Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles

Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 230)

Abstract

In this review, we report recent developments on the shear-induced transitions and instabilities found in surfactant wormlike micelles. The survey focuses on the nonlinear shear rheology and covers a broad range of surfactant concentrations, from the dilute to the liquid-crystalline states and including the semidilute and concentrated regimes. Based on a systematic analysis of many surfactant systems, the present approach aims to identify the essential features of the transitions. It is suggested that these features define classes of behaviors. The review describes three types of transitions and/or instabilities: the shear-thickening found in the dilute regime, the shear-banding which is linked in some systems to the isotropic-to-nematic transition, and the flow-aligning and tumbling instabilities characteristic of nematic structures. In these three classes of behaviors, the shear-induced transitions are the result of a coupling between the internal structure of the fluid and the flow, resulting in a new mesoscopic organization under shear. This survey finally highlights the potential use of wormlike micelles as model systems for complex fluids and for applications.

Instabilities under shear Lyotropic mesophases Shear-banding Shear-thickening Surfactant Viscoelasticity Wormlike micelles 

Abbreviations and Notations

Al(NO3)3

Aluminum nitrate

AlCl3

Aluminum chloride

CP/Sal

Cetylpyridinium salicylate

CPCl

Cetylpyridinium chloride

CPClO3

Cetylpyridinium chlorate

C8F17

Perfluorooctyl butane trimethylammonium bromide

C12E5

Penta(ethylene glycol) monododecyl ether

C12TAB

Dodecyltrimethylammonium bromide

C14TAB

Tetradecyltrimethylammonium bromide

C14DMAO

Tetradecyldimethylamine oxide

C16TAB

Hexadecyltrimethylammonium bromide

C16TAC

Hexadecyltrimethylammonium chloride

C18TAB

Octadecyltrimethylammonium bromide

C18-C8DAB

Hexadecyloctyldimethylammonium bromide

CnTAB

Alkyltrimethylammonium bromide

CTAHNC

Cetyltrimethylammonium 3-hydroxy-2-naphthalenecarboxylate

CTAT

Hexadecyltrimethylammonium p-toluenesulfonate

CTAVB

Cetyltrimethylammonium benzoate

Dec

Decanol

DJS

Diffusive Johnson-Segalman

DLS

Dynamic light scattering

DR

Drag reduction

EHAC

Erucyl bis(hydroxyethyl)methylammoniumchloride

FB

Flow birefringence

FI

Faraday instability

Gemini 12-2-12

Ethane diyl-1,2-bis-(dodecyl dimethylammonium bromide)

Hex

Hexanol

HPC

Hydroxypropyl cellulose

I/N

Isotropic-to-nematic

KBr

Potassium bromide

LAPB

Laurylamidopropyl betaine

LSI

Light scattering imaging

LCP

Liquid crystalline polymer

NaCl

Sodium chloride

NaClBz

Sodium chlorobenzoate

NaClO3

Sodium chlorate

NaNO3

Sodium nitrate

NaSal

Sodium salicylate

NaTos

Sodium p-toluenesulfonate or sodium tosylate

NH4Cl

Ammonium chloride

NMR

Nuclear magnetic resonance

PBLG

Poly(benzyl-L-glutamate)

PEO

Poly(ethylene oxide)

PIV

Particle image velocimetry

PTV

Particle tracking velocimetry

SANS

Small-angle neutron scattering

SALS

Small-angle light scattering

SAXS

Small-angle X-ray scattering

SDBS

Sodium dodecyl benzyl sulfonate

SDES

Sodium dodecyl trioxyethylene sulfate

SdS

Sodium decylsulfate

SDS

Sodium dodecyl sulfate

SIP

Shear-induced phase

SIS

Shear-induced structure

TTAA

Tris(2-hydroxyethyl)-tallowalkyl ammonium acetate

USV

Ultrasonic velocimetry

References

  1. 1.
    Debye P, Anacker E (1951) Micelle shape from dissymetry measurements. J Phys Chem 55:644–655Google Scholar
  2. 2.
    Nash T (1958) The interaction of some naphtalene derivatives with a cationic soap below the critical micelle concentration. J Colloid Sci 13:134–139Google Scholar
  3. 3.
    Gravsholt S (1976) Viscoelasticity in highly dilute aqueous solutions of pure cationic detergents. J Colloid Interface Sci 57:575–577Google Scholar
  4. 4.
    Porte G, Appell J, Poggi Y (1980) Experimental investigations on the flexibility of elongated cetylpyridinium bromide micelles. J Phys Chem 84:3105–3110Google Scholar
  5. 5.
    Porte G, Appell J (1981) Growth and size distributions of cetylpyridinium bromide micelles in high ionic strength aqueous solutions. J Phys Chem 85:2511–2519Google Scholar
  6. 6.
    Ikeda S (1984) Sphere-rod transition of surfactant micelles and size distribution of rodlike micelles. J Phys Chem 88:2144–2149Google Scholar
  7. 7.
    Candau S, Hirsch E, Zana R (1985) Light scattering investigations of the behavior of semidilute aqueous micellar solutions of cetyltrimethylammonium bromide: analogy with semidilute polymer solutions. J Colloid Interface Sci 105:521–528Google Scholar
  8. 8.
    Imae T, Kamiya R, Ikeda S (1984) Electron microscopic observation of rodlike micelles of dimethyloleylamine oxide regenerated from its aqueous solutions. J Colloid Interface Sci 99(1):300–301Google Scholar
  9. 9.
    Imae T, Kamiya R, Ikeda S (1985) Formation of spherical and rodlike micelles of cetyltrimethylammonium bromide in aqueous nabr solutions. J Colloid Interface Sci 108(1):215–225Google Scholar
  10. 10.
    Imae T, Ikeda S (1986) Sphere-rod transition in micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles. J Phys Chem 90(1):5216–5223Google Scholar
  11. 11.
    Porte G, Poggi Y, Appell J, Maret G (1984) Large micelles in concentrated solutions. The second critical micellar concentration. J Phys Chem 88:5713–5720Google Scholar
  12. 12.
    Porte G, Gomati R, Elhaitamy O, Appell J, Marignan J (1986) Morphological transformations of the primary surfactant structures in brine-rich mixtures of ternary-systems (surfactant alcohol brine). J Phys Chem 90(22):5746–5751Google Scholar
  13. 13.
    Candau S, Hirsch E, Zana R (1984) New aspects of the behaviour of alkyltrimethylammonium bromide micelles: light scattering and viscometric studies. J Phys 45:1263–1270Google Scholar
  14. 14.
    Candau S, Hirsch E, Zana R, Adam M (1988) Network properties of semidilute kbr solutions of cetyltrimetylammonium bromide. J Colloid Interface Sci 122:430–440Google Scholar
  15. 15.
    Amaral L, Helene M, Bittencourt D, Itri R (1987) New nematic lyomesophase of sodium dodecyl sulfate. J Phys Chem 91:5949–5953Google Scholar
  16. 16.
    Gomati R, Appell J, Bassereau P, Marignan J, Porte G (1987) Influence of the nature of the counterion and of hexanol on the phase behavior of the dilute ternary systems: cetylpyridinium bromide or chloride-hexanol-brine. J Phys Chem 91:6203–6210Google Scholar
  17. 17.
    Amaral L, Helene MM (1988) Nematic domain in the sodium lauryl sulfate/water/decanol system. J Phys Chem 92:6094–6098Google Scholar
  18. 18.
    Hertel G, Hoffmann H (1988) Lyotropic nematic phases of double chain surfactants. Trends Colloid Interface Sci 4:123–131Google Scholar
  19. 19.
    Hoffmann H, Löbl H, Rehage H, Wunderlich I (1985) Rheology of surfactant solutions. Tenside Detergents 22:290–298Google Scholar
  20. 20.
    Shikata T, Hirata K, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media. 1. viscoelastic properties of aqueous cetyltrimethylammonium bromide solutions. Langmuir 3:1081–1086Google Scholar
  21. 21.
    Rehage H, Hoffmann H (1988a) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719Google Scholar
  22. 22.
    Shikata T, Hirata K, Kotaka T (1988b) Micelle formation of detergent molecules in aqueous media. 2. role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4:354–359Google Scholar
  23. 23.
    Shikata T, Hirata H, Takatori E, Osaki K (1988a) Nonlinear viscoelastic behavior of aqueous detergent solutions. J Non-Newt Fluid Mech 28(2):171–182Google Scholar
  24. 24.
    Shikata T, Hirata K, Kotaka T (1989) Micelle formation of detergent molecules in aqueous media. 3. viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 5:398–405Google Scholar
  25. 25.
    Cates ME, Candau SJ (1990) Statics and dynamics of wormlike surfactant micelles. J Phys Cond Matt 2(33):6869–6892Google Scholar
  26. 26.
    Shikata T, Hirata K, Kotaka T (1990) Micelle formation of detergent molecules in aqueous media. 4. electrostatic features and phase behavior of cetyltrimethylammonium bromide:salicylic acid micellar solutions. J Phys Chem 94:3702–3706Google Scholar
  27. 27.
    Kern F, Zana R, Candau SJ (1991) Rheological properties of semidilute and concentrated aqueous-solutions of cetyltrimethylammonium chloride in the presence of sodium-salicylate and sodium-chloride. Langmuir 7(7):1344–1351Google Scholar
  28. 28.
    Rehage H, Hoffmann H (1991) Viscoelastic surfactant solutions – model systems for rheological research. Mol Phys 74(5):933–973Google Scholar
  29. 29.
    Clausen TM, Vinson PK, Minter JR, Davis HT, Talmon Y, Miller WG (1992) Viscoelastic micellar solutions – microscopy and rheology. J Phys Chem 96(1):474–484Google Scholar
  30. 30.
    Khatory A, Lequeux F, Kern F, Candau SJ (1993b) Linear and nonlinear viscoelasticity of semidilute solutions of wormlike micelles at high-salt content. Langmuir 9(6):1456–1464Google Scholar
  31. 31.
    Khatory A, Kern F, Lequeux F, Appell J, Porte G, Morie N, Ott A, Urbach W (1993a) Entangled versus multiconnected network of wormlike micelles. Langmuir 9(4):933–939Google Scholar
  32. 32.
    Berret JF, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9(11):2851–2854Google Scholar
  33. 33.
    Berret JF, Roux DC, Porte G (1994a) Isotropic-to-nematic transition in wormlike micelles under shear. J Phys II (France) 4(8):1261–1279Google Scholar
  34. 34.
    Smolka LB, Belmonte A (2003) Drop pinch-off and filament dynamics of wormlike micellar fluids. J Non-Newt Fluid Mech 115(1):1–25Google Scholar
  35. 35.
    Bellour M, Skouri M, Munch JP, Hébraud P (2002) Brownian motion of particles embedded in a solution of giant micelles. Eur Phys J E 8:431–436Google Scholar
  36. 36.
    Buchanan M, Atakhorrami M, Palierne JF, MacKintosh FC, Schmidt CF (2005) High-frequency microrheology of wormlike micelles. Phys Rev E 72(1):011,504Google Scholar
  37. 37.
    Willenbacher N, Oelschlaeger C, Schopferer M, Fischer P, Cardinaux F, Scheffold F (2007) Broad bandwidth optical and mechanical rheometry of wormlike micelle solutions. Phys Rev Lett 99(6):068,302Google Scholar
  38. 38.
    Cappallo N, Lapointe C, Reich DH, Leheny RL (2007) Nonlinear microrheology of wormlike micelle solutions using ferromagnetic nanowire probes. Phys Rev E 76(3)Google Scholar
  39. 39.
    Raudsepp A, Callaghan P, Hemar Y (2008) A study of the nonlinear rheology of complex fluids using diffusing wave spectroscopy. J Rheol 52(5):1113–1129Google Scholar
  40. 40.
    Cates ME (1988) Dynamics of living polymers and flexible surfactant micelles – scaling laws for dilution. J Phys 49(9):1593–1600Google Scholar
  41. 41.
    Doi M, Edwards S (1986) The theory of polymer dynamics. Oxford, ClarendonGoogle Scholar
  42. 42.
    Lequeux F, Candau S (1994) Dynamical properties of wormlike micelles. In: Herb C, Prud’homme R (eds) Structure and flow in surfactant solutions. ACS Symposium Series 578. American Chemical Society, Washington, DC, pp 51–62Google Scholar
  43. 43.
    Walker LM (2001) Rheology and structure of wormlike micelles. Curr Opin Colloid Inter Sci 6(5–6):451–456Google Scholar
  44. 44.
    Berret JF (2005) Rheology of wormlike micelles: equilibrium properties and shear-banding transition. In: Molecular gels, Elsevier, DordrechtGoogle Scholar
  45. 45.
    Prudhomme RK, Warr GG (1994) Elongational flow of solutions of rodlike micelles. Langmuir 10(10):3419–3426Google Scholar
  46. 46.
    Walker LM, Moldenaers P, Berret JF (1996) Macroscopic response of wormlike micelles to elongational flow. Langmuir 12(26):6309–6314Google Scholar
  47. 47.
    Chen CM, Warr GG (1997) Light scattering from wormlike micelles in an elongational field. Langmuir 13(6):1374–1376Google Scholar
  48. 48.
    Rothstein JP (2003) Transient extensional rheology of wormlike micelle solutions. J Rheol 47(5):1227–1247Google Scholar
  49. 49.
    Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newt Fluid Mech 133(2–3):73–90Google Scholar
  50. 50.
    Andereck D, Liu S, Swinney H (1986) Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech 164:155–183Google Scholar
  51. 51.
    Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent solutions. Rheol Acta 21:561–563Google Scholar
  52. 52.
    Hoffmann H, Platz G, Rehage H, Schorr W, Ulbricht W (1981b) Viskoelastische tensidlsungen. Ber Bunsenges Phys Chem 85:255–266Google Scholar
  53. 53.
    Shenoy A (1984) A review on drag reduction with special reference to micellar systems. Colloid Polym Sci 262:319–337Google Scholar
  54. 54.
    Bewersdorff HW, Frings B, Lindner P, Oberthür RC (1986) The conformation of drag reducing micelles from small-angle-neutron-scattering experiments. Rheol Acta 25(6):642–646Google Scholar
  55. 55.
    Ohlendorf D, Interthal W, Hoffmann H (1986) Surfactant systems for drag reduction: physico-chemical properties and rheological behaviour. Rheol Acta 25(5):468–486Google Scholar
  56. 56.
    Lindner P, Bewersdorff H, Heen R, Sittart P, Thiel H, Langowski J, Oberthür R (1990) Drag-reducing surfactant solutions in laminar and turbulent flow investigated by small-angle neutron scattering and light scattering. Trends Colloid Interface Sci 4:107–112Google Scholar
  57. 57.
    Boltenhagen P, Hu YT, Matthys EF, Pine DJ (1997b) Observation of bulk phase separation and coexistence in a sheared micellar solution. Phys Rev Lett 79(12):2359–2362Google Scholar
  58. 58.
    Sung K, Han MS, Kim C (2003) Rheological behavior and wall slip of dilute and semidilute CPyCl/NaSal surfactant solutions. Korea-Australia Rheol J 15(3):151–156Google Scholar
  59. 59.
    Wunderlich I, Hoffmann H, Rehage H (1987) Flow birefringence and rheological measurements on shear induced micellar structures. Rheol Acta 26(6):532–542Google Scholar
  60. 60.
    Koch S, Schneider T, Küter W (1998) The velocity field of dilute cationic surfactant solutions in a couette-viscometer. J Non-Newtonian Fluid Mech 78(1):47–59Google Scholar
  61. 61.
    Dehmoune J, Decruppe J, Greffier O, Xu H (2007) Rheometric and rheo-optical investigation on the effect of the aliphatic chain length of the surfactant on the shear thickening of dilute wormlike micellar solutions. Rheol Acta 46(8):1121–1129Google Scholar
  62. 62.
    Wunderlich A, Brunn P (1989) The complex rheological behavior of an aqueous cationic surfactant solution investigated in a couette-type viscosimeter. Colloid Polym Sci 267:627–636Google Scholar
  63. 63.
    Hu YT, Wang SQ, Jamieson AM (1993b) Rheological and flow birefringence studies of a shear-thickening complex fluid – a surfactant model system. J Rheol 37(3):531–546Google Scholar
  64. 64.
    Liu CH, Pine DJ (1996) Shear-induced gelation and fracture in micellar solutions. Phys Rev Lett 77(10):2121–2124Google Scholar
  65. 65.
    Vasudevan M, Shen A, Khomami B, Sureshkumar R (2008) Self-similar shear thickening behavior in ctab/nasal surfactant solutions. J Rheol 52(2):527–550Google Scholar
  66. 66.
    Cressely R, Hartmann V (1998) Rheological behaviour and shear thickening exhibited by aqueous ctab micellar solutions. Eur Phys J B 6(1):57–62Google Scholar
  67. 67.
    Hartmann V, Cressely R (1998) Occurrence of shear thickening in aqueous micellar solutions of CTAB with some added organic counterions. Colloid Polym Sci 276(2):169–175Google Scholar
  68. 68.
    Hartmann V, Cressely R (1997b) Simple salts effects on the characteristics of the shear thickening exhibited by an aqueous micellar solution of CTAT/NaSal. Europhys Lett 40:691–696Google Scholar
  69. 69.
    Rose GD, Foster KL (1989) Drag reduction and rheological properties of cationic viscoelastic surfactant formulations. J Non-Newt Fluid Mech 31(1):59–85Google Scholar
  70. 70.
    Hu Y, Rajaram CV, Wang SQ, Jamieson AM (1994) Shear thickening behavior of a rheopectic micellar solution – salt effects. Langmuir 10(1):80–85Google Scholar
  71. 71.
    Hartmann V, Cressely R (1997a) Shear-thickening of an aqueous micellar solution of cetyltrimethylammonium bromide and sodium tosylate. J Phys II France 7:1087–1098Google Scholar
  72. 72.
    Kim WJ, Yang SM (2000) Effects of sodium salicylate on the microstructure of an aqueous micellar solution and its rheological responses. J Colloid Interface Sci 232(2):225–234Google Scholar
  73. 73.
    Kim WJ, Yang SM (2001) Flow-induced microstructure in aqueous cationic surfactant solution in the presence of structure-enhancing additives. J Chem Eng Jpn 34(2):227–231Google Scholar
  74. 74.
    Hu H, Larson RG, Magda JJ (2002) Measurement of wall-slip-layer rheology in shear-thickening wormy micelle solutions. J Rheol 46(4):1001–1021Google Scholar
  75. 75.
    Gamez-Corrales R, Berret JF, Walker L, Oberdisse J (1999) Shear-thickening dilute surfactant solutions: the equilibrium structure as studied by small-angle neutron scattering. Langmuir 15:6755–6763Google Scholar
  76. 76.
    Truong M, Walker L (2002) Quantifying the importance of micellar microstructure and electrostatic interactions on the shear-induced structural transition of cylindrical micelles. Langmuir 18(6):2024–2031Google Scholar
  77. 77.
    Berret JF, Lerouge S, Decruppe J (2002) Kinetics of the shear-thickening transition observed in dilute surfactant solutions and investigated by flow birefringence. Langmuir 18:7279–7286Google Scholar
  78. 78.
    Berret JF, Gamez-Corrales R, Lerouge S, Decruppe J (2000a) Shear-thickening transition in surfactant solutions: new experimental features from rheology and flow birefringence. Eur Phys J E 2:343–350Google Scholar
  79. 79.
    Berret JF, Gamez-Corrales R, Séréro Y, Molino F, Lindner P (2001) Shear-induced micellar growth in dilute surfactant solutions. Europhys Lett 54:605–611Google Scholar
  80. 80.
    Bandyopadhyay R, Basappa G, Sood AK (2000) Observation of chaotic dynamics in dilute sheared aqueous solutions of ctat. Phys Rev Lett 84(9):2022–2025Google Scholar
  81. 81.
    Macias ER, Bautista F, Soltero JFA, Puig JE, Attane P, Manero O (2003) On the shear thickening flow of dilute ctat wormlike micellar solutions. J Rheol 47(3):643–658Google Scholar
  82. 82.
    Torres MF, Gonzalez JM, Rojas MR, Muller AJ, Saez AE, Lof D, Schillen K (2007) Effect of ionic strength on the rheological behavior of aqueous cetyltrimethylammonium p-toluene sulfonate solutions. J Colloid Interface Sci 307(1):221–228Google Scholar
  83. 83.
    Lu B, Li X, Scriven L, Davis H, Talmon Y, Zakin J (1998) Effect of chemical structure on viscoelasticity and extensional viscosity of drag-reducing cationic surfactant solutions. Langmuir 14:8–16Google Scholar
  84. 84.
    Qi Y, Zakin J (2002) Chemical and rheological characterization of drag-reducing cationic surfactant systems. Ind Eng Chem Res 41(25):6326–6336Google Scholar
  85. 85.
    Hofmann S, Rauscher A, Hoffmann H (1991) Shear induced micellar structures. Ber Bunsenges Phys Chem 95(2):153–164Google Scholar
  86. 86.
    Hu Y, Wang S, Jamieson A (1993a) Kinetic studies of a shear thickening micellar solution. J Colloid Interface Sci 156(1):31–37Google Scholar
  87. 87.
    Prtzl B, Springer J (1997) Light scattering experiments on shear induced structures of micellar solutions. J Colloid Interface Sci 190:327–333Google Scholar
  88. 88.
    Schmitt V, Schosseler F, Lequeux F (1995b) Structure of salt-free wormlike micelles – signature by sans at rest and under shear. Europhys Lett 30(1):31–36Google Scholar
  89. 89.
    Oda R, Panizzza P, Schmutz M, Lequeux F (1997) Direct evidence of the shear-induced structure of wormlike micelles: gemini 12-2-12. Langmuir 13:6407–6412Google Scholar
  90. 90.
    Oda R, Weber V, Lindner P, Pine D, Mendes E, Schloesser F (2000) Time-resolved small-angle neutron scattering study of shear-thickening surfactant solutions after the cessation of flow. Langmuir 14:4859–4863Google Scholar
  91. 91.
    Weber V, Schosseler F (2002) Shear-thickening in salt-free aqueous solutions of a gemini cationic surfactant: A study by small angle light scattering. Langmuir 18(25):9705–9712Google Scholar
  92. 92.
    Weber V, Narayanan T, Mendes E, Schosseler F (2003) Micellar growth in salt-free aqueous solutions of a gemini cationic surfactant: evidence for a multimodal population of aggregates. Langmuir 19(4):992–1000Google Scholar
  93. 93.
    Oelschlaeger C, Waton G, Candau SJ, Cates ME (2002b) Structural, kinetics, and rheological properties of low ionic strength dilute solutions of a dimeric (gemini) surfactant. Langmuir 18(20):7265–7271Google Scholar
  94. 94.
    Oda R, Lequeux F, Mendes E (1996) Evidence for local orientational order in salt-free wormlike micelles: a transient electric birefingence study. J Phys II France 6:1429–1439Google Scholar
  95. 95.
    Oda R, Narayanan J, Hassan P, Manohar C, Salkar R, Kern F, Candau S (1998) Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactant. Langmuir 14:4364–4372Google Scholar
  96. 96.
    Hu YT, Boltenhagen P, Pine DJ (1998b) Shear thickening in low-concentration solutions of wormlike micelles. i. direct visualization of transient behavior and phase transitions. J Rheol 42(5):1185–1208Google Scholar
  97. 97.
    Myska J, Stern P (1994) Properties of drag reducing micelle system. Colloid Polym Sci 272:542–547Google Scholar
  98. 98.
    Boltenhagen P, Hu YT, Matthys EF, Pine DJ (1997a) Inhomogeneous structure formation and shear-thickening in wormlike micellar solutions. Eur Phys Lett 38(5):389–394Google Scholar
  99. 99.
    Hu YT, Boltenhagen P, Matthys E, Pine DJ (1998a) Shear thickening in low-concentration solutions of wormlike micelles. ii. slip, fracture, and stability of the shear-induced phase. J Rheol 42(5):1209–1226Google Scholar
  100. 100.
    In M, Aguerre-Chariol O, Zana R (1999a) Closed-looped micelles in surfactant tetramer solutions. J Phys Chem B 103:7747–7750Google Scholar
  101. 101.
    In M, Aguerre-Chariol O, Zana R (1999b) Dynamics of branched threadlike micelles. Phys Rev lett 83:2278–2281Google Scholar
  102. 102.
    Lin Z, Zheng Y, Davis H, Scriven L, Talmon Y, Zakin J (2000) Unusual effects of counterion to surfactant concentration ratio on viscoelasticity of a cationic surfactant drag reducer. J Non-Newt Fluid Mech 93:363–373Google Scholar
  103. 103.
    Truong M, Walker L (2000) Controlling the shear-induced structural transition of rodlike micelles using nonionic polymer. Langmuir 16:7991–7998Google Scholar
  104. 104.
    Lee JY, Magda JJ, Hu H, Larson RG (2002) Cone angle effects, radial pressure profile, and second normal stress difference for shear-thickening wormlike micelles. J Rheol 46(1):195–208Google Scholar
  105. 105.
    Keller S, Boltenhagen P, Pine D, Zasadzinski J (1997) Direct observation of shear-induced structures in wormlike micellar solutions by freeze-fracture electron microscopy. Phys Rev Lett 80:2725–2728Google Scholar
  106. 106.
    Hoffmann H, Platz G, Rehage H, Schorr W (1981a) The influence of counter-ion concentration on the aggregation behaviour of viscoelastic detergents. Ber Bunsenges Phys Chem 85:877–882Google Scholar
  107. 107.
    Oelschlaeger C, Waton G, Candau S, Cates M (2002a) Structural, kinetics, and rheological properties of low ionic strength dilute solutions of a dimeric (gemini) surfactant. Langmuir 18(20):7265–7271Google Scholar
  108. 108.
    Berret JF, Gamez-Corrales R, Oberdisse J, Walker LM, Lindner P (1998a) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677–682Google Scholar
  109. 109.
    Deutsch M (1991) Orientational order determination in liquid crystals by X-ray diffraction. Phys Rev A 44:8264–8270Google Scholar
  110. 110.
    Barentin C, Liu AJ (2001) Shear thickening in dilute solutions of wormlike micelles. Europhys Lett 55:432–438Google Scholar
  111. 111.
    Schmitt V, Lequeux F (1995) SANS spectra and elastic plateau modulus in a charged wormlike micelles solution – effect of salt. J Phys II (France) 5(2):193–197Google Scholar
  112. 112.
    Larson R (1999) The Structure and rheology of complex fluids. New York University press, New YorkGoogle Scholar
  113. 113.
    Larson R (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263Google Scholar
  114. 114.
    Ajdari A (1998) Rheological behavior of a solution of particles aggregating on the containing walls. Phys Rev E 58(4):6294–6298Google Scholar
  115. 115.
    Goveas JL, Pine D (1999) A phenomenological model for shear-thickening in wormlike micelle solutions. Europhys Lett 48:706–712Google Scholar
  116. 116.
    Cates M, Turner M (1990) Flow-induced gelation of rodlike micelles. Europhys Lett 7: 681–686Google Scholar
  117. 117.
    Bruinsma R, Gelbart W, Ben-Shaul A (1992) Flow-induced gelation of living (micellar) polymers. J Chem Phys 96:7710–7727Google Scholar
  118. 118.
    Turner M, Cates M (1992) Flow-induced phase transition in rodlike micelles. J Phys Condens Matter 4:3719–3741Google Scholar
  119. 119.
    Cates ME, Fielding SM (2006) Rheology of giant micelles. Adv Phys 55(7–8):799–879Google Scholar
  120. 120.
    Olmsted PD (2008) Perspectives on shear-banding in complex fluids. Rheol Acta 47(3):283–300Google Scholar
  121. 121.
    Salmon JB, Manneville S, Colin A (2003b) Shear banding in a lyotropic lamellar phase. I. Time-averaged velocity profiles. Phys Rev E 68(5):051503Google Scholar
  122. 122.
    Salmon JB, Manneville S, Colin A (2003c) Shear banding in a lyotropic lamellar phase. II. Temporal fluctuations. Phys Rev E 68(5):051504Google Scholar
  123. 123.
    Berret JF, Serero Y (2001) Evidence of shear-induced fluid fracture in telechelic polymer networks. Phys Rev Lett 87(4):048303Google Scholar
  124. 124.
    Manneville S, Colin A, Waton G, Schosseler F (2007) Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Phys Rev E 75(6):061502Google Scholar
  125. 125.
    Lettinga MP, Dhont JKG (2004) Non-equilibrium phase behaviour of rodlike viruses under shear flow. J Phys Cond Matt 16(38):S3929–S3939Google Scholar
  126. 126.
    Pujolle-Robic C, Noirez L (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers. Nature 409(6817):167–171Google Scholar
  127. 127.
    Volkova O, Cutillas S, Bossis G (1999) Shear banded flows and nematic-to-isotropic transition in ER and MR fluids. Phys Rev Lett 82(1):233–236Google Scholar
  128. 128.
    Coussot P, Raynaud JS, Bertrand F, Moucheront P, Guilbaud JP, Huynh HT, Jarny S, Lesueur D (2002) Coexistence of liquid and solid phases in flowing soft-glassy materials. Phys Rev Lett 88(21):218301Google Scholar
  129. 129.
    Losert W, Bocquet L, Lubensky TC, Gollub JP (2000) Particle dynamics in sheared granular matter. Phys Rev Lett 85(7):1428–1431Google Scholar
  130. 130.
    Mueth DM, Debregeas GF, Karczmar GS, Eng PJ, Nagel SR, Jaeger HM (2000) Signatures of granular microstructure in dense shear flows. Nature 406(6794):385–389Google Scholar
  131. 131.
    Debregeas G, Tabuteau H, di Meglio JM (2001) Deformation and flow of a two-dimensional foam under continuous shear. Phys Rev Lett 87(17):178305Google Scholar
  132. 132.
    Lauridsen J, Chanan G, Dennin M (2004) Velocity profiles in slowly sheared bubble rafts. Phys Rev Lett 93(1):018303Google Scholar
  133. 133.
    Gilbreth C, Sullivan S, Dennin M (2006) Flow transitions in two-dimensional foams. Phys Rev E 74(5):051406Google Scholar
  134. 134.
    Cates ME, McLeish TCB, Marrucci G (1993) The rheology of entangled polymers at very high shear rates. Europhys Lett 21(4):451–456Google Scholar
  135. 135.
    Callaghan PT, Cates ME, Rofe CJ, Smeulders J (1996) A study of the “spurt effect” in wormlike micelles using nuclear magnetic resonance microscopy. J Phys II 6(3):375–393Google Scholar
  136. 136.
    Rehage H, Hoffmann H (1988b) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92(16):4712–4719Google Scholar
  137. 137.
    Berret JF, Porte G, Decruppe JP (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55(2):1668–1676Google Scholar
  138. 138.
    Berret JF (1997) Transient rheology of wormlike micelles. Langmuir 13(8):2227–2234Google Scholar
  139. 139.
    Britton MM, Mair RW, Lambert RK, Callaghan PT (1999) Transition to shear banding in pipe and couette flow of wormlike micellar solutions. J Rheol 43(4):897–909Google Scholar
  140. 140.
    Grand C, Arrault J, Cates ME (1997) Slow transients and metastability in wormlike micelle rheology. J Phys II 7(8):1071–1086Google Scholar
  141. 141.
    Mendez-Sanchez AF, Lopez-Gonzalez MR, Rolon-Garrido VH, Perez-Gonzalez J, de Vargas L (2003a) Instabilities of micellar systems under homogeneous and non-homogeneous flow conditions. Rheol Acta 42(1–2):56–63Google Scholar
  142. 142.
    Schmitt V, Marques CM, Lequeux F (1995a) Shear-induced phase-separation of complex fluids – the role of flow-concentration coupling. Phys Rev E 52(4):4009–4015Google Scholar
  143. 143.
    Fielding SM, Olmsted PD (2003) Flow phase diagrams for concentration-coupled shear banding. Eur Phys J E 11(1):65–83Google Scholar
  144. 144.
    Lerouge S, Decruppe JP, Berret JF (2000) Correlations between rheological and optical properties of a micellar solution under shear banding flow. Langmuir 16(16):6464–6474Google Scholar
  145. 145.
    Mair RW, Callaghan PT (1996) Observation of shear banding in wormlike micelles by nmr velocity imaging. Eur Phys Lett 36(9):719–724Google Scholar
  146. 146.
    Mair RW, Callaghan PT (1997) Shear flow of wormlike micelles in pipe and cylindrical Couette geometries as studied by nuclear magnetic resonance microscopy. J Rheol 41(4):901–924Google Scholar
  147. 147.
    Britton MM, Callaghan PT (1997a) Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry. J Rheol 41(6):1365–1386Google Scholar
  148. 148.
    Britton MM, Callaghan PT (1997b) Two-phase shear band structures at uniform stress. Phys Rev Lett 78(26):4930–4933Google Scholar
  149. 149.
    Fischer P, Rehage H (1997) Non-linear flow properties of viscoelastic surfactant solutions. Rheol Acta 36(1):13–27Google Scholar
  150. 150.
    Britton MM, Callaghan PT (1999) Shear banding instability in wormlike micellar solutions. Eur Phys J B 7(2):237–249Google Scholar
  151. 151.
    Porte G, Berret JF, Harden JL (1997) Inhomogeneous flows of complex fluids: mechanical instability versus non-equilibrium phase transition. J Phys II 7(3):459–472Google Scholar
  152. 152.
    Mendez-Sanchez AF, Perez-Gonzalez J, de Vargas L, Castrejon-Pita JR, Castrejon-Pita AA, Huelsz G (2003b) Particle image velocimetry of the unstable capillary flow of a micellar solution. J Rheol 47(6):1455–1466Google Scholar
  153. 153.
    Lee JY, Fuller GG, Hudson NE, Yuan XF (2005) Investigation of shear-banding structure in wormlike micellar solution by point-wise flow-induced birefringence measurements. J Rheol 49(2):537–550Google Scholar
  154. 154.
    Forster S, Konrad M, Lindner P (2005) Shear thinning and orientational ordering of wormlike micelles. Phys Rev Lett 94(1)Google Scholar
  155. 155.
    Manneville S, Salmon JB, Bécu L, Colin A, Molino F (2004b) Inhomogeneous flows in sheared complex fluids. Rheol Acta 43(5):408–416Google Scholar
  156. 156.
    Salmon JB, Colin A, Manneville S, Molino F (2003a) Velocity profiles in shear-banding wormlike micelles. Phys Rev Lett 90(22):228303Google Scholar
  157. 157.
    Hu YT, Lips A (2005) Kinetics and mechanism of shear banding in an entangled micellar solution. J Rheol 49(5):1001–1027Google Scholar
  158. 158.
    Miller E, Rothstein JP (2007) Transient evolution of shear-banding wormlike micellar solutions. J Non-Newt Fluid Mech 143(1):22–37Google Scholar
  159. 159.
    Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2003) Fluctuations in shear-banded flow seen by nmr velocimetry. Eur Phys Lett 64(2):274–280Google Scholar
  160. 160.
    Lopez-Gonzalez MR, Holmes WM, Callaghan PT, Photinos PJ (2004) Shear banding fluctuations and nematic order in wormlike micelles. Phys Rev Lett 93(26):268302Google Scholar
  161. 161.
    Lopez-Gonzalez MR, Holmes WM, Callaghan PT (2006) Rheo-nmr phenomena of wormlike micelles. Soft Matter 2(10):855–869Google Scholar
  162. 162.
    Ballesta P, Lettinga MP, Manneville S (2007) Superposition rheology of shear-banding wormlike micelles. J Rheol 51(5):1047–1072Google Scholar
  163. 163.
    Ballesta P, Manneville S (2005) Signature of elasticity in the faraday instability. Phys Rev E 71:026308Google Scholar
  164. 164.
    Ballesta P, Manneville S (2007) The faraday instability in wormlike micelle solutions. J Non-Newt Fluid Mech 147(1–2):23–34Google Scholar
  165. 165.
    Masselon C, Salmon JB, Colin A (2008) Nonlocal effects in flows of wormlike micellar solutions. Phys Rev Lett 1(3):38301Google Scholar
  166. 166.
    Cappelaere E, Cressely R, Decruppe JP (1995) Linear and nonlinear rheological behavior of salt-free aqueous ctab solutions. Colloids Surf A Physicochem Eng Asp 104(2-3):353–374Google Scholar
  167. 167.
    Decruppe JP, Cressely R, Makhloufi R, Cappelaere E (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution. Coll and Polym Sci 273(4):346–351Google Scholar
  168. 168.
    Cappelaere E, Berret JF, Decruppe JP, Cressely R, Lindner P (1997) Rheology, birefringence, and small-angle neutron scattering in a charged micellar system: evidence of a shear-induced phase transition. Phys Rev E 56(2):1869–1878Google Scholar
  169. 169.
    Fischer E, Callaghan PT (2000) Is a birefringence band a shear band? Europhys Lett 50(6):803–809Google Scholar
  170. 170.
    Fischer E, Callaghan PT (2001) Shear banding and the isotropic-to-nematic transition in wormlike micelles. Phys Rev E 64(1):011501Google Scholar
  171. 171.
    Bécu L, Manneville S, Colin A (2004) Spatiotemporal dynamics of wormlike micelles under shear. Phys Rev Lett 93(1):018301Google Scholar
  172. 172.
    Bécu L, Anache D, Manneville S, Colin A (2007) Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. Phys Rev E 76(1):011503Google Scholar
  173. 173.
    Schmitt V, Lequeux F, Pousse A, Roux D (1994) Flow behavior and shear-induced transition near an isotropic-nematic transition in equilibrium polymers. Langmuir 10(3):955–961Google Scholar
  174. 174.
    Shikata T, Dahman SJ, Pearson DS (1994) Rheooptical behavior of wormlike micelles. Langmuir 10(10):3470–3476Google Scholar
  175. 175.
    Shikata T, Pearson DS (1994) Phase-transitions in entanglement networks of wormlike micelles. Langmuir 10(11):4027–4030Google Scholar
  176. 176.
    Fischer P, Fuller GG, Lin ZC (1997) Branched viscoelastic surfactant solutions and their response to elongational flow. Rheol Acta 36(6):632–638Google Scholar
  177. 177.
    Lerouge S, Decruppe JP, Humbert C (1998) Shear banding in a micellar solution under transient flow. Phys Rev Lett 81(24):5457–5460Google Scholar
  178. 178.
    Kadoma IA, vanEgmond JW (1996) “Tuliplike” scattering patterns in wormlike micelles under shear flow. Phys Rev Lett 76(23):4432–4435Google Scholar
  179. 179.
    Wheeler EK, Izu P, Fuller GG (1996) Structure and rheology of wormlike micelles. Rheol Acta 35(2):139–149Google Scholar
  180. 180.
    Kadoma IA, vanEgmond JW (1997) Shear-enhanced orientation and concentration fluctuations in wormlike micelles: effect of salt. Langmuir 13(17):4551–4561Google Scholar
  181. 181.
    Kadoma IA, Ylitalo C, vanEgmond JW (1997) Structural transitions in wormlike micelles. Rheol Acta 36(1):1–12Google Scholar
  182. 182.
    Kadoma IA, van Egmond JW (1998) Flow-induced nematic string phase in semidilute wormlike micelle solutions. Phys Rev Lett 80(25):5679–5682Google Scholar
  183. 183.
    Azzouzi H, Decruppe JP, Lerouge S, Greffier O (2005) Temporal oscillations of the shear stress and scattered light in a shear-banding-shear-thickening micellar solution. Eur Phys J E 17(4):507–514Google Scholar
  184. 184.
    Hashimoto T, Turukawa T, Mori N (2005) Flow property and micellar structures in capillary flows of surfactant solutions. Nihon Reoroji Gakkaishi 33(1):1–8Google Scholar
  185. 185.
    Inoue T, Inoue Y, Watanabe H (2005) Nonlinear rheology of ctab/nasal aqueous solutions: finite extensibility of a network of wormlike micelles. Langmuir 21(4):1201–1208Google Scholar
  186. 186.
    Drappier J, Bonn D, Meunier J, Lerouge S, Decruppe JP, Bertrand F (2006) Correlation between birefringent bands and shear bands in surfactant solutions. J Stat Mech-Theory Exp P04003Google Scholar
  187. 187.
    Decruppe JP, Greffier O, Manneville S, Lerouge S (2006) Local velocity measurements in heterogeneous and time-dependent flows of a micellar solution. Phys Rev E 73(6):061509Google Scholar
  188. 188.
    Decruppe JP, Cappelaere E, Cressely R (1997) Optical and rheological properties of a semi-diluted equimolar solution of cetyltrimethylammonium bromide and potassium bromide. J Phys II (France) 7(2):257–270Google Scholar
  189. 189.
    Humbert C, Decruppe JP (1998b) Stress optical coefficient of viscoelastic solutions of cetyltrimethylammonium bromide and potassium bromide. Colloid Polym Sci 276(2):160–168Google Scholar
  190. 190.
    Radulescu O, Olmsted PD, Decruppe JP, Lerouge S, Berret JF, Porte G (2003) Time scales in shear banding of wormlike micelles. Europhys Lett 62(2):230–236Google Scholar
  191. 191.
    Lerouge S, Decruppe JP, Olmsted P (2004) Birefringence banding in a micellar solution or the complexity of heterogeneous flows. Langmuir 20(26):11,355–11,365Google Scholar
  192. 192.
    Cappelaere E, Cressely R (1997) Shear banding structure in viscoelastic micellar solutions. Colloid Polym Sci 275(5):407–418Google Scholar
  193. 193.
    Cappelaere E, Cressely R (1998) Rheological behavior of an elongated micellar solution at low and high salt concentrations. Colloid Polym Sci 276(11):1050–1056Google Scholar
  194. 194.
    Decruppe JP, Lerouge S, Berret JF (2001) Insight in shear banding under transient flow. Phys Rev E 63(2):022501Google Scholar
  195. 195.
    Lerouge S, Argentina M, Decruppe JP (2006) Interface instability in shear-banding flow. Phys Rev Lett 96(8):088301Google Scholar
  196. 196.
    Lerouge S, Fardin M, Argentina M, Gregoire G, Cardoso O (2008) Interface dynamics in shear-banding flow of giant micelles. Soft Matter 4(9):1808–1819Google Scholar
  197. 197.
    Berret JF, Roux DC, Porte G, Lindner P (1994b) Shear-induced isotropic-to-nematic phase-transition in equilibrium polymers. Europhys Lett 25(7):521–526Google Scholar
  198. 198.
    Berret JF, Roux DC, Lindner P (1998b) Structure and rheology of concentrated wormlike micelles at the shear-induced isotropic-to-nematic transition. Eur Phys J B 5(1):67–77Google Scholar
  199. 199.
    Berret JF, Porte G (1999) Metastable versus unstable transients at the onset of a shear-induced phase transition. Phys Rev E 60(4):4268–4271Google Scholar
  200. 200.
    Ganapathy R, Sood AK (2006a) Intermittency route to rheochaos in wormlike micelles with flow-concentration coupling. Phys Rev Lett 96(10):108301Google Scholar
  201. 201.
    Soltero JFA, Puig JE, Manero O, Schulz PC (1995) Rheology of cetyltrimethylammonium tosilate-water system.1. relation to phase-behavior. Langmuir 11(9):3337–3346Google Scholar
  202. 202.
    Soltero JFA, Puig JE, Manero O (1996) Rheology of cetyltrimethylammonium tosylate-water system.2. linear viscoelastic regime. Langmuir 12(9):2654–2662Google Scholar
  203. 203.
    Soltero JFA, Bautista F, Puig JE, Manero O (1999) Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. nonlinear viscoelasticity. Langmuir 15(5):1604–1612Google Scholar
  204. 204.
    Hernandez-Acosta S, Gonzalez-Alvarez A, Manero O, Sanchez AFM, Perez-Gonzalez J, de Vargas L (1999) Capillary rheometry of micellar aqueous solutions. J Non-Newt Fluid Mech 85(2–3):229–247Google Scholar
  205. 205.
    Bautista F, Soltero JFA, Macias ER, Puig JE, Manero O (2002) Irreversible thermodynamics approach and modeling of shear-banding flow of wormlike micelles. J Phys Chem B 106(50):13018–13026Google Scholar
  206. 206.
    Bandyopadhyay R, Sood AK (2003) Effect of screening of intermicellar interactions on the linear and nonlinear rheology of a viscoelastic gel. Langmuir 19(8):3121–3127Google Scholar
  207. 207.
    Ganapathy R, Sood AK (2006b) Tuning rheochaos by temperature in wormlike micelles. Langmuir 22(26):11,016–11,021Google Scholar
  208. 208.
    Makhloufi R, Decruppe JP, Aït-Ali A, Cressely R (1995) Rheooptical study of wormlike micelles undergoing a shear banding flow. Europhys Lett 32(3):253–258Google Scholar
  209. 209.
    Aït-Ali A, Makhloufi R (1997a) Linear and nonlinear rheology of an aqueous concentrated system of cetyltrimethylammonium chloride and sodium salicylate. Phys Rev E 56(4):4474–4478Google Scholar
  210. 210.
    Aït-Ali A, Makhloufi R (1997b) On the nonlinear rheology of wormlike micellar system in the presence of sodium salicylate salt. J Rheol 41(2):307–318Google Scholar
  211. 211.
    Decruppe JP, Ponton A (2003) Flow birefringence, stress optical rule and rheology of four micellar solutions with the same low shear viscosity. Eur Phys J E 10(3):201–207Google Scholar
  212. 212.
    Escalante JI, Macias ER, Bautista F, Perez-Lopez JH, Soltero JFA, Puig JE, Manero O (2003) Shear-banded flow and transient rheology of cationic wormlike micellar solutions. Langmuir 19(17):6620–6626Google Scholar
  213. 213.
    Angelescu D, Khan A, Caldararu H (2003) Viscoelastic properties of sodium dodecyl sulfate with aluminum salt in aqueous solution. Langmuir 19(22):9155–9161Google Scholar
  214. 214.
    Schubert BA, Wagner NJ, Kaler EW, Raghavan SR (2004) Shear-induced phase separation in solutions of wormlike micelles. Langmuir 20(9):3564–3573Google Scholar
  215. 215.
    Raghavan SR, Kaler EW (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated tails. Langmuir 17(2):300–306Google Scholar
  216. 216.
    Hassan PA, Valaulikar BS, Manohar C, Kern F, Bourdieu L, Candau SJ (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12(18):4350–4357Google Scholar
  217. 217.
    Koehler RD, Raghavan SR, Kaler EW (2000) Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 104(47):11,035–11,044Google Scholar
  218. 218.
    Schubert BA, Kaler EW, Wagner NJ (2003) The microstructure and rheology of mixed cationic/anionic wormlike micelles. Langmuir 19(10):4079–4089Google Scholar
  219. 219.
    Mu JH, Li GZ, Jia XL, Wang HX, Zhang GY (2002) Rheological properties and microstructures of anionic micellar solutions in the presence of different inorganic salts. J Phys Chem B 106(44):11,685–11,693Google Scholar
  220. 220.
    Pimenta P, Pashkovski EE (2006) Rheology of viscoelastic mixed surfactant solutions: effect of scission on nonlinear flow and rheochaos. Langmuir 22(9):3980–3987Google Scholar
  221. 221.
    Soltero JFA, Alvarez-Ramirez JG, Fernandez VVA, Tepale N, Bautista F, Macias ER, Perez-Lopez JH, Schulz PC, Manero O, Solans C, Puig JE (2007) Phase and rheological behavior of the polymerizable surfactant CTAVB and water. J Colloid Interface Sci 312(1):130–138Google Scholar
  222. 222.
    Wheeler EK, Fischer P, Fuller GG (1998) Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. J Non-Newt Fluid Mech 75(2–3):193–208Google Scholar
  223. 223.
    Fielding SM (2005) Linear instability of planar shear banded flow. Phys Rev Lett 95(13):134501Google Scholar
  224. 224.
    Fielding SM (2007b) Vorticity structuring and velocity rolls triggered by gradient shear bands. Phys Rev E 76(1):016311Google Scholar
  225. 225.
    Fielding SM (2007a) Complex dynamics of shear-banding flows. Soft Matter 3(1):1262–1279Google Scholar
  226. 226.
    Fischer P, Wheeler EK, Fuller GG (2002) Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheol Acta 41(1–2):35–44Google Scholar
  227. 227.
    Herle V, Fischer P, Windhab EJ (2005) Stress driven shear bands and the effect of confinement on their structures – a rheological, flow visualization, and rheo-sals study. Langmuir 21(20):9051–9057Google Scholar
  228. 228.
    Herle V, Kohlbrecher J, Pfister B, Fischer P, Windhab EJ (2007) Alternating vorticity bands in a solution of wormlike micelles. Phys Rev Lett 99(15):158,302Google Scholar
  229. 229.
    Herle V, Manneville S, Fischer P (2008) Alternating vorticity bands in a solution of wormlike micelles. Eur Phys J E 26(1):3–12Google Scholar
  230. 230.
    Marin-Santibanez BM, Perez-Gonzalez J, de Vargas L, Rodriguez-Gonzalez F, Huelsz G (2006) Rheometry – piv of shear-thickening wormlike micelles. Langmuir 22(9):4015–4026Google Scholar
  231. 231.
    Jindal V, Kalus J, Pilsl H, Hoffmann H, Lindner P (1990) Dynamic small angle neutron scattering study of rodlike micelles in surfactant solutions. J Phys Chem 94(7):3129–3138Google Scholar
  232. 232.
    Larson R (1988) Constitutive equations for polymer melt and solutions. Butterworth-Heinemann, UKGoogle Scholar
  233. 233.
    Menezes E, Graessley W (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci 20(10):1817–1833Google Scholar
  234. 234.
    Spenley NA, Yuan XF, Cates ME (1996) Nonmonotonic constitutive laws and the formation of shear-banded flows. J Phys II 6(4):551–571Google Scholar
  235. 235.
    Olmsted PD, Lu CYD (1997) Coexistence and phase separation in sheared complex fluids. Phys Rev E 56(1):R55–R58Google Scholar
  236. 236.
    Ganapathy R, Sood AK (2008) Nonlinear flow of wormlike micellar gels: regular and chaotic time-dependence of stress, normal force and nematic ordering. J Non-Newt Fluid Mech 149(1–3):78–86Google Scholar
  237. 237.
    Ott E (1993) Chaos in dynamical systems. Cambridge University Press, EnglandGoogle Scholar
  238. 238.
    Fielding SM, Olmsted PD (2004) Spatiotemporal oscillations and rheochaos in a simple model of shear banding. Phys Rev Lett 92(8):084502Google Scholar
  239. 239.
    Bandyopadhyay R, Sood AK (2001) Chaotic dynamics in shear-thickening surfactant solutions. Europhys Lett 56(3):447–453Google Scholar
  240. 240.
    Salmon JB, Colin A, Roux D (2002) Dynamical behavior of a complex fluid near an out-of-equilibrium transition: approaching simple rheological chaos. Phys Rev E 66(3):031505Google Scholar
  241. 241.
    Manneville S, Salmon JB, Colin A (2004c) A spatio-temporal study of rheo-oscillations in a sheared lamellar phase using ultrasound. Eur Phys J E 13(2):197–212Google Scholar
  242. 242.
    Wunenburger AS, Colin A, Leng J, Arneodo A, Roux D (2001) Oscillating viscosity in a lyotropic lamellar phase under shear flow. Phys Rev Lett 86(7):1374–1377Google Scholar
  243. 243.
    Courbin L, Panizza P, Salmon JB (2004) Observation of droplet size oscillations in a two-phase fluid under shear flow. Phys Rev Lett 92(1):018305Google Scholar
  244. 244.
    Lootens D, Van Damme H, Hebraud P (2003) Giant stress fluctuations at the jamming transition. Phys Rev Lett 90(17):178301Google Scholar
  245. 245.
    Manneville S (2008) Recent experimental probes of shear banding. Rheol Acta 47(3): 301–318Google Scholar
  246. 246.
    Callaghan PT (2008) Rheo nmr and shear banding. Rheol Acta 47(3):243–255Google Scholar
  247. 247.
    Salmon JB, Manneville S, Colin A, Pouligny B (2003d) An optical fiber based interferometer to measure velocity profiles in sheared complex fluids. Eur Phys J Appl Phys 22(2):143–154Google Scholar
  248. 248.
    Manneville S, Bécu L, Colin A (2004a) High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur Phys J Appl Phys 28(3):361–373Google Scholar
  249. 249.
    Callaghan PT (2006) Rheo-nmr and velocity imaging. Curr Opin Colloid Interface Sci 11(1):13–18Google Scholar
  250. 250.
    Holmes WM, Lopez-Gonzalez MR, Callaghan PT (2004) Shear-induced constraint to amphiphile chain dynamics in wormlike micelles. Eur Phys Lett 66(1):132–138Google Scholar
  251. 251.
    Greco F, Ball RC (1997) Shear-band formation in a non-newtonian fluid model with a constitutive instability. J Non-Newt Fluid Mech 69(2–3):195–206Google Scholar
  252. 252.
    Olmsted PD, Radulescu O, Lu CYD (2000) Johnson-Segalman model with a diffusion term in cylindrical couette flow. J Rheol 44(2):257–275Google Scholar
  253. 253.
    Raudsepp A, Callaghan PT (2008) A rheo-optical study of shear rate and optical anisotropy in wormlike micelles solutions. Soft Matter 4(4):784–796Google Scholar
  254. 254.
    Fuller G (1995) Rheology of wormlike micelles: equilibrium properties and shear-banding transition In: Optical rheometry of complex fluids, Oxford University Press, New YorkGoogle Scholar
  255. 255.
    Humbert C, Decruppe JP (1998a) Flow birefringence and stress optical law of viscoelastic solutions of cationic surfactants and sodium salicylate. Eur Phys J B 6(4):511–518Google Scholar
  256. 256.
    Callaghan PT (1999) Rheo-nm nuclear magnetic resonance and the rheology of complex fluids. Rep on Prog in Phys 62(4):599–670Google Scholar
  257. 257.
    Helfand E, Fredrickson GH (1989) Large fluctuations in polymer-solutions under shear. Phys Rev Lett 62(21):2468–2471Google Scholar
  258. 258.
    Liberatore MW, Nettesheim F, Wagner NJ, Porcar L (2006) Spatially resolved small-angle neutron scattering in the 1-2 plane: a study of shear-induced phase-separating wormlike micelles. Phys Rev E 73(2):020504Google Scholar
  259. 259.
    Hilliou L, Vlassopoulos D (2002) Time-periodic structures and instabilities in shear-thickening polymer solutions. Ind Eng Chem Res 41(25):6246–6255Google Scholar
  260. 260.
    Dhont JKG, Lettinga MP, Dogic Z, Lenstra TAJ, Wang H, Rathgeber S, Carletto P, Willner L, Frielinghaus H, Lindner P (2003) Shear-banding and microstructure of colloids in shear flow. Faraday Discuss 123:157–172Google Scholar
  261. 261.
    Kang KG, Lettinga MP, Dogic Z, Dhont JKG (2006) Vorticity banding in rodlike virus suspensions. Phys Rev E 74(2):026307Google Scholar
  262. 262.
    Cates ME (1990) Nonlinear viscoelasticity of wormlike micelles (and other reversibly breakable polymers). J Phys Chem 94(1):371–375Google Scholar
  263. 263.
    Olmsted PD, Goldbart P (1990) Theory of the nonequilibrium phase-transition for nematic liquid-crystals under shear-flow. Phys Rev A 41(8):4578–4581Google Scholar
  264. 264.
    Dhont JKG (1999) A constitutive relation describing the shear-banding transition. Phys Rev E 60(4):4534–4544Google Scholar
  265. 265.
    Olmsted PD (1999a) Dynamics and flow-induced phase separation in polymeric fluids. Curr Opin Colloid Inter Sci 4(2):95–100Google Scholar
  266. 266.
    Radulescu O, Olmsted PD, Lu CYD (1999) Shear banding in reaction-diffusion models. Rheol Acta 38(6):606–613Google Scholar
  267. 267.
    Yuan XF (1999) Dynamics of a mechanical interface in shear-banded flow. Eur Phys Lett 46(4):542–548Google Scholar
  268. 268.
    Lu CYD, Olmsted PD, Ball RC (2000) Effects of nonlocal stress on the determination of shear banding flow. Phys Rev Lett 84(4):642–645Google Scholar
  269. 269.
    Radulescu O, Olmsted PD (2000) Matched asymptotic solutions for the steady banded flow of the diffusive johnson-segalman model in various geometries. J Non-Newt Fluid Mech 91(2–3):143–164Google Scholar
  270. 270.
    Adams J, Fielding S, Olmsted PD (2008) The interplay between boundary conditions and flow geometries in shear banding : hysteresis, band configurations, and surface transitions. J Non-Newt Fluid Mech 151(3):101–118Google Scholar
  271. 271.
    Olmsted PD (1999b) Two-state shear diagrams for complex fluids in shear flow. Europhys Lett 48(3):339–345Google Scholar
  272. 272.
    Aradian A, Cates ME (2005) Instability and spatiotemporal rheochaos in a shear-thickening fluid model. Eur Phys Lett 70(3):397–403Google Scholar
  273. 273.
    Aradian A, Cates ME (2006) Minimal model for chaotic shear banding in shear thickening fluids. Phys Rev E 73(4):041508Google Scholar
  274. 274.
    Wilson HJ (2006) Instabilities and constitutive modelling. Philos Trans R Soc A 364(1849):3267–3283Google Scholar
  275. 275.
    Fielding SM, Olmsted PD (2006) Nonlinear dynamics of an interface between shear bands. Phys Rev Lett 96(10):104502Google Scholar
  276. 276.
    Oswald P, Pieranski P (2000) Les cristaux liquides. Gordon and Breach, AmsterdamGoogle Scholar
  277. 277.
    Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–649Google Scholar
  278. 278.
    Leadbetter A, Wrighton P (1979) Order parameters in sa, sc and n phases by X-ray diffraction. J Phys C3 40:234–242Google Scholar
  279. 279.
    Lawson K, Flautt T (1967) Magnetically oriented lyotropic liquid crystalline phase. J Am Chem Soc 89:5489–5491Google Scholar
  280. 280.
    Itri R, Amaral L (1990) Study of the isotropic-hexagonal transition in the system SLS/H2O. J Phys Chem 94:2198–2202Google Scholar
  281. 281.
    Quist PO, Halle B, Furo I (1992) Micelle size and order in lyotropic nematic phases from nuclear spin relaxation. J Chem Phys 96:3875–3891Google Scholar
  282. 282.
    Itri R, Amaral L (1993) Micellar-shape anisometry near isotropic-liquid-crystal phase transition. Phys Rev E 47:2551–2557Google Scholar
  283. 283.
    Berret JF, Roux DC (1995) Rheology of nematic wormlike micelles. J Rheol 39(4):725–741Google Scholar
  284. 284.
    Thiele T, Berret JF, Muller S, Schmidt C (2001) Rheology and nuclear magnetic resonance measurements under shear of sodium dodecyl sulfate/decanol/water nematics. J Rheol 45(1):29–48Google Scholar
  285. 285.
    Clawson JS, Holland GP, Alam TM (2006) Magnetic alignment of aqueous ctab in nematic and hexagonal liquid crystalline phases investigated by spin-1 nmr. Phys Chem Chem Phys 8(22):2635–2641Google Scholar
  286. 286.
    De Melo Filho AA, Amadeu NS, Fujiwara FY (2007) The phase diagram of the lyotropic nematic mesophase in the ttab/nabr/water system. Liq Crys 34(6):683–691Google Scholar
  287. 287.
    Chen DM, Fujiwara FY, Reeves LW (1977) Studies of behavior in magnetic-fields of some lyomesophase systems with respect to electrolyte additions. Can J Chem-Rev Can Chim 55(12):2396–2403Google Scholar
  288. 288.
    Hendrikx Y, Charvolin J (1981) Structural relations between lyotropic phases in the vicinity of the nematic phases. J Phys 42:1427–1440Google Scholar
  289. 289.
    Hendrikx Y, Charvolin J, Rawiso M, Liebert L, Holmes M (1983) Anisotropic aggregates of amphiphilic molecules in lyotropic nematic phases. J Phys Chem 87:3991–3999Google Scholar
  290. 290.
    Caputo FE, Ugaz VM, Burghardt WR, Berret JF (2002) Transient 1-2 plane small-angle X-ray scattering measurements of micellar orientation in aligning and tumbling nematic surfactant solutions. J Rheol 46(4):927–946Google Scholar
  291. 291.
    Semenov A, Khokhlov A (1988) Statistical physics of liquid-crystalline polymers. Sov Phys Usp 31:988–1014Google Scholar
  292. 292.
    Khokhlov A, Semenov A (1981) Liquid-crystalline ordering in the solution of long persistent chains. Physica A 108:546–556Google Scholar
  293. 293.
    Richtering W, Laeuger J, Linemann R (1994) Shear orientation of a micellar hexagonal liquid crystalline phase: a rheo and small angle light scattering study. Langmuir 10(11):4374–4379Google Scholar
  294. 294.
    Lukaschek M, Grabowski D, Schmidt C (1995) Shear-induced alignment of a hexagonal lyotropic liquid crystal as studied by rheo-nmr. Langmuir 11(9):3590–3594Google Scholar
  295. 295.
    Muller S, Fischer P, Schmidt C (1997) Solid-like director reorientation in sheared hexagonal lyotropic liquid crystals as studied by nuclear magnetic resonance. J Phys II France 7:421–432Google Scholar
  296. 296.
    Schmidt G, Muller S, Lindner P, Schmidt C, Richtering W (1998) Shear orientation of lyotropic hexagonal phases. J Phys Chem B 102(3):507–513Google Scholar
  297. 297.
    Schmidt C (2008) Rheo-nmr spectroscopy. Modern Magnetic Resonance 3:1515–1521Google Scholar
  298. 298.
    Ramos L, Molino F, Porte G (2000) Shear melting in lyotropic hexagonal phases. Langmuir 16(14):5846–5848Google Scholar
  299. 299.
    Ramos L (2001) Scaling with temperature and concentration of the nonlinear rheology of a soft hexagonal phase. Phys Rev E 64(6):061502Google Scholar
  300. 300.
    Ramos L, Molino F (2004) Shear melting of a hexagonal columnar crystal by proliferation of dislocations. Phys Rev Lett 92(1):018301Google Scholar
  301. 301.
    Roux DC, Berret JF, Porte G, Peuvrel-Disdier E, Lindner P (1995) Shear-induced orientations and textures of nematic wormlike micelles. Macromolecules 28(5):1681–1687Google Scholar
  302. 302.
    Berret JF, Roux DC, Porte G, Lindner P (1995) Tumbling behavior of nematic wormlike micelles under shear-flow. Europhys Lett 32(2):137–142Google Scholar
  303. 303.
    Caputo FE, Burghardt WR, Berret JF (1999) Tumbling dynamics in a nematic surfactant solution in transient shear flows. J Rheol 43(3):765–779Google Scholar
  304. 304.
    Burghardt W, Fuller G (1991) Role of director tumbling in the rheology of polymer liquid crystal solutions. Macromolecules 24(9):2546–2555Google Scholar
  305. 305.
    Moldenaers P, Yanase H, Mewis J (1991) Flow-induced anisotropy and its decay in polymeric liquid crystals. J Rheol 35(8):1681–1699Google Scholar
  306. 306.
    Larson R, Doi M (1991) Mesoscopic domain theory for textured liquid crystalline polymers. J Rheol 35:539–563Google Scholar
  307. 307.
    Srinivasarao M (1992) Rheology and rheo-optics of polymer liquid crystals: an overview of theory and experiment. Chemtracts Macromol Chem 3:149–178Google Scholar
  308. 308.
    Takahashi Y, Kurashima N, Noda I, Doi M (1994) Experimental tests of the scaling relation for textured materials in mixtures of two immiscible fluids. J Rheol 38(3):699–712Google Scholar
  309. 309.
    Thiele T, Berret JF, Mueller S, Schmidt C (1998) Rheology and nmr measurements on sds/decanol/water. In: 5th European Rheology Conference, Portoroz (Slovenia)Google Scholar
  310. 310.
    Doi M, Ohta T (1991) Dynamics and rheology of complex interfaces. I. J Chem Phys 95(2):1242–1248Google Scholar
  311. 311.
    Larson RG, Mead DW (1993) The ericksen number and deborah number cascades in sheared polymeric nematics. Liq Crys 15(2):151–169Google Scholar
  312. 312.
    Marrucci G (1985) Rheology of liquid crystalline polymers. Pure and Appl Chem 57:1545–1552Google Scholar
  313. 313.
    Larson R, Mead D (1992) Development of orientation and texture during shearing of liquid-crystalline polymers. Liq Cryst 12:751–768Google Scholar
  314. 314.
    Vermant J, Moldenaers P, Mewis J, Picken S (1994) Band formation upon cessation of flow in liquid-crystalline polymers. J Rheol 38:1571–1589Google Scholar
  315. 315.
    Noirez L, Lapp A (1997) Shear flow induced transition from liquid-crystalline to polymer behavior in side-chain liquid crystal polymers. Phys Rev lett 78:70–73Google Scholar
  316. 316.
    Zipfel J, Berghausen J, Lindner P, Richtering W (1999) Influence of shear on lyotropic lamellar phases with different membranes defects. J Phys Chem B 103:2841–2849Google Scholar
  317. 317.
    Berret JF, Vermant J, Noirez L (2000b) Lyotropic surfactant nematics under shear: neutron scattering in the vorticity plane. In: XIIIth international Congress on Rheology, Cambridge (UK), vol 3, pp 273–275Google Scholar
  318. 318.
    Ekwall P, Mandell L, Fontell K (1969) The cetyltrimethylammonium bromide-hexanol-water system. J Colloid Interface Sci 29(4):639–646Google Scholar
  319. 319.
    Hongladarom K, Burghardt W (1994) Measurements of the full refractive index tensor in sheared liquid-crystalline polymer solutions. Macromolecules 27:483–489Google Scholar
  320. 320.
    Grabowski D, Schmidt C (1994) Simultaneous measurements of shear viscosity and director orientation of a side-chain liquid crystalline polymer by rheo-NMR. Macromolecules 27:2632–2640Google Scholar
  321. 321.
    Siebert H, Grabowski D, Schmidt C (1997) Rheo-nmr study of non-flow-aligning side-chain liquid crystal polymer in nematic solution. Rheol Acta 36:618–627Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes Complexes (MSC)UMR 7057 CNRS-Université Paris-DiderotParis Cedex 13France

Personalised recommendations