Surfactant-Mediated Fabrication of Optical Nanoprobes

  • Parvesh Sharma
  • Scott Brown
  • Manoj Varshney
  • Brij Moudgil
Part of the Advances in Polymer Science book series (POLYMER, volume 218)


Modern bio-imaging techniques often employ contrast agents to improve the image quality and also toprovide specific information about anatomical structure and/or the function of biological systems. Quantumdots, fluorescent dye-doped silica and gold nanoparticles are important examples of new nanoparticulate-basedimaging agents that have overcome many of the limitations of conventional contrast media such as organicdyes. These agents have the ability to provide enhanced photostability and sensitivity in combination withsufficient in vitro and in vivo stability. Surfactant-mediated methods are one of the most versatile strategiesfor synthesizing nanosized contrast agents. Microemulsion-mediated synthesis, in particular, offers a widelyapplicable approach to produce a variety of engineered optical nanoprobes presenting good control overnanoparticle size, design and robust surface derivatization. Herein the authors provide a review ofsurfactant chemistry and strategies, with a particular focus on microemulsions, for generating luminescentnanoprobes, such as quantum dots, fluorescent silica and gold nanoparticles for bioimaging applications.


Gold Nanoparticles Silica Nanoparticles Cationic Surfactant Reverse Micelle Microemulsion System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mahmood U, Weissleder R (2002) Some tools for molecular imaging. Acad Radiol 9:629–631 Google Scholar
  2. 2.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci 30:545–610 Google Scholar
  3. 3.
    Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. Marcel Dekker, New York Google Scholar
  4. 4.
    Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946 Google Scholar
  5. 5.
    Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670 Google Scholar
  6. 6.
    Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46 Google Scholar
  7. 7.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016 Google Scholar
  8. 8.
    Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W (2000) Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol 72:392–398 Google Scholar
  9. 9.
    Pham W, Lai WF, Weissleder R, Tung C H (2003) High efficiency synthesis of a bioconjugatable near-infrared fluorochrome. Bioconjug Chem 14:1048–1051 Google Scholar
  10. 10.
    Huber MM, Staubli AB, Kustedjo K, Gray MHB, Shih J, Fraser SE, Jacobs RE, Meade TJ (1998) Fluorescently detectable magnetic resonance imaging agents. Bioconjug Chem 9:242–249 Google Scholar
  11. 11.
    Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169 Google Scholar
  12. 12.
    Gao XH, Cui YY, Levenson RM, Chung LWK, Nie SM (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976 Google Scholar
  13. 13.
    Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Radler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Lett 4:703–707 Google Scholar
  14. 14.
    Abe M, Scamehorn JF (2005) Mixed surfactant systems. Marcel Dekker, New York Google Scholar
  15. 15.
    Wu SX, Zeng HX, Schelly ZA (2005) Growth of uncapped, subnanometer size gold clusters prepared via electroporation of vesicles. J Phys Chem B 109:18715–18718 Google Scholar
  16. 16.
    Fendler JH (1982) Membrane mimetic chemistry: characterizations and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host–guest systems, and polyions. Wiley, New York Google Scholar
  17. 17.
    Fendler JH (1996) Nanoparticles at air/water interfaces. Curr Opin Colloid Interface Sci 1:202–207 Google Scholar
  18. 18.
    Khomutov GB, Obydenov AY, Yakovenko SA, Soldatov ES, Trifonov AS, Khanin VV, Gubin SP (1999) Synthesis of nanoparticles in Langmuir monolayer. Mater Sci Eng C 8-9:309–318 Google Scholar
  19. 19.
    Ottova A, Tvarozek V, Racek J, Sabo J, Ziegler W, Hianik T, Tien HT (1997) Self-assembled BLMs: biomembrane models and biosensor applications. Supramol Sci 4:101–112 Google Scholar
  20. 20.
    Pileni MP (1993) Reverse Micelles as Microreactors. J Phys Chem 97:6961–6973 Google Scholar
  21. 21.
    Pillai V, Kumar P, Hou M J, Ayyub P, Shah DO (1995) Preparation of Nanoparticles of Silver-Halides, Superconductors and Magnetic-Materials Using Water-in-Oil Microemulsions as Nano-Reactors. Adv Colloid Interface Sci 55:241–269 Google Scholar
  22. 22.
    Shah DO (1998) Micelles, microemulsions, and monolayers: science and technology. Marcel Dekker, New York Google Scholar
  23. 23.
    Holmberg K (2003) Surfactants and polymers in aqueous solution. John Wiley & Sons, Chichester; Hoboken, NJ Google Scholar
  24. 24.
    Pileni MP (1989) Structure and reactivity in reverse micelles. Elsevier, Amsterdam, New York Google Scholar
  25. 25.
    Mittal KL, Kumar P (1999) Handbook of microemulsion science and technology. Marcel Dekker, New York Google Scholar
  26. 26.
    Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Colloid Interface Sci 110:49–74 Google Scholar
  27. 27.
    Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interface Sci 8:137–144 Google Scholar
  28. 28.
    Lopez-Quintela MA, Tojo C, Blanco MC, Rio LG, Leis JR (2004) Microemulsion dynamics and reactions in microemulsions. Curr Opin Colloid Interface Sci 9:264–278 Google Scholar
  29. 29.
    Maitra A (1984) Determination of Size Parameters of Water Aerosol Ot Oil Reverse Micelles from Their Nuclear Magnetic-Resonance Data. J Phys Chem 88:5122–5125 Google Scholar
  30. 30.
    Evans D F, Wennerstrom H K (1999) The colloidal domain: where physics, chemistry, biology, and technology meet. Wiley-VCH, New York Google Scholar
  31. 31.
    Eicke HF, Shepherd JCW, Steinemann A (1976) Exchange of Solubilized Water and Aqueous-Electrolyte Solutions between Micelles in Apolar Media. J Colloid Interface Sci 56:168–176 Google Scholar
  32. 32.
    Fletcher PDI, Howe AM, Robinson BH (1987) The Kinetics of Solubilisate Exchange between Water Droplets of a Water-in-Oil Microemulsion. J Chem Soc Faraday Trans I 83:985–1006 Google Scholar
  33. 33.
    Robinson BH, Toprakcioglu C, Dore JC, Chieux P (1984) Small-Angle Neutron-Scattering Study of Microemulsions Stabilized by Aerosol-Ot.1. Solvent and Concentration Variation. J Chem Soc Faraday Trans I 80:13–27 Google Scholar
  34. 34.
    Huang JS (1985) Surfactant Interactions in Oil Continuous Microemulsions. J Chem Phys 82:480–484 Google Scholar
  35. 35.
    Huang J S, Safran S A, Kim M W, Grest G S, Kotlarchyk M, Quirke N (1984) Attractive Interactions in Micelles and Microemulsions. Phys Rev Lett 53:592–595 Google Scholar
  36. 36.
    Jain TK, Cassin G, Badiali JP, Pileni MP (1996) Relation between exchange process and structure of AOT reverse micellar system. Langmuir 12:2408–2411 Google Scholar
  37. 37.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562 Google Scholar
  38. 38.
    Smith PW (2002) Fluorescence emission-based detection and diagnosis of malignancy. J Cell Biochem Suppl 39:54–59 Google Scholar
  39. 39.
    Qhobosheane M, Santra S, Zhang P, Tan WH (2001) Biochemically functionalized silica nanoparticles. Analyst 126:1274–1278 Google Scholar
  40. 40.
    Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal Chem 73:4988–4993 Google Scholar
  41. 41.
    Santra S, Wang KM, Tapec R, Tan WH (2001) Development of novel dye-doped silica nanoparticles for biomarker application. J Biomed Optics 6:160–166 Google Scholar
  42. 42.
    Santra S, Dutta D, Moudgil BM (2005) Functional dye-doped silica nanoparticles for bioimaging, diagnostics and therapeutics. Food Bioprod Process 83:136–140 Google Scholar
  43. 43.
    He XX, Duan JH, Wang KM, Tan WH, Lin X, He CM (2004) A novel fluorescent label based on organic dye-doped silica nanoparticles for HepG liver cancer cell recognition. J Nanosci Nanotechnol 4:585–589 Google Scholar
  44. 44.
    Lian W, Litherland SA, Badrane H, Tan WH, Wu DH, Baker HV, Gulig PA, Lim DV, Jin SG (2004) Ultrasensitive detection of biomolecules with fluorescent dye-doped nanoparticles. Anal Biochem 334:135–144 Google Scholar
  45. 45.
    Santra S, Liesenfeld B, Bertolino C, Dutta D, Cao Z, Tan WH, Moudgil BM, Mericle RA (2006) Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles: An optical approach to evaluate nanoparticle photostability. J Luminesc 117:75–82 Google Scholar
  46. 46.
    Zhao XJ, Bagwe RP, Tan WH (2004) Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv Mater 16:173 Google Scholar
  47. 47.
    Santra S, Yang H, Dutta D, Stanley JT, Holloway PH, Tan WH, Moudgil BM, Mericle RA (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun, pp 2810–2811 Google Scholar
  48. 48.
    Lettinga MP, van Zandvoort MAMJ, van Kats CM, Philipse AP (2000) Phosphorescent colloidal silica spheres as tracers for rotational diffusion studies. Langmuir 16:6156–6165 Google Scholar
  49. 49.
    Tapec R, Zhao XJJ, Tan WH (2002) Development of organic dye-doped silica nanoparticles for bioanalysis and biosensors. J Nanosci Nanotechnol 2:405–409 Google Scholar
  50. 50.
    Senarath-Yapa MD, Saavedra SS, Aspinwall CA, Roberts DL (2004) Poly(lipid)-coated, bye doped silica nanoparticles for biological sensing applications. Abstr Pap Am Chem Soc 227:U849–U849 Google Scholar
  51. 51.
    Qian KJ, Zhang L, Yang ML, He PG, Fang YZ (2004) Preparation of luminol-doped nanoparticle and its application in DNA hybridization analysis. Chinese J Chem 22:702–707 Google Scholar
  52. 52.
    Schmidt H (1988) Chemistry of Material Preparation by the Sol-Gel Process. J Non-Crystalline Solids 100:51–64 Google Scholar
  53. 53.
    Ulrich DR (1988) Prospects of Sol–Gel Processes. J Non-Crystalline Solids 100:174–193 Google Scholar
  54. 54.
    Chang CL, Fogler HS (1996) Kinetics of silica particle formation in nonionic w/o microemulsions from TEOS. AIChE J 42:3153–3163 Google Scholar
  55. 55.
    Osseoasare K, Arriagada FJ (1990) Preparation of SiO2 Nanoparticles in a Nonionic Reverse Micellar System. Colloids Surf 50:321–339 Google Scholar
  56. 56.
    Arriagada FJ, Osseoasare K (1992) Phase and Dispersion Stability Effects in the Synthesis of Silica Nanoparticles in a Nonionic Reverse Microemulsion. Colloids Surf 69:105–115 Google Scholar
  57. 57.
    Chang CL, Fogler HS (1997) Controlled formation of silica particles from tetraethyl orthosilicate in nonionic water-in-oil microemulsions. Langmuir 13:3295–3307 Google Scholar
  58. 58.
    Bagwe RP, Yang CY, Hilliard LR, Tan WH (2004) Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 20:8336–8342 Google Scholar
  59. 59.
    Arriagada FJ, Osseoasare K (1994) Silica Nanoparticles Produced in Aerosol Ot Reverse Microemulsions – Effect of Benzyl Alcohol on Particle-Size and Polydispersity. J Dispers Sci Technol 15:59–71 Google Scholar
  60. 60.
    Arriagada FJ, Osseo-Asare K (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 211:210–220 Google Scholar
  61. 61.
    Yang HH, Qu HY, Lin P, Li HS, Ding MT, Xu JG (2003) Nanometer fluorescent hybrid silica particle as ultrasensitive and photostable biological labels. Analyst 128:462–466 Google Scholar
  62. 62.
    Jain TK, Roy I, De TK, Maitra A (1998) Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier. J Am Chem Soc 120:11092–11095 Google Scholar
  63. 63.
    Yang W, Zhang CG, Qu HY, Yang HH, Xu JZ (2004) Novel fluorescent silica nanoparticle probe for ultrasensitive immunoassays. Anal Chim Acta 503:163–169 Google Scholar
  64. 64.
    Wang L, Yang C, Tan WH (2005) Dual-luminophore-doped silica nanoparticles for multiplexed signaling. Nano Lett 5:37–43 Google Scholar
  65. 65.
    Ye ZQ, Tan MQ, Wang GL, Yuan JL (2004) Novel fluorescent europium chelate-doped silica nanoparticles: preparation, characterization and time-resolved fluorometric application. J Mater Chem 14:851–856 Google Scholar
  66. 66.
    Fontell K, Khan A, Lindstrom B, Maciejewska D, Puangngern S (1991) Phase-Equilibria and Structures in Ternary-Systems of a Cationic Surfactant (C16tabr or (C16ta)2so4), Alcohol, and Water. Colloid Polym Sci 269:727–742 Google Scholar
  67. 67.
    Israelachvili JN, Mitchell DJ, Ninham BW (1977) Theory of Self-Assembly of Lipid Bilayers and Vesicles. Biochim Biophys Acta 470:185–201 Google Scholar
  68. 68.
    De TK, Maitra A (1995) Solution Behavior of Aerosol Ot in Nonpolar-Solvents. Adv Colloid Interface Sci 59:95–193 Google Scholar
  69. 69.
    Nazario LMM, Hatton TA, Crespo JPSG (1996) Nonionic cosurfactants in AOT reversed micelles: Effect on percolation, size, and solubilization site. Langmuir 12:6326–6335 Google Scholar
  70. 70.
    Lang J, Jada A, Malliaris A (1988) Structure and Dynamics of Water-in-Oil Droplets Stabilized by Sodium Bis(2-Ethylhexyl) Sulfosuccinate. J Phys Chem 92:1946–1953 Google Scholar
  71. 71.
    Arriagada FJ, Osseoasare K (1995) Synthesis of Nanosize Silica in Aerosol Ot Reverse Microemulsions. J Colloid Interface Sci 170:8–17 Google Scholar
  72. 72.
    Bergna HE (1990) American Chemical Society. Division of Colloid and Surface Chemistry. and American Chemical Society. Meeting The Colloid chemistry of silica: developed from a symposium sponsored by the Division of Colloid and Surface Chemistry at the 200th National Meeting of the American Chemical Society, Washington, DC, August 26–31, 1990, The Society, Washington, DC, 1994 Google Scholar
  73. 73.
    Ma ZN, Friberg SE, Neogi P (1988) Observation of Temporary Liquid-Crystals in Water-in-Oil Microemulsion Systems. Colloids Surf 33:249–258 Google Scholar
  74. 74.
    Friberg SE, Yang CC, Sjoblom J (1992) Amphiphilic Association Structures and the Microemulsion Gel Method for Ceramics – Influence on Original Phase Regions by Hydrolysis and Condensation of Silicon Tetraethoxide. Langmuir 8:372–376 Google Scholar
  75. 75.
    Friberg SE, Ahmed AU, Yang CC, Ahuja S, Bodesha SS (1992) Gelation of a Microemulsion by Silica Formed Insitu. J Mater Chem 2:257–258 Google Scholar
  76. 76.
    Marchand KE, Tarret M, Lechaire JP, Normand L, Kasztelan S, Cseri T (2003) Investigation of AOT-based microemulsions for the controlled synthesis of MoSx nanoparticles: an electron microscopy study. Colloids Surf A 214:239–248 Google Scholar
  77. 77.
    Bagwe RP, Khilar KC (2000) Effects of intermicellar exchange rate on the formation of silver nanoparticles in reverse microemulsions of AOT. Langmuir 16:905–910 Google Scholar
  78. 78.
    Ekwall P, Mandell L, Fontell K (1969) Cetyltrimethylammonium Bromide-Hexanol-Water System. J Colloid Interface Sci 29:639 Google Scholar
  79. 79.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. J Chem Soc Faraday Trans II 72:1525–1568 Google Scholar
  80. 80.
    Liu JC, Ikushima Y, Shervani Z (2004) Investigation on the solubilization of organic dyes and micro-polarity in AOT water-in-CO2 microemulsions with fluorinated co-surfactant by using UV-Vis spectroscopy. J Supercrit Fluids 32:97–103 Google Scholar
  81. 81.
    Shen D, Zhang R, Han BX, Dong Y, Wu WZ, Zhang JL, Li JC, Jiang T, Liu ZM (2004) Enhancement of the solubilization capacity of water in Triton X-100/cyclohexane/water system by compressed gases. Chem Eur J 10:5123–5128 Google Scholar
  82. 82.
    Song LY, Ge XW, Zhang ZC (2005) Interfacial fabrication of silica hollow particles in a reverse emulsion system. Chem Lett 34:1314–1315 Google Scholar
  83. 83.
    Lin YS, Hung Y, Su JK, Lee R, Chang C, Lin ML, Mou YC (2004) Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J Phys Chem B 108:15608–15611 Google Scholar
  84. 84.
    Yin W, Zhang MS (2003) Characterization of nanosized Tb-MCM-41 synthesized by the sol–gel-assisted self-assembly method. J Alloys Compounds 360:231–235 Google Scholar
  85. 85.
    Matos JR, Mercuri LP, Jaroniec M, Kruk M, Sakamoto Y, Terasaki O (2001) Synthesis and characterization of europium-doped ordered mesoporous silicas. J Mater Chem 11:2580–2586 Google Scholar
  86. 86.
    Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463 Google Scholar
  87. 87.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid–Crystal Template Mechanism. Nature 359:710–712 Google Scholar
  88. 88.
    Nooney RI, Thirunavukkarasu D, Chen YM, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728 Google Scholar
  89. 89.
    Haskouri JE, Cabrera S, Caldes M, Guillem C, Latorre J, Beltran A, Beltran D, Marcos MD, Amoros P (2002) Surfactant-assisted synthesis of the SBA-8 mesoporous silica by using nonrigid commercial alkyltrimethyl ammonium surfactants. Chem Mater 14:2637–2643 Google Scholar
  90. 90.
    Czuryszkiewicz T, Rosenholm J, Kleitz F, Linden M (2002) Synthesis and characterization of mesoscopically ordered surfactant/cosurfactant templated metal oxides. Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium, Book Series: Studies in Surface Science and Catalysis, Pts A and B 142:1117–1124 Google Scholar
  91. 91.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York Google Scholar
  92. 92.
    Hayat MA (1989) Colloidal gold: principles, methods, and applications. Academic Press, San Diego Google Scholar
  93. 93.
    Khlebtsov NG, Trachuk LA, Mel'nikov AG (2005) The effect of the size, shape, and structure of metal nanoparticles on the dependence of their optical properties on the refractive index of a disperse medium. Optics Spectrosc 98:77–83 Google Scholar
  94. 94.
    Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82 Google Scholar
  95. 95.
    Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971 Google Scholar
  96. 96.
    Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ (1998) Nanoengineering of optical resonances. Chem Phys Lett 288:243–247 Google Scholar
  97. 97.
    Novak JP, Nickerson C, Franzen S, Feldheim DL (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761 Google Scholar
  98. 98.
    Marinakos SM, Novak JP, Brousseau LC, House AB, Edeki EM, Feldhaus JC, Feldheim DL (1999) Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation. J Am Chem Soc 121:8518–8522 Google Scholar
  99. 99.
    Underwood S, Mulvaney P (1994) Effect of the Solution Refractive-Index on the Color of Gold Colloids. Langmuir 10:3427–3430 Google Scholar
  100. 100.
    Mrksich M (2000) A surface chemistry approach to studying cell adhesion. Chem Soc Rev 29:267–273 Google Scholar
  101. 101.
    Bright RM, Walter DG, Musick MD, Jackson MA, Allison KJ, Natan MJ (1996) Chemical and electrochemical Ag deposition onto preformed Au colloid monolayers: Approaches to uniformly-sized surface features with Ag-like optical properties. Langmuir 12:810–817 Google Scholar
  102. 102.
    Hermanson GT (1996) Bioconjugate techniques. Academic Press, San Diego Google Scholar
  103. 103.
    O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West J (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176 Google Scholar
  104. 104.
    Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711 Google Scholar
  105. 105.
    Hirsch LR, Jackson JB, Lee A, Halas NJ, West J (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381 Google Scholar
  106. 106.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081 Google Scholar
  107. 107.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122:4640–4650 Google Scholar
  108. 108.
    Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760 Google Scholar
  109. 109.
    Beesley JE (1989) Colloidal gold: a new perspective for cytochemical marking. Oxford University Press, Oxford; Royal Microscopical Society, New York Oxford Google Scholar
  110. 110.
    Schmid G, Chi LF (1998) Metal clusters and colloids. Adv Mater 10:515–526 Google Scholar
  111. 111.
    Schmid G, Corain B (2003) Nanoparticulated gold: Syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 3081-3098 Google Scholar
  112. 112.
    Daniel MC, Astruc D (2004) Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346 Google Scholar
  113. 113.
    Boutonnet M, Kizling J, Stenius P (1982) The Preparation of Monodisperse Colloidal Metal Particles from Micro-Emulsions. Colloids Surf 5:209–225 Google Scholar
  114. 114.
    Fendler JH (1987) Atomic and Molecular Clusters in Membrane Mimetic Chemistry. Chem Rev 87:877–899 Google Scholar
  115. 115.
    Wilcoxon JP, Williamson RL, Baughman R (1993) Optical-Properties of Gold Colloids Formed in Inverse Micelles. J Chem Phys 98:9933–9950 Google Scholar
  116. 116.
    Spirin MG, Brichkin SB, Razumov VF (2005) Synthesis and stabilization of gold nanoparticles in reverse micelles of aerosol OT and triton X-100. Colloid J 67:485–490 Google Scholar
  117. 117.
    Herrera AP, Resto O, Briano JG, Rinaldi C (2005) Synthesis and agglomeration of gold nanoparticles in reverse micelles. Nanotechnology 16:S618–S625 Google Scholar
  118. 118.
    Sato H, Ohtsu T, Komasawa I (2000) Atomic force microscopy study of ultrafine particles prepared in reverse micelles. J Colloid Interface Sci 230:200–204 Google Scholar
  119. 119.
    Chiang CL (2000) Controlled growth of gold nanoparticles in aerosol-OT/sorbitan monooleate/isooctane mixed reverse micelles. J Colloid Interface Sci 230:60–66 Google Scholar
  120. 120.
    Pomogailo AD, Rozenberg AS, Uflyand IE (2000) Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers). Khimiya, Moscow Google Scholar
  121. 121.
    Brichkin SB, Razumov VF, Spirin MG (2000) Kolloidn Zh 62:12 Google Scholar
  122. 122.
    Pal A (2004) Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Mater Lett 58:529–534 Google Scholar
  123. 123.
    Chiang CL (2001) Controlled growth of gold nanoparticles in AOT/C12E4/isooctane mixed reverse micelles. J Colloid Interface Sci 239:334–341 Google Scholar
  124. 124.
    Neuman RD, Ibrahim TH (1999) Novel structural model of reversed micelles: The open water-channel model. Langmuir 15:10–12 Google Scholar
  125. 125.
    Kumar R, Maitra AN, Patanjali PK, Sharma P (2005) Hollow gold nanoparticles encapsulating horseradish peroxidase. Biomaterials 26:6743–6753 Google Scholar
  126. 126.
    Manna A, Imae T, Yogo T, Aoi K, Okazaki M (2002) Synthesis of gold nanoparticles in a Winsor II type microemulsion and their characterization. J Colloid Interface Sci 256:297–303 Google Scholar
  127. 127.
    Lin J, Zhou WL, O'Connor CJ (2001) Formation of ordered arrays of gold nanoparticles from CTAB reverse micelles. Mater Lett 49:282–286 Google Scholar
  128. 128.
    Barnickel P, Wokaun A (1990) Synthesis of Metal Colloids in Inverse Microemulsions. Mol Phys 69:1–9 Google Scholar
  129. 129.
    Porta F, Prati L, Rossi M, Scari G (2002) Synthesis of Au(0) nanoparticles from W/O microemulsions. Colloids Surf A 211:43–48 Google Scholar
  130. 130.
    Giustini M, Palazzo G, Colafemmina G, DellaMonica M, Giomini M, Ceglie A (1996) Microstructure and dynamics of the water-in-oil CTAB/n-pentanol/n-hexane/water microemulsion: A spectroscopic and conductivity study. J Phys Chem 100:3190–3198 Google Scholar
  131. 131.
    Torigoe K, Esumi K (1992) Preparation of Colloidal Gold by Photoreduction of Aucl4–Cationic Surfactant Complexes. Langmuir 8:59–63 Google Scholar
  132. 132.
    Kameo A, Suzuki A, Torigoe K, Esumi K (2001) Fiber-like Gold Particles Prepared in Cationic Micelles by UV Irradiation: Effect of Alkyl Chain Length of Cationic Surfactant on Particle Size. J Colloid Interface Sci 241:89–292 Google Scholar
  133. 133.
    Leontidis E, Kleitou K, Kyprianidou-Leodidou T, Bekiari V, Lianos P (2002) Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology. Langmuir 18:3659–3668 Google Scholar
  134. 134.
    Chen FX, Xu GQ, Hor TSA (2003) Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion. Mater Lett 57:3282–3286 Google Scholar
  135. 135.
    Esumi K, Matsuhisa K, Torigoe K (1995) Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template. Langmuir 11:3285–3287 Google Scholar
  136. 136.
    Imae T, Ikeda S (1987) Characteristics of Rodlike Micelles of Cetyltrimethylammonium Chloride in Aqueous Nacl Solutions – Their Flexibility and the Scaling Laws in Dilute and Semidilute Regimes. Colloid Polym Sci 265:1090–1098 Google Scholar
  137. 137.
    Lee YS, Surjadi D, Rathman JF (1996) Effects of aluminate and silicate on the structure of quaternary ammonium surfactant aggregates. Langmuir 12:6202–6210 Google Scholar
  138. 138.
    Ozeki S, Ikeda S (1981) The Stability of Spherical Micelles of Dodecyltrimethylammonium Chloride in Aqueous Nacl Solutions. Bull Chem Soc Japan 54:552–555 Google Scholar
  139. 139.
    Xu J, Han X, Liu H L, Hu Y (2005) Synthesis of monodisperse gold nanoparticles stabilized by gemini surfactant in reverse micelles. J Dispers Sci Technol 26:473–476 Google Scholar
  140. 140.
    Azene H, Sigers S, Johnson V (2003) Formation and characterization of gold nanoparticles in dioctyl sulfosuccinate/isooctane and dioctyl sulfosuccinate/phosphatidyulcholine/isooctane mixed reverse micelles. Abstr Pap Am Chem Soc 225:U23–U23 Google Scholar
  141. 141.
    Shen M, Du YK, Rong HL, Li JR, Jiang L (2005) Preparation of hydrophobic gold nanoparticles with safe organic solvents by microwave irradiation method. Colloids Surf A 257–258:439–443 Google Scholar
  142. 142.
    Khomutov GB, Gubin SP (2002) Interfacial synthesis of noble metal nanoparticles. Mater Sci Eng C 22:141–146 Google Scholar
  143. 143.
    Ravaine S, Fanucci GE, Seip CT, Adair JH, Talham DR (1998) Photochemical generation of gold nanoparticles in Langmuir–Blodgett films. Langmuir 14:708–713 Google Scholar
  144. 144.
    Johnson SR, Evans SD, Mahon SW, Ulman A (1997) Synthesis and characterisation of surfactant-stabilised gold nanoparticles. Supramol Sci 4:329–333 Google Scholar
  145. 145.
    Praharaj S, Ghosh SK, Nath S, Kundu S, Panigrahi S, Basu S, Pal T (2005) Size-selective synthesis and stabilization of gold organosol in CnTAC: Enhanced molecular fluorescence from gold-bound fluorophores. J Phys Chem B 109:13166–13174 Google Scholar
  146. 146.
    Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Digestive ripening of thiolated gold nanoparticles: The effect of alkyl chain length. Langmuir 18:7515–7520 Google Scholar
  147. 147.
    Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337 Google Scholar
  148. 148.
    Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of sliver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117 Google Scholar
  149. 149.
    Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671 Google Scholar
  150. 150.
    Maeda Y, Okitsu K, Inoue H, Nishimura R, Mizukoshi Y, Nakui H (2004) Preparation of nanoparticles by reducing intermediate radicals formed in sonolytical pyrolysis of surfactants. Res Chem Intermediat 30:775–783 Google Scholar
  151. 151.
    Murphy CJ, Sau TK, Gole A, Orendorff CJ (2005) Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 30:349–355 Google Scholar
  152. 152.
    Reetz MT, Helbig W (1994) Size-Selective Synthesis of Nanostructured Transition-Metal Clusters. J Am Chem Soc 116:7401–7402 Google Scholar
  153. 153.
    Reetz MT, Helbig W, Quaiser SA, Stimming U, Breuer N, Vogel R (1995) Visualization of Surfactants on Nanostructured Palladium Clusters by a Combination of STM and High-Resolution TEM. Science 267:367–369 Google Scholar
  154. 154.
    Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: Electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664 Google Scholar
  155. 155.
    Chang SS, Shih CW, Chen CD, Lai WC, Wang CRC (1999) The shape transition of gold nanorods. Langmuir 15:701–709 Google Scholar
  156. 156.
    Zsigmondy R, Thiessen PA (1925) Das kolloide Gold. Akademische Verlagsgesellschaft mbh, Leipzig Google Scholar
  157. 157.
    Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal Au nanoparticle solutions, 2. Improved control of particle size and shape. Chem Mater 12:306–313 Google Scholar
  158. 158.
    Goia DV, Matijevic E (1998) Preparation of monodispersed metal particles. New J Chem 22:1203–1215 Google Scholar
  159. 159.
    Schmid G (1992) Large Clusters and Colloids – Metals in the Embryonic State. Chem Rev 92:1709–1727 Google Scholar
  160. 160.
    Sau TK, Pal A, Jana NR, Wang ZL, Pal T (2001) Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J Nanoparticle Res 3:257–261 Google Scholar
  161. 161.
    Lu LH, Wang HS, Zhou YH, Xi SQ, Zhang HJ, Jiawen HBM, Zhao B (2002) Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem Commun, pp 144–145 Google Scholar
  162. 162.
    Jana NR, Gearheart L, Murphy CJ (2001) Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater 13:2313–2322 Google Scholar
  163. 163.
    Gao JX, Bender CM, Murphy CJ (2003) Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution. Langmuir 19:9065–9070 Google Scholar
  164. 164.
    Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R (2004) Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 3:33–40 Google Scholar
  165. 165.
    Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120 Google Scholar
  166. 166.
    Mafune F, KohnoJ Y, Takeda Y, Kondow T (2002) Full physical preparation of size-selected gold nanoparticles in solution: Laser ablation and laser-induced size control. J Phys Chem B 106:7575–7577 Google Scholar
  167. 167.
    Niidome Y, Hori A, Sato T, Yamada S (2000) Enormous size growth of thiol-passivated gold nanoparticles induced by near-IR laser light. Chem Lett 4:310–311 Google Scholar
  168. 168.
    Kamat PV, Flumiani M, Hartland GV (1998) Picosecond dynamics of silver nanoclusters. Photoejection of electrons and fragmentation. J Phys Chem B 102:3123–3128 Google Scholar
  169. 169.
    Mafune F, Kohno J, Takeda Y, Kondow T (2003) Formation of gold nanonetworks and small gold nanoparticles by irradiation of intense pulsed laser onto gold nanoparticles. J Phys Chem B 107:12589–12596 Google Scholar
  170. 170.
    Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239 Google Scholar
  171. 171.
    Gaponenko SV (1998) Optical properties of semiconductor nanocrystals. Cambridge Unviersity Press, Cambridge, New York Google Scholar
  172. 172.
    Weller H, Koch U, Gutierrez M, Henglein A (1984) Photochemistry of Colloidal Metal Sulfides, 7. Absorption and Fluorescence of Extremely Small Zns Particles – the World of the Neglected Dimensions. Ber Bunsenges 88:649–656 Google Scholar
  173. 173.
    Eychmuller A, Mews A, Weller H (1993) A Quantum-Dot Quantum-Well – Cds/Hgs/Cds. Chem Phys Lett 208:59–62 Google Scholar
  174. 174.
    Guzelian AA, Katari JEB, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR (1996) Synthesis of size-selected, surface-passivated InP nanocrystals. J Phys Chem 100:7212–7219 Google Scholar
  175. 175.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150 Google Scholar
  176. 176.
    Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184 Google Scholar
  177. 177.
    Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51 Google Scholar
  178. 178.
    Cao YW, Banin U (2000) Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J Am Chem Soc 122:9692–9702 Google Scholar
  179. 179.
    Micic OI, Smith BB, Nozik AJ (2000) Core-shell quantum dots of lattice-matched ZnCdSe2 shells on InP cores: Experiment and theory. J Phys Chem B 104:12149–12156 Google Scholar
  180. 180.
    Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Noninvasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86 Google Scholar
  181. 181.
    Goldman ER, Anderson GP, Tran PT, Mattoussi H, Charles PT, Mauro JM (2002) Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal Chem 74:841–847 Google Scholar
  182. 182.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871 Google Scholar
  183. 183.
    Dubertret B, Skourides P, Norris DJ, Noireaux V, Brivanlou AH, Libchaber A (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762 Google Scholar
  184. 184.
    Santra S, Yang H, Holloway PH, Stanley JT, Mericle RA (2005) Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J Am Chem Soc 127:1656–1657 Google Scholar
  185. 185.
    Santra S, Yang H, Stanley JT, Holloway PH, Moudgil BM, Walter G, Mericle RA (2005) Rapid and effective labeling of brain tissue using TAT-conjugated CdS: Mn/ZnS quantum dots. Chem Commun, pp 3144–3146 Google Scholar
  186. 186.
    Esteves ACC, Trindade T (2002) Synthetic studies on II/VI semiconductor quantum dots. Curr Opin Solid State Mater Sci 6:347–353 Google Scholar
  187. 187.
    Brus LE (1984) Electron–Electron and Electron–Hole Interactions in Small Semiconductor Crystallites - the Size Dependence of the Lowest Excited Electronic State. J Chem Phys 80:4403–4409 Google Scholar
  188. 188.
    Henglein A (1989) Small-Particle Research – Physicochemical Properties of Extremely Small Colloidal Metal and Semiconductor Particles. Chem Rev 89:1861–1873 Google Scholar
  189. 189.
    Wang WZ, Liu ZH, Zheng CL, Xu CK, Liu YK, Wang GH (2003) Synthesis of US nanoparticles by a novel and simple one-step, solid-state reaction in the presence of a nonionic surfactant. Mater Lett 57:2755–2760 Google Scholar
  190. 190.
    Gan LM, Liu B, Chew CH, Xu SJ, Chua SJ, Loy GL, Xu GQ (1997) Enhanced photoluminescence and characterization of Mn-doped ZnS nanocrystallites synthesized in microemulsion. Langmuir 13:6427–6431 Google Scholar
  191. 191.
    Yang XH, Wu QS, Li L, Ding YP, Zhang GX (2005) Controlled synthesis of the semiconductor CdS quasi-nanospheres, nanoshuttles, nanowires and nanotubes by the reverse micelle systems with different surfactants. Colloids Surf A 264:172–178 Google Scholar
  192. 192.
    Zhang B, Li GH, Zhang J, Zhang Y, Zhang LD (2003) Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions. Nanotechnology 14:443–446 Google Scholar
  193. 193.
    Robinson BH, Towey TF, Zourab S, Visser AJWG, Vanhoek A (1991) Characterization of Cadmium-Sulfide Colloids in Reverse Micelles. Colloids Surf 61:175–188 Google Scholar
  194. 194.
    Qi LM, Ma JM, Cheng HM, Zhao ZG (1996) Synthesis and characterization of mixed CdS-ZnS nanoparticles in reverse micelles. Colloids Surf A 111:195–202 Google Scholar
  195. 195.
    Zou BS, Little RB, Wang JP, El-Sayed MA (1999) Effect of different capping environments on the optical properties of CdS nanoparticles in reverse micelles. Int J Quantum Chem 72:439–450 Google Scholar
  196. 196.
    Seddon AB, Ou DL (1998) CdSe quantum dot doped amine-functionalized Ormosils. J Sol–Gel Sci Technol 13:623–628 Google Scholar
  197. 197.
    Guo B, Pang Q, Yang C, Ge W, Yang S, Wang J (2005) Reverse micelles synthesis and optical characterization of manganese doped CdSe quantum dots. Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Peop. Rep. China. AIP Conference Proceedings, 772 (Physics of Semiconductors, Part A), pp 605–606 Google Scholar
  198. 198.
    Kim D, Miyamoto M, Nakayama M (2005) Photoluminescence properties of CdS and CdMnS quantum dots prepared by a reverse-micelle method. J Electron Microsc 54:I31–I34 Google Scholar
  199. 199.
    Quinlan FT, Kuther J, Tremel W, Knoll W, Risbud S, Stroeve P (2000) Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir 16:4049–4051 Google Scholar
  200. 200.
    Calandra P, Goffredi M, Liveri VT (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy. Colloids Surf A 160:9–13 Google Scholar
  201. 201.
    Hirai T, Watanabe T, Komasawa I (2000) Preparation of semiconductor nanoparticle-polymer composites by direct reverse micelle polymerization using polymerizable surfactants. J Phys Chem B 104:8962–8966 Google Scholar
  202. 202.
    Cao LX, Zhang JH, Ren SL, Huang SH (2002) Luminescence enhancement of core-shell ZnS : Mn/ZnS nanoparticles. Appl Phys Lett 80:4300–4302 Google Scholar
  203. 203.
    Cao LX, Huang SH, Shulin E (2004) ZnS/CdS/ZnS quantum dot quantum well produced in inverted micelles. J Colloid Interface Sci 273:478–482 Google Scholar
  204. 204.
    Lianos P, Thomas JK (1986) Cadmium-Sulfide of Small Dimensions Produced in Inverted Micelles. Chem Phys Lett 125:299–302 Google Scholar
  205. 205.
    Lianos P, Thomas JK (1987) Small Cds Particles in Inverted Micelles. J Colloid Interface Sci 117:505–512 Google Scholar
  206. 206.
    Nakanishi T, Ohtani B, Uosaki K (1998) Fabrication and characterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold. J Phys Chem B 102:1571–1577 Google Scholar
  207. 207.
    Tsuruoka T, Akamatsu K, Nawafune H (2004) Synthesis, surface modification, and multilayer construction of mixed-monolayer-protected CdS nanoparticles. Langmuir 20:11169–11174 Google Scholar
  208. 208.
    Steigerwald ML, Alivisatos AP, Gibson JM, Harris TD, Kortan R, Muller AJ, Thayer AM, Duncan TM, Douglass DC, Brus LE (1988) Surface Derivatization and Isolation of Semiconductor Cluster Molecules. J Am Chem Soc 110:3046–3050 Google Scholar
  209. 209.
    Zulauf M, Eicke HF (1979) Inverted Micelles and Microemulsions in the Ternary-System H2o-Aerosol-Ot-Isooctane as Studied by Photon Correlation Spectroscopy. J Phys Chem 83:480–486 Google Scholar
  210. 210.
    Hirai T, Okubo H, Komasawa I (2001) Incorporation of CdS nanoparticles formed in reverse micelles into mesoporous silica. J Colloid Interface Sci 235:358–364 Google Scholar
  211. 211.
    Kortan AR, Hull R, Opila RL, Bawendi MG, Steigerwald ML, Carroll PJ, Brus LE (1990) Nucleation and Growth of Cdse on Zns Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media. J Am Chem Soc 112:1327–1332 Google Scholar
  212. 212.
    Towey TF, Khanlodhi A, Robinson BH (1990) Kinetics and Mechanism of Formation of Quantum-Sized Cadmium-Sulfide Particles in Water Aerosol-Ot Oil Microemulsions. J Chem Soc Faraday Trans 86:3757–3762 Google Scholar
  213. 213.
    Meyer M, Wallberg C, Kurihara K, Fendler JH (1984) Photosensitized Charge Separation and Hydrogen-Production in Reversed Micelle Entrapped Platinized Colloidal Cadmium-Sulfide. J Chem Soc Chem Commun, pp 90–91 Google Scholar
  214. 214.
    Tata M, Banerjee S, John VT, Waguespack Y, McPherson GL (1997) Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloids Surf A 127:39–46 Google Scholar
  215. 215.
    Bunker CE, Harruff BA, Pathak P, Payzant A, Allard LF, Sun YP (2004) Formation of cadmium sulfide nanoparticles in reverse micelles: Extreme sensitivity to preparation procedure. Langmuir 20:5642–5644 Google Scholar
  216. 216.
    Pileni MP, Motte L, Petit C (1992) Synthesis of Cadmium-Sulfide Insitu in Reverse Micelles – Influence of the Preparation Modes on Size, Polydispersity, and Photochemical Reactions. Chem Mater 4:338–345 Google Scholar
  217. 217.
    Fischer CH, Weller H, Fojtik A, Lumepereira C, Janata E, Henglein A (1986) Photochemistry of Colloidal Semiconductors, 10. Exclusion Chromatography and Stop Flow Experiments on the Formation of Extremely Small Cds Particles. Ber Bunsenges 90:46–49 Google Scholar
  218. 218.
    Hirai T, Bando Y (2005) Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties. J Colloid Interface Sci 288:513–516 Google Scholar
  219. 219.
    Hirai T, Bando Y, Komasawa I (2002) Immobilization of CdS nanoparticles formed in reverse micelles onto alumina particles and their photocatalytic properties. J Phys Chem B 106:8967–8970 Google Scholar
  220. 220.
    Simmons B, Li CS, John VT, McPherson GL, Taylor C, Schwartz DK, Maskos K (2002) Spatial compartmentalization of nanoparticles into strands of a self-assembled organogel. Nano Lett 2:1037–1042 Google Scholar
  221. 221.
    Kotlarchyk M, Stephens RB, Huang JS (1988) Study of Schultz Distribution to Model Polydispersity of Microemulsion Droplets. J Phys Chem 92:1533–1538 Google Scholar
  222. 222.
    Israelachvili JN (1991) Intermolecular and surface forces. Academic Press, London, San Diego Google Scholar
  223. 223.
    Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y (2002) Preparation, optical spectroscopy, and electrochemical studies of novel pi-conjugated polymer-protected stable PbS colloidal nanoparticles in a nonaqueous solution. Langmuir 18:5287–5292 Google Scholar
  224. 224.
    Gadenne P, Yagil Y, Deutscher G (1989) Transmittance and Reflectance Insitu Measurements of Semicontinuous Gold-Films During Deposition. J Appl Phys 66:3019–3025 Google Scholar
  225. 225.
    Chaudhuri TK (1992) A Solar Thermophotovoltaic Converter Using Pbs Photovoltaic Cells. Int J Energ Res 16:481–487 Google Scholar
  226. 226.
    Wu XS, Pan LJ, Zou G, Liu JP, He PS (2004) Preparation of PbS/poly(acrylic acid) nanocrystal micropatterns by soft lithography. Chinese J Chem Phys 17:641–644 Google Scholar
  227. 227.
    Nair PK, Nair MTS (1992) Chemically Deposited Zns Thin-Films – Application as Substrate for Chemically Deposited Bi2s3, Cuxs and Pbs Thin-Films. Semiconductor Sci Technol 7:239–244 Google Scholar
  228. 228.
    Eastoe J, Cox AR (1995) Formation of Pbs Nanoclusters Using Reversed Micelles of Lead and Sodium Aerosol-Ot. Colloids Surf A 101:63–76 Google Scholar
  229. 229.
    Miyoshi H, Yamachika M, Yoneyama H, Mori H (1990) Photochemical Properties of PbS Microcrystallites Prepared in Nafion. J Chem Soc Faraday Trans 86:815–818 Google Scholar
  230. 230.
    Aggarwal RL, Furdyna JK, Von S (1987) Molnar and Materials Research Society. Diluted magnetic (semimagnetic) semiconductors. Materials Research Society, Pittsburgh Google Scholar
  231. 231.
    Bastard G, Rigaux C Mycielski A (1977) Giant Spin Splitting Induced by Exchange Interactions in Hg1-Kmnkte Mixed-Crystals. Phys Status Solidi B 79:585–593 Google Scholar
  232. 232.
    Dietl T, Spalek J (1982) Effect of Fluctuations of Magnetization on the Bound Magnetic Polaron – Comparison with Experiment. Phys Rev Lett 48:355–358 Google Scholar
  233. 233.
    Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical-Properties of Manganese-Doped Nanocrystals of Zns. Phys Rev Lett 72:416–419 Google Scholar
  234. 234.
    Wang Y, Herron N, Moller K, Bein T (1991) 3-Dimensionally Confined Diluted Magnetic Semiconductor Clusters – Zn1-Xmnxs. Solid State Commun 77:33–38 Google Scholar
  235. 235.
    Feltin N, Levy L, Ingert D, Pileni MP (1999) Magnetic properties of 4-nm Cd1-yMnyS nanoparticles differing by their compositions, y. J Phys Chem B 103:4–10 Google Scholar
  236. 236.
    Levy L, Feltin N, Ingert D, Pileni MP (1997) Three dimensionally diluted magnetic semiconductor clusters Cd1-yMnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J Phys Chem B 101:9153–9160 Google Scholar
  237. 237.
    Levy L, Hochepied JF, Pileni MP (1996) Control of the size and composition of three dimensionally diluted magnetic semiconductor clusters. J Phys Chem 100:18322–18326 Google Scholar
  238. 238.
    Hoener CF, Allan KA, Bard AJ, Campion A, Fox MA, Mallouk TE, Webber SE, White JM (1992) Demonstration of a Shell Core Structure in Layered CdSe-ZnSe Small Particles by X-Ray Photoelectron and Auger Spectroscopies. J Phys Chem 96:3812–3817 Google Scholar
  239. 239.
    Yang H S, Santra S Holloway PH (2005) Syntheses and applications of Mn-doped II-VI semiconductor nanocrystals. J Nanosci Nanotechnol 5:1364–1375 Google Scholar
  240. 240.
    Yang HS, Holloway PH, Santra S (2004) Water-soluble silica-overcoated CdS : Mn/ZnS semiconductor quantum dots. J Chem Phys 121:7421–7426 Google Scholar
  241. 241.
    Pang Q, Guo BC, Wang JN, Yang SH, Wang YQ, Ge WK, Gong ML (2004) Synthesis of Cd1-xMnxS quantum dots via reverse micelles and its photoluminescence performance. Chem J Chinese Universities 25:1593–1596 Google Scholar
  242. 242.
    Khomane RB, Manna A, Mandale AB, Kulkarni BD (2002) Synthesis and characterization of dodecanethiol-capped cadmium sulfide nanoparticles in a Winsor II microemulsion of diethyl ether/AOT/water. Langmuir 18:8237–8240 Google Scholar
  243. 243.
    Fan HY, Leve HY, Scullin C, Gabaldon J, Tallant D, Bunge S, Boyle T, Wilson MC, Brinker CJ (2005) Surfactant-assisted synthesis of water-soluble and biocompatible semiconductor quantum dot micelles. Nano Lett 5:645–648 Google Scholar
  244. 244.
    Dutta P, Fendler JH (2002) Preparation of cadmium sulfide nanoparticles in self-reproducing reversed micelles. J Colloid Interface Sci 247:47–53 Google Scholar
  245. 245.
    Zhang J, Sun LD, Liao CS, Yan CH (2002) Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method. Solid State Commun 124:45–48 Google Scholar
  246. 246.
    Agostiano A, Catalano M, Curri ML, Della Monica M, Manna L, Vasanelli L (2000) Synthesis and structural characterisation of CdS nanoparticles prepared in a four-components “water-in-oil” microemulsion. Micron 31:253–258 Google Scholar
  247. 247.
    Curri ML, Agostiano A, Manna L, Della Monica M, Catalano M, Chiavarone L, Spagnolo V, Lugara M (2000) Synthesis and characterization of CdS nanoclusters in a quarternary microemulsion: The role of the cosurfactant. J Phys Chem B 104:8391–8397 Google Scholar
  248. 248.
    Maidment LJ, Chen V, Warr GG (1997) Effect of added cosurfactant on ternary microemulsion structure and dynamics. Colloids Surf A 130:311–319 Google Scholar
  249. 249.
    Chakraborty I, Moulik SP (2004) Preparation and characterization of nanoscale semiconductor particles of ZnS, CdS, and PbCrO4 in polymer-surfactant gel matrix. J Dispers Sci Technol 25:849–859 Google Scholar
  250. 250.
    Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York Google Scholar
  251. 251.
    Wu SX, Zeng HX, Schelly ZA (2005) Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles. Langmuir 21:686–691 Google Scholar
  252. 252.
    Yu WL, Pei J, Huang W, Zhao GX (1997) Formation of CdS nanoparticles in mixed cationic–anionic surfactant vesicle system. Mater Chem Phys 49:87–92 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Parvesh Sharma
    • 1
    • 2
  • Scott Brown
    • 1
  • Manoj Varshney
    • 1
    • 3
  • Brij Moudgil
    • 1
  1. 1.Particle Engineering Research Center and Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Chemistry, St. Stephen's CollegeDelhi UniversityIndia
  3. 3.Department of Anesthesiology, Shands HospitalUniversity of FloridaGainesvilleUSA

Personalised recommendations