New Paradigms for Spreading of Colloidal Fluids on Solid Surfaces

  • Anoop V. Chengara
  • Alex D. Nikolov
  • Darsh T. Wasan
Part of the Advances in Polymer Science book series (POLYMER, volume 218)


Colloidal fluids are used in a variety of technological contexts. For example, their spreadingand adhesion behavior on solid surfaces can yield materials with desirable structural and optical properties.The well-established concepts of spreading and adhesion behavior of simple liquids do not apply to colloidalfluids containing nanometer-sized particles, surfactant micelles, proteins, polymers, vesicles, microemulsions,and solvents. This paper reviews recent progress in the spreading of colloidal/nano-fluids over solid surfaceswith emphasis on two applications: the spreading of aqueous trisiloxane surfactant solutions (i.e., superspreaders)on hydrophobic solid surfaces driven by the surface tension gradient, and the spreading of thin colloidalfilms containing nanoparticles on hydrophilic surfaces driven by the structural disjoining pressure gradient(i.e., film tension gradient). These two mechanistic paradigms of dynamic spreading of colloidal fluidson solids are elucidated with experimental observations and mathematical modeling.


Contact Line Spreading Rate Disjoin Pressure Nanoparticle Volume Fraction Surface Tension Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ananthapadmanabhan KP, Goddard ED, Chandar P (1990) A study of the solution, interfacial and wetting properties of silicone surfactants. Colloid Surf 44:281–297 CrossRefGoogle Scholar
  2. 2.
    Anderson NH, Hall DJ, Wastern NH (1983) The role of dynamic surface tension in spray droplet retention. Proc 10th Int Congr Plant Protect 2:576–581 Google Scholar
  3. 3.
    Aveyard R, Binks BP, Clark S, Mead J (1986) Interfacial tension minima in oil–water–surfactant systems. Behavior of alkane–aqueous sodium chloride systems containing AOT. J Chem Soc Faraday Trans 82:125–142 CrossRefGoogle Scholar
  4. 4.
    Bayer DE (1982) Adjuvants for Herbicides. Weed Science Society of America, Champaign, Illinois Google Scholar
  5. 5.
    Chatterjee J (2002) Critical Eotvos numbers for buoyancy-induced oil drop detachment based on shape analysis. Adv Colloid Interface Sci 98:265–283 CrossRefGoogle Scholar
  6. 6.
    Chengara A, Nikolov A, Wasan D (2002) Surface tension gradient driven spreading of trisiloxane solution on hydrophobic solid. Colloid Surf A 206:31–39 CrossRefGoogle Scholar
  7. 7.
    Chengara A (2003) Spreading of colloidal fluids on solid surfaces. PhD thesis, Illinois Institute of Technology Google Scholar
  8. 8.
    Chengara A, Nikolov AD, Wasan D, Trokhymchuk A, Henderson D (2004) Spreading of nanofluids driven by the structural disjoining pressure gradient. J Colloid Interface Sci 280:192–201 CrossRefGoogle Scholar
  9. 9.
    Chu X L, Nikolov AD, Wasan DT (1995) Thin liquid film structure and stability: The role of depletion and surface-induced structural forces. J Chem Phys 103:6653–6661 CrossRefGoogle Scholar
  10. 10.
    Chu XL, Nikolov AD, Wasan DT (1996) Errata. J Chem Phys 105:4892 CrossRefGoogle Scholar
  11. 11.
    Churaev NV, Esipova NE, Hill RM, Sobolev VD, Starov VM, Zorin ZM (2001) The superspreading effect of trisiloxane surfactant solutions. Langmuir 17:1338–1348 CrossRefGoogle Scholar
  12. 12.
    Davis HT (1996) Statistical mechanics of phases, interfaces and thin films. VCH, New York Google Scholar
  13. 13.
    Derjaguin BV, Churaev NV (1974) Structural component of disjoining pressure. J Colloid Interface Sci 49:249–255 CrossRefGoogle Scholar
  14. 14.
    Dong J, Mao G, Hill R (2004) Nanoscale aggregate structures of trisiloxane surfactants at the solidliquid interface. Langmuir 20:2695–2700 CrossRefGoogle Scholar
  15. 15.
    Fox HW, Hare EF, Zisman WA (1955) Wetting properties of organic liquids on high energy surfaces. J Phys Chem 59:1097–1106 CrossRefGoogle Scholar
  16. 16.
    Gau CH, Zografi G (1990) Relationships between adsorption and wetting of surfactant solutions. J Colloid Interface Sci 140:1–9 CrossRefGoogle Scholar
  17. 17.
    Harkins WD, Feldman AJ (1922) Films – spreading of liquids and the spreading coefficient. J Am Chem Soc 44:2665–2685 CrossRefGoogle Scholar
  18. 18.
    Hartland S, Hartley RW (1976) Axisymmetric liquid–liquid interfaces. Elsevier, Amsterdam Google Scholar
  19. 19.
    Henderson D, Sokolowski S, Wasan DT (1997) Second order Percus–Yevick theory for a confined hard sphere fluid. J Stat Phys 89:233–247 CrossRefGoogle Scholar
  20. 20.
    Hill RM, He M, Davis HT, Scriven LE (1994) Comparison of liquid crystal phase behavior of four trisiloxane superwetter surfactants. Langmuir 10:1724–1734 CrossRefGoogle Scholar
  21. 21.
    Hill RM (1998) Superspreading. Curr Opin Colloid Interface Sci 3:247–254 CrossRefGoogle Scholar
  22. 22.
    Hill RM (2002) Silicone surfactants – new developments. Curr Opin Colloid Interface Sci 7:255–261 CrossRefGoogle Scholar
  23. 23.
    Hirasaki GJ (1991) Wettability: fundamentals and surface forces. SPE Format Evaluat 6:217–226 Google Scholar
  24. 24.
    Kabalnov A (2000) Monolayer frustration contributions to surface and interfacial tensions: explanation of surfactant superspreading. Langmuir 16:2595–2603 CrossRefGoogle Scholar
  25. 25.
    Kalinin VV, Starov VM (1986) Viscous spreading of drops on a wetting surface (English translation). Colloid J USSR 48:907–912 Google Scholar
  26. 26.
    Kaplan PD, Rouke JL, Yodh AG, Pine DJ (1994) Entropically driven surface phase separation in binary colloidal mixture. Phys Rev Lett 72:582–585 CrossRefGoogle Scholar
  27. 27.
    Kao RL, Wasan DT, Nikolov AD, Edwards DA (1988) Mechanisms of oil removal form a solid surface in the presence of anionic micellar solutions. Colloid Surf 34:389–398 CrossRefGoogle Scholar
  28. 28.
    Knoche M, Tamura H, Bukovac MJ (1991) Performance and stability of the organosilicon surfactant L-77; effect of pH, concentration and temperature. J Agric Food Chem 39:202–206 CrossRefGoogle Scholar
  29. 29.
    Kralchevsky P, Denkov ND (1995) Analytical expression for the oscillatory structural surface force. Chem Phys Lett 240:385–392 CrossRefGoogle Scholar
  30. 30.
    Kralchevsky P, Danov KD, Kolev VL, Gurkov VD, Temelska ML, Brenn G (2005) Detachment of oil drops from solid surfaces in surfactant solutions: molecular mechanisms at a moving contact line. Indust Eng Chem Res 44:1309–1321 CrossRefGoogle Scholar
  31. 31.
    Kumar N, Couzis A, Maldarelli C (2003) Measurement of kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. J Colloid Interface Sci 267:272–285 CrossRefGoogle Scholar
  32. 32.
    Marangoni C (1872) Monografia delle bolle liquide (in Italian). Ill Nuovo Cimento 2:239 Google Scholar
  33. 33.
    Mori F, Lim JC, Raney OG, Elsik CM, Miller CA (1989) Phase behavior, dynamic contact angle and detergency in systems containing triolene and nonionic surfactants. Colloid Surf 40:323–345 CrossRefGoogle Scholar
  34. 34.
    Nikolov AD, Wasan DT, Denkov ND, Kralchevsky PA, Ivanov IB (1990) Drainage of foam films in the presence of nonionic micelles. Prog Colloid Polym Sci 82:87–98 CrossRefGoogle Scholar
  35. 35.
    Nikolov AD, Wasan DT, Chengara A, Koczo K, Policello GA, Kolossvary I (2002) Superspreading driven by Marangoni flow. Adv Colloid Interface Sci 96:325–338 CrossRefGoogle Scholar
  36. 36.
    O'Brien SBG, Van den Brule BHAA (1991) A mathematical model for the cleansing of silicon substrates by fluid immersion. J Colloid Interface Sci 144:210–221 CrossRefGoogle Scholar
  37. 37.
    Parker JL, Richetti P, Kekicheff P, Sarman S (1992) Direct measurement of structural forces in a supermolecular fluid. Phys Rev Lett 68:1955–1958 CrossRefGoogle Scholar
  38. 38.
    Rafai S, Sarker D, Bergeron V, Meunier J, Bonn D (2002) Superspreading: aqueous surfactant drops spreading on hydrophobic surfaces. Langmuir 18:10486–10488 CrossRefGoogle Scholar
  39. 39.
    Raney K, Benton W, Miller CA (1987) Optimum detergency conditions with nonionic surfactants I. Ternary water–surfactant–hydrocarbon system. J Colloid Interface Sci 117:282–290 CrossRefGoogle Scholar
  40. 40.
    Raney K, Benton W, Miller CA (1987) Optimum detergency conditions with nonionic surfactants II. Effect of hydrophobic additives. J Colloid Interface Sci 119:539–549 CrossRefGoogle Scholar
  41. 41.
    Rosen MJ, Wu Y (2001) Superspreading of trisiloxane surfactant mixtures on hydrophobic surfaces 1. Interfacial adsorption of aqueous trisiloxane surfactant – n-alkyl pyrrolidinone mixtures on polyethylene. Langmuir 17:7296–7305 CrossRefGoogle Scholar
  42. 42.
    Stevens PJG, Kimberely MO, Murphy DS, Policello GA (1993) Adhesion of spray droplets to foliage – the role of dynamic surface tension and advantages of organosilicone surfactants. Pesticide Sci 38:237–245 CrossRefGoogle Scholar
  43. 43.
    Stoebe T, Lin Z, Hill RM, Ward MD, Davis HT (1997) Superspreading of aqueous films containing trisiloxane surfactant on mineral oil. Langmuir 13:7282–7286 CrossRefGoogle Scholar
  44. 44.
    Stoebe T, Hill RM, Ward MD, Scriven LE, Davis HT (1996) Surfactant-enhanced spreading. Langmuir 12:337–344 CrossRefGoogle Scholar
  45. 45.
    Sun JS, Foy CL (1996) Structurally related organosilicone surfactants, their physico-chemical properties and effects on uptake and efficacy of primisulfuron in velvetleaf (Abutilon theophrasti Medicus). FRI Bulletin 193:225–230 (Proceedings of the fourth international symposium on adjuvants for agrochemicals, 1995) Google Scholar
  46. 46.
    Svitova T, Hill RM, Smirnova Y, Stuermer A, Yakubov G (1998) Wetting and interfacial transitions in dilute solutions of trisiloxane surfactants. Langmuir 14:5023–5031 CrossRefGoogle Scholar
  47. 47.
    Svitova TF, Hill RM, Radke CJ (2001) Spreading of aqueous trisiloxane surfactant solutions over liquid hydrophobic substrates. Langmuir 17:335–348 CrossRefGoogle Scholar
  48. 48.
    Thompson J (1855) On certain curious motions observable at the surfaces of wine and other alcoholic liquors. Phil Mag Ser 4:330 (summarized in Maxwell JC (1878) Capillary action. Encyclopedia Brittanica, V, 9 ed, Samuel L Hall, New York) Google Scholar
  49. 49.
    Thompson L (1994) The role of oil detachment mechanisms in determining optimum detergency conditions. J Colloid Interface Sci 163:61–73 CrossRefGoogle Scholar
  50. 50.
    Tiberg F, Cazabat AM (1994) Spreading of thin films of ordered nonionic surfactants: origin of the stepped shape of the spreading precursor. Langmuir 10:2301–2306 CrossRefGoogle Scholar
  51. 51.
    Trokhymchuk A, Henderson D, Nikolov A, Wasan DT (2001) A simple calculation of structural and depletion forces for fluids/suspensions confined in a film. Langmuir 17:4940–4947 CrossRefGoogle Scholar
  52. 52.
    Trokhymchuk A, Henderson D, Nikolov A, Wasan D (2004) Interaction between Macrosphere and Flat Wall Mediated by a Hard-Sphere Colloidal Suspension. Langmuir 20:7036–7044 CrossRefGoogle Scholar
  53. 53.
    Trokhymchuk A, Henderson D, Nikolov A, Wasan D (2005) In-layer structuring of like-charged macroions in a thin film. Ind Eng Chem Res 44:1175–1180 CrossRefGoogle Scholar
  54. 54.
    Von Bahr M, Tiberg F, Zhmud BV (1999) Spreading dynamics of surfactant solutions. Langmuir 15:7069–7075 CrossRefGoogle Scholar
  55. 55.
    Wagner R, Wu Y, Czichocki G, Berlepsch HV, Rexin F, Perepelittchenko L (1999) Silicon-modified surfactants and wetting: II. Temperature-dependent spreading behavior of oligoethylene glycol derivatives of heptamethytrisiloxane. Appl Organomet Chem 13:201–208 CrossRefGoogle Scholar
  56. 56.
    Wasan DT, Nikolov A (1999) Structural transitions in colloidal suspensions in confined films. In: Manne S, Warr GG (eds) Supramolecular Structure in Confined Geometries. ACS Symp Ser 736. American Chemical Society, Washington, pp 40–53 CrossRefGoogle Scholar
  57. 57.
    Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159 CrossRefGoogle Scholar
  58. 58.
    Wu Y, Rosen MJ (2002) Superspreading of trisiloxane surfactant mixtures on hydrophobic surfaces 2. Interaction and spreading of aqueous trisiloxane surfactant – n-alkyl pyrrolidinone mixtures in contact with polyethylene. Langmuir 18:2205–2215 CrossRefGoogle Scholar
  59. 59.
    Zhu S, Miller WG, Scriven LE, Davis HT (1994) Superspreading of water-silicone surfactant on hydrophobic surfaces. Colloids Surf A 90:63–78 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anoop V. Chengara
    • 1
  • Alex D. Nikolov
    • 1
  • Darsh T. Wasan
    • 1
  1. 1.Department of Chemical EngineeringIllinois Institute of TechnologyChicagoUSA

Personalised recommendations