
    de Gans BJ, Schubert US (2003) Ink-jet printing of polymer microarrays and libraries: requirements, possibilities and available instrumentation. Macromol Rapid Commun 24:659–666CrossRefGoogle Scholar
  9. 9.
    Meredith JC, Smith AP, Karim A et al. (2000) Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33:9747–9756CrossRefGoogle Scholar
  10. 10.
    Smith AP, Douglas JF, Meredith JC et al. (2001) High-throughput characterization of pattern formation in symmetric diblock copolymer films. J Polym Sci Part B Polym Phys 39: 2141–2158CrossRefGoogle Scholar
  11. 11.
    Webster DC (2008) Combinatorial and high-throughput methods in macromolecular materials research and development. Macromol Chem Phys 209:237–246CrossRefGoogle Scholar
  12. 12.
    Green JJ, Langer R, Anderson DG (2008) A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc Chem Res 41:749–759CrossRefGoogle Scholar
  13. 13.
    Lynn DM, Anderson DG, Putnam D et al. (2001) Accelerated discovery of synthetic transfection vectors: parallel synthesis and screening of a degradable polymer library. J Am Chem Soc 123:8155–8156CrossRefGoogle Scholar
  14. 14.
    Reynolds CH (1999) Designing diverse and focused combinatorial libraries of synthetic polymers. J Comb Chem 1:297–306CrossRefGoogle Scholar
  15. 15.
    Anderson DG, Peng W, Akinc A, Hossain N, Kohn A, Padera R, Langer R, Sawicki JA (2004) A polymer library approach to suicide gene therapy for cancer. Proc Nat Acad Sci USA 101:16028–16033CrossRefGoogle Scholar
  16. 16.
    Szwarc M (1956) Living polymers. Nature 178:1168–1169CrossRefGoogle Scholar
  17. 17.
    IUPAC (1997) Compendium of chemical terminology, (the “Gold Book”), 2nd edn. In: McNaught AD, Wilkinson A (eds) Blackwell, Oxford (XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0–9678550–9–8)
  18. 18.
    Moad G, Solomon DH (1995) The chemistry of free radical polymerization. Elsevier Science, BathGoogle Scholar
  19. 19.
    Sawamoto M, Kamigaito M (1999) In: Schlueter D (ed) Synthesis of polymers. VCH, WeinheimGoogle Scholar
  20. 20.
    Otsu T, Matsumoto A (1998) Controlled synthesis of polymers using the iniferter technique: developments in living radical polymerization. Adv Polym Sci 136:75–137CrossRefGoogle Scholar
  21. 21.
    Ajayaghosh A, Francis R (1998) Narrow polydispersed reactive polymers by a photoinitiated free radical polymerization approach. Controlled polymerization of methyl methacrylate. Macromolecules 31:1436–1438CrossRefGoogle Scholar
  22. 22.
    Ajayaghosh A, Francis R (1999) A xanthate-derived photoinitiator that recognizes and controls the free radical polymerization pathways of methyl methacrylate and styrene. J Am Chem Soc 121:6599–6606CrossRefGoogle Scholar
  23. 23.
    Borsig E, Lazar M, Capla M (1967) Polymerization of methyl methacrylate initiated by 3,3,4,4-tetraphenyl hexane and 1,1,2,2-tetraphenyl cyclopentane. Makromol Chem 105:212CrossRefGoogle Scholar
  24. 24.
    Sebenik A (1998) Living free-radical block copolymerization using thio-iniferters. Prog Polym Sci 23:875–917CrossRefGoogle Scholar
  25. 25.
    Qin SH, Qiu KY, Swift G et al. (1999) “Living” radical polymerization of methyl methacrylate with diethyl 2,3-dicyano-2,3-diphenylsuccinate as a thermal iniferter. J Polym Sci Part A Polym Chem 37:4610–4615CrossRefGoogle Scholar
  26. 26.
    Moad G, Rizzardo E (1995) Alkoxyamine-initiated living radical polymerization: factors affecting alkoxyamine homolysis rates. Macromolecules 28:8772–8728CrossRefGoogle Scholar
  27. 27.
    Moad G, Rizzardo E, Thang SH (2008) Toward living radical polymerization. Acc Chem Res 41:1133–1142CrossRefGoogle Scholar
  28. 28.
    Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization – atom transfer radical polymerization in the presence of transition metal complexes. J Am Chem Soc 117:5614–5615CrossRefGoogle Scholar
  29. 29.
    Kato M, Kamigaito M, Sawamoto M et al. (1995) Polymerization of methyl methacrylate with the carbon-tetrachloride dichlorotris(triphenylphosphine)-ruthenium(II) methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system – possibility of living radical polymerization. Macromolecules 28:1721–1723CrossRefGoogle Scholar
  30. 30.
    Kwak Y, Matyjaszewski K (2008) Effect of initiator and ligand structures on ATRP of styrene and methyl methacrylate initiated by alkyl dithiocarbamate. Macromolecules 41:6627–6635CrossRefGoogle Scholar
  31. 31.
    Tang W, Matyjaszewski K (2007) Effects of initiator structure on activation rate constants in ATRP. Macromolecules 40:1858–1863CrossRefGoogle Scholar
  32. 32.
    Tang W, Kwak Y, Braunecker W et al. (2008) Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 130:10702–10713CrossRefGoogle Scholar
  33. 33.
    Becer CR, Groth AM, Paulus RM et al. (2008) Protocol for automated kinetic investigation/optimization of the RAFT polymerization of various monomers. QSAR Comb Sci 27:977–983CrossRefGoogle Scholar
  34. 34.
    Zhang HQ, Marin V, Fijten MWM et al. (2004) High-throughput experimentation in ATRP: a general approach toward a directed design and understanding of optimal catalytic systems. J Polym Sci Part A Polym Chem 42:1876–1885CrossRefGoogle Scholar
  35. 35.
    Meier MAR, Schubert US (2006) Selected successful approaches in combinatorial materials research. Soft Matter 2:371–376CrossRefGoogle Scholar
  36. 36.
    Meier MAR, Hoogenboom R, Schubert US (2004) Combinatorial methods, automated synthesis and high-throughput screening in polymer research: the evolution continues. Macromol Rapid Commun 25:21–33CrossRefGoogle Scholar
  37. 37.
    Hoogenboom R, Meier MAR, Schubert US (2003) Combinatorial methods, automated synthesis and high-throughput screening in polymer research: past and present. Macromol Rapid Commun 24:15–32CrossRefGoogle Scholar
  38. 38.
    Meier MAR, Schubert US (2004) Combinatorial polymer research and high-throughput experimentation: powerful tools for the discovery and evaluation of new materials. J Mater Chem 14:3289–3299CrossRefGoogle Scholar
  39. 39.
    Zhang HQ, Hoogenboom R, Meier MAR et al. (2005) Combinatorial and high-throughput approaches in polymer science. Meas Sci Technol 16:203–211CrossRefGoogle Scholar
  40. 40.
    Guerrero-Sanchez G, Paulus RM, Fijten MWM et al. (2006) High-throughput experimentation in synthetic polymer chemistry: from RAFT and anionic polymerizations to process development. Appl Surf Sci 252:2555–2561CrossRefGoogle Scholar
  41. 41.
    Zhang HQ, Abeln CH, Fijten MWM et al. (2006) High-throughput experimentation applied to atom transfer radical polymerization: automated optimization of the copper catalysts removal from polymers. e-polymers 8:1–9Google Scholar
  42. 42.
    Zhang HQ, Fijten MWM, Hoogenboom R et al. (2003) Application of a parallel synthetic approach in atom transfer radical polymerization: set up and feasibility demonstration. Macromol Rapid Commun 24:81–86CrossRefGoogle Scholar
  43. 43.
    Moad G, Rizzardo E, Solomon DH (1982) Selectivity of the reaction of free radicals with styrene. Macromolecules 15:909–914CrossRefGoogle Scholar
  44. 44.
    Georges MK, Veregin RPN, Kazmaier PM et al. (1993) Narrow molecular weight resins by a free radical polymerization process. Macromolecules 26:2987–2988CrossRefGoogle Scholar
  45. 45.
    Hawker CJ (1994) Molecular weight control by a living free radical process. J Am Chem Soc 116:11185–11186CrossRefGoogle Scholar
  46. 46.
    Hawker CJ, Barclay GG, Orellana A et al. (1996) Initiating systems for nitroxide-mediated “living” free radical polymerizations: synthesis and evaluation. Macromolecules 29:5245–5254CrossRefGoogle Scholar
  47. 47.
    Benoit D, Grimaldi S, Robin S et al. (2000) Kinetics and mechanism of controlled free-radical polymerization of styrene and n-butyl acrylate in the presence of an acyclic beta-phosphonylated nitroxide. J Am Chem Soc 122:5929–5939CrossRefGoogle Scholar
  48. 48.
    Benoit D, Chaplinski V, Braslau R et al. (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J Am Chem Soc 121:3904–3920CrossRefGoogle Scholar
  49. 49.
    Becer CR, Paulus RM, Hoogenboom R et al. (2006) Optimization of the NMRP conditions for styrene and tert-butylacrylate in an automated parallel synthesizer. J Polym Sci Part A Polym Chem 44:6202–6213CrossRefGoogle Scholar
  50. 50.
    Eggenhuisen TM, Becer CR, Fijten MWM et al. (2008) Libraries of statistical hydroxypropyl acrylate containing copolymers with LCST properties prepared by NMP. Macromolecules 41:5132–5140CrossRefGoogle Scholar
  51. 51.
    Chiefari J, Chong YK, Ercole F (1998) Living free radical polymerization by reversible addition-fragmentation chain transfer – the RAFT process. Macromolecules 31:5559–5562CrossRefGoogle Scholar
  52. 52.
    Corpart P, Charmot D, Biadatti T et al. (1999) Block polymer synthesis by controlled radical polymerization. (WO9858974) Chem Abstr 130:82018Google Scholar
  53. 53.
    Chapon P, Mignaud C, Lizarraga G et al. (2003) Automated parallel synthesis of MADIX (co)polymers. Macromol Rapid Commun 24:87–91CrossRefGoogle Scholar
  54. 54.
    Fijten MWM, Paulus RM, Schubert US (2005) Systematic parallel investigation of RAFT polymerizations for eight different (meth)acrylates: a basis for the designed synthesis of block and random copolymers. J Polym Sci Part A Polym Chem 43:3831–3839CrossRefGoogle Scholar
  55. 55.
    Guerrero-Sanchez C, Abeln C, Schubert US (2005) Automated parallel anionic polymerizations: enhancing the possibilities of a widely used technique in polymer synthesis. J Polym Sci Part A Polym Chem 43:4151–4160CrossRefGoogle Scholar
  56. 56.
    Gilman H, Jaubein AH (1941) The quantitative analysis of alkyllithium compounds. J Am Chem Soc 66:1515–1516CrossRefGoogle Scholar
  57. 57.
    Hadjichristidis N, Iatrou H, Pispas S et al. (2000) Anionic polymerization: high vacuum techniques. J Polym Sci Part A Polym Chem 38:3211–3234CrossRefGoogle Scholar
  58. 58.
    Glusker DL, Lysloff I, Stiles E (1961) Mechanism of anionic polymerization of methyl methacrylate II. Use of molecular weight distributions to establish a mechanism. J Polym Sci 49:315–334Google Scholar
  59. 59.
    Auguste S, Edwards HGM, Johnson AF et al. (1996) Anionic polymerization of styrene and butadiene initiated by n-butyllithium in ethylbenzene: determination of the propagation rate constants using Raman spectroscopy and gel permeation chromatography. Polymer 37:3665–3673CrossRefGoogle Scholar
  60. 60.
    Wang GM, van Beylen M (2003) Influence of π-complexing agents on the anionic polymerization of styrene with lithium as counterion in cyclohexane. 1. Effect of durene. Polymer 44:6205–6210CrossRefGoogle Scholar
  61. 61.
    Tomalia DA, Sheetz DP (1966) Homopolymerization of 2-alkyl and 2-aryl-2-oxazolines. J Polym Sci Part A Polym Chem 4:2253–2265CrossRefGoogle Scholar
  62. 62.
    Seelinger W, Aufderhaar E, Diepers W et al. (1966) Recent synthesis and reactions of cyclic imidic esters. Angew Chem 20:913–927CrossRefGoogle Scholar
  63. 63.
    Hoogenboom R, Fijten MWM, Paulus RM et al. (2006) Accelerated pressure synthesis and characterization of 2-oxazoline block copolymers. Polymer 47:75–84CrossRefGoogle Scholar
  64. 64.
    Hoogenboom R, Fijten MWM, Schubert US (2004) The effect of temperature on the living cationic polymerization of 2-phenyl-2-oxazoline explored utilizing an automated synthesizer. Macromol Rapid Commun 25:339–343CrossRefGoogle Scholar
  65. 65.
    Hoogenboom R, Fijten MWM, Schubert US (2004) Parallel kinetic investigation of 2-oxazoline polymerizations with different initiators as basis for designed copolymer synthesis. J Polym Sci Part A Polym Chem 42:1830–1840CrossRefGoogle Scholar
  66. 66.
    Hoogenboom R, Wiesbrock F, Leenen MAM et al. (2005) Accelerating the living polymerization of 2-nonyl-2-oxazoline by implementing a microwave synthesizer into a high-throughput experimentation workflow. J Comb Chem 7:10–13CrossRefGoogle Scholar
  67. 67.
    Hoogenboom R, Paulus RM, Fijten MWM et al. (2005) Concentration effects in the CROP of 2-ethyl-2-oxazoline in N,N-dimethyl acetamide. J Polym Sci Part A Polym Chem 43: 1487–1497CrossRefGoogle Scholar
  68. 68.
    Wiesbrock F, Hoogenboom R, Leenen MAM et al. (2005) Investigation of the living cationic ring-opening polymerization of 2-methyl, 2-ethyl, 2-nonyl, and 2-phenyl-2-oxazoline in a single-mode microwave reactor. Macromolecules 38:5025–5034CrossRefGoogle Scholar
  69. 69.
    Paulus RM, Becer CR, Hoogenboom R et al. (2008) Acetyl halide initiator screening for the cationic ring opening polymerization of 2-ethyl-2-oxazoline. Macromol Chem Phys 209: 794–800CrossRefGoogle Scholar
  70. 70.
    Yagci Y, Tasdelen MA (2006) Mechanistic transformations involving living and controlled/living polymerization methods. Prog Polym Sci 31:1133–1170CrossRefGoogle Scholar
  71. 71.
    Bernaerts KV, Du Prez FE (2006) Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog Polym Sci 31:671–722CrossRefGoogle Scholar
  72. 72.
    Becer CR, Paulus RM, Hoppener S et al. (2008) Synthesis of poly(2-ethyl-2-oxazoline)-b-poly(styrene) copolymers via a dual initiator route combining cationic ring opening polymerization and atom transfer radical polymerization. Macromolecules 41:5210–5215CrossRefGoogle Scholar
  73. 73.
    Becer CR, Hahn S, Fijten MWM et al. (2008) Libraries of MAA and OEGMA copolymers with LCST behavior. J Polym Sci Part A Polym Chem 46:7138–7147CrossRefGoogle Scholar
  74. 74.
    Fournier D, Hoogenboom R, Thijs HML, Paulus RM, Schubert US (2007) Tunable pH- and temperature-sensitive copolymer libraries by RAFT of methacrylates. Macromolecules 40:915–920CrossRefGoogle Scholar
  75. 75.
    Lutz JF, Hoth A (2006) Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate. Macromolecules 39:893–896CrossRefGoogle Scholar
  76. 76.
    Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci Part A Polym Chem 46:3459–3470CrossRefGoogle Scholar
  77. 77.
    Thomas EL, Anderson DM, Henkee CS et al. (1988) Periodic area-minimizing surfaces in block copolymers. Nature 334:598–601CrossRefGoogle Scholar
  78. 78.
    Lohmeijer BGG, Wouters D, Yin ZH et al. (2004) Block copolymer libraries: modular versatility of the macromolecular Lego (R) system. Chem Commun 24:2886–2887CrossRefGoogle Scholar
  79. 79.
    Pochan DJ, Chen Z, Cui H et al. (2004) Toroidal triblock copolymer assemblies. Science 306:94–97CrossRefGoogle Scholar
  80. 80.
    Jain S, Bates FS (2003) On the origins of morphological complexity in block copolymer surfactants. Science 300:460–464CrossRefGoogle Scholar
  81. 81.
    Gohy JF (2005) Block copolymer micelles. Adv Polym Sci 190:65–136CrossRefGoogle Scholar
  82. 82.
    Ladaviere C, Dorr N, Claverie JP (2001) Controlled radical polymerization of acrylic acid in protic media. Macromolecules 34:5370–5372CrossRefGoogle Scholar
  83. 83.
    Couvreur L, Lefay C, Belleney J (2003) First nitroxide-mediated controlled free-radical polymerization of acrylic acid. Macromolecules 36:8260–8267CrossRefGoogle Scholar
  84. 84.
    Haddleton DM, Crossman MC, Dana BH et al. (1999) Atom transfer polymerization of methyl methacrylate mediated by alkylpyridylmethan-imine type ligands, copper(I) bromide, and alkyl halides in hydrocarbon solution. Macromolecules 32:2110–2119CrossRefGoogle Scholar
  85. 85.
    Butun V, Vamvakaki M, Billingham NC et al. (2000) Synthesis and aqueous solution properties of novel neutral/acidic block copolymers. Polymer 41:3173–3182CrossRefGoogle Scholar
  86. 86.
    Mori H, Muller AHE (2003) New polymeric architectures with (meth)acrylic acid segments. Prog Polym Sci 28:1403–1439CrossRefGoogle Scholar
  87. 87.
    Hoogenboom R, Schubert US, van Camp W et al. (2005) RAFT polymerization of 1-ethoxy ethyl acrylate: a novel route toward near-monodisperse poly(acrylic acid) and derived block copolymer structures. Macromolecules 38:7653–7659CrossRefGoogle Scholar
  88. 88.
    Hoogenboom R, Fijten MWM, Wijnans S et al. (2006) High-throughput synthesis and screening of a library of random and gradient copoly(2-oxazoline)s. J Comb Chem 8:145–148CrossRefGoogle Scholar
  89. 89.
    Hoogenboom R, Fijten MWM, Thijs HML et al. (2007) Synthesis, characterization, and cross-linking of a library of statistical copolymers based on 2-“soy alkyl”-2-oxazoline and 2-ethyl-2-oxazoline. J Polym Sci Part:A Polym Chem 45:5371–5379CrossRefGoogle Scholar
  90. 90.
    Wiesbrock F, Hoogenboom R, Leenen M et al. (2005) Microwave-assisted synthesis of a 4 ×2-membered library of diblock copoly(2-oxazoline)s and chain-extended homo poly(2-oxazoline)s and their thermal characterization. Macromolecules 38:7957–7966CrossRefGoogle Scholar
  91. 91.
    Hoogenboom R, Wiesbrock F, Huang H et al. (2006) Microwave-assisted cationic ring-opening polymerization of 2-oxazolines: a powerful method for the synthesis of amphiphilic triblock copolymers. Macromolecules 39:4719–4725CrossRefGoogle Scholar
  92. 92.
    Lohmeijer BGG, Schubert US (2002) Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew Chem Int Ed 41:3825–3829CrossRefGoogle Scholar
  93. 93.
    Lohmeijer BGG, Schubert US (2005) The LEGO toolbox: supramolecular building blocks by NMP. J Polym Sci Part A Polym Chem 43:6331–6344CrossRefGoogle Scholar
  94. 94.
    Lohmeijer BGG, Schubert US (2003) Water-soluble building blocks for metallo-supramolecular polymers: synthesis, complexation and decomplexation studies of poly(ethyleneoxide) moities. Macromol Chem Phys 204:1072–1078CrossRefGoogle Scholar
  95. 95.
    Gohy JF, Lohmeijer BGG, Schubert US (2003) From supramolecular block copolymers to advanced nano-objects. Chem Eur J 9:3472–3479CrossRefGoogle Scholar
  96. 96.
    Meier MAR, Lohmeijer BGG, Schubert US (2003) Characterization of defined metal containing supramolecular block copolymers. Macromol Rapid Commun 24:852–857CrossRefGoogle Scholar
  97. 97.
    Lohmeijer BGG, Schubert US (2004) Expanding the supramolecular polymer LEGO system: nitroxide mediated living free radical polymerization for metallo-supramolecular block copolymers with a polystyrene block. J Polym Sci Part A Polym Chem 42:4016–4027CrossRefGoogle Scholar
  98. 98.
    Gohy JF, Lohmeijer BGG, Alexeev A, Wang XS, Manners I, Winnik MA, Schubert US (2004) Cylindrical micelles from the aqueous self-assembly of an amphiphilic poly(ethylene oxide)-b-poly(ferrocenylsilane) (PEO-b-PFS) block copolymer with a metallo-supramolecular linker at the block junction. Chem Eur J 20:4315–4323CrossRefGoogle Scholar
  99. 99.
    Hofmeier H, El-ghayoury A, Schenning APH, Schubert US (2004) New supramolecular polymers containing both terpyridine metal complexes and quadruple hydrogen bonding units. Chem Commun 318–319Google Scholar
  100. 100.
    Zhu L, Chen Y, Zhang AQ et al. (1999) Phase structures and morphologies determined by competitions among self-organization, crystallization, and vitrification in a disordered poly(ethylene oxide)-b-polystyrene diblock copolymer. Phys Rev B Condens Matter 60:10022–10031CrossRefGoogle Scholar

Copyright information

© Springer 2010

Authors and Affiliations

  1. 1.Laboratory of Macromolecular Chemistry and NanoscienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Laboratory of Organic and Macromolecular ChemistryFriedrich-Schiller-University JenaJenaGermany
  3. 3.Dutch Polymer InstituteEindhovenThe Netherlands

Personalised recommendations