Skip to main content

Self-Assembling Nanopeptides Become a New Type of Biomaterial

Part of the Advances in Polymer Science book series (POLYMER,volume 203)

Abstract

Combining physics, engineering, chemistry and biology, we can now design, synthesize and fabricate biological nano-materials at the molecular scale using self-assembling peptide systems. These peptides have been used for fabrication of nanomaterials including nanofibers, nanotubes and vesicles, nanometer-thick surface coating and nanowires. Some of these peptides are used for stabilizing membrane proteins, and others provide a more permissive environment for cell growth, repair of tissues in regenerative medicine, and delivering genes and drugs. Self-assembling peptides are also useful for fabricating a wide spectrum of exquisitely fine architectures, new materials and nanodevices for nanobiotechnology and a variety of engineering. These systems lie at the interface between molecular biology, chemistry, materials science and engineering. Molecular self-assembly will harness nature's enormous power to benefit other disciplines and society.

  • Regenerative medicine
  • Polymers
  • Nanobiotechnology
  • Self-assembly peptide
  • Designer nanomaterials

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/12_088
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   229.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-33356-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   299.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brändén CI, Tooze J (1999) Introduction to Protein Structure. Garland Publishing, New York

    Google Scholar 

  2. Petsko GA, Ringe D (2003) Protein Structure and Function. New Science Press Ltd, London, UK

    Google Scholar 

  3. Lehn JM (1995) Supramolecular Chemistry: Concepts and Perspectives. Wiley, New York

    Google Scholar 

  4. Seeman NC (2003) Nature 421:427–431

    Google Scholar 

  5. Seeman NC (2004) Sci Am 290:64–69

    CAS  CrossRef  Google Scholar 

  6. Petka WA, Harden JL, McGrath KP, Wirtz D, Tirrell DA (1998) Science 281:389–392

    CAS  Google Scholar 

  7. Nowak AP, Breedveld V, Pakstis L, Ozbas B, Pine DJ, Pochan D, Deming TJ (2002) Nature 417:424–428

    CAS  Google Scholar 

  8. Schneider JP, Pochan DJ, Ozbas B, Rajagopal K, Pakstis L, Kretsinger J (2002) J Am Chem Soc 124:15030–15037

    CAS  Google Scholar 

  9. Zhang S (2002) Biotech Adv 20:321–339

    CAS  Google Scholar 

  10. Zhang S (2003) Nat Biotechnol 21:1171–1178

    CAS  Google Scholar 

  11. Zhang S (2004) Nat Biotechnol 22:151–152

    CAS  Google Scholar 

  12. Zhang S, Altman M (1999) React Funct Polym 41:91–102

    CAS  Google Scholar 

  13. Zhang S, Rich A (1997) Proc Natl Acad Sci USA 94:23–28

    CAS  Google Scholar 

  14. Zhang S et al. (1992) EMBO J 11:3787–3796

    CAS  Google Scholar 

  15. Zhang S, Holmes T, Lockshin C, Rich A (1993) Proc Natl Acad Sci USA 90:3334–3338

    CAS  Google Scholar 

  16. Zhang S et al. (1995) Biomaterials 16:1385–1393

    Google Scholar 

  17. Zhang S et al. (1999) Biomaterials 20:1213–1220

    CAS  Google Scholar 

  18. Altman M, Lee P, Rich A, Zhang S (2000) Protein Sci 9:1095–1105

    CAS  CrossRef  Google Scholar 

  19. Zhang S, Altman M, Rich A (2001) In: Katzir E, Solomon B, Taraboulos A (eds) Diseases of Conformation—A Compendium. Bialik Institute, N. Ben-Zvi Printing Enterprises, Jerusalem, Israel, p 63–72

    Google Scholar 

  20. Zhang S, Marini D, Hwang W, Santoso S (2002) Curr Opin Chem Biol 6865–6871

    Google Scholar 

  21. Zhang S (2001) In: Buschow KH J, Cahn RW, Hemings MC, Ilschner B, Kramer EJ, Mahajan S (eds) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford, p 5822

    Google Scholar 

  22. Hartgerink JD, Beniash E, Stupp SI (2001) Science 294:1684–1688

    CAS  Google Scholar 

  23. Ratner M, Ratner D (2003) Nanotechnology: A Gentle Introduction to the Next Big Idea. Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

  24. Gajdusek DC (1977) Science 197:943–960

    CAS  Google Scholar 

  25. Fandrich M, Fletcher MA, Dobson CM (2001) Nature 410:165–166

    CAS  Google Scholar 

  26. Scheibel T, Kowal AS, Bloom JD, Lindquist SL (2001) Curr Biol 11:366–369

    CAS  Google Scholar 

  27. Lynn DG, Meredith SC (2000) J Struct Biol 130:153–173

    CAS  Google Scholar 

  28. West MW, Wang W, Mancias JD, Beasley JR, Hecht MH (1999) Proc Natl Acad Sci USA 96:11211–11216

    CAS  Google Scholar 

  29. Hammarstrom P, Schneider F, Kelly JW (2001) Science 293:2459–2462

    CAS  Google Scholar 

  30. Shtilerman MD, Ding TT, Lansbury PT (2002) Biochemistry 41:3855–3860

    CAS  Google Scholar 

  31. Reches M, Porat Y, Gazit E (2002) J Biol Chem 277:35475–35480

    CAS  Google Scholar 

  32. Perutz MF, Pope BJ, Owen D, Wanker EE, Scherzinger E (2002) Proc Natl Acad Sci USA 99:5596–5600

    CAS  Google Scholar 

  33. Jimenez JL, Tennent G, Pepys M, Saibil HR (2001) J Mol Biol 311:241–247

    CAS  Google Scholar 

  34. Lindquist SL, Henikoff S (2002) Proc Natl Acad Sci USA 99(4):16377

    CAS  Google Scholar 

  35. Leon EJ, Verma N, Zhang SG, Lauåenburger DA, Kamm RD (1998) J Biomater Sci: Polym Ed 9:297–312

    CAS  Google Scholar 

  36. Selkoe DJ (1994) Annu Rev Neurosci 17:489–517

    CAS  Google Scholar 

  37. Roher AE, Baudry J, Chaney MO, Kuo YM, Stine WB, Emmerling MR (2000) Biochim, Biophys Acta 502:31–43

    Google Scholar 

  38. Wanker EE (2000) Mol Med Today 6:387–391

    CAS  Google Scholar 

  39. Žerovnik E (2002) Amyloid-fibril formation: Proposed mechanisms and relevance to conformational disease. Eur J Biochem 269:3362–3371

    Google Scholar 

  40. Luna-Mu~noz J, Garíia-Sierrab F, Falcónc V, Menéndezc I, Chávez-Macías L, Mena R (2005) J Alzheimer's Disease 8:29–41

    CAS  Google Scholar 

  41. Hone E, Martinsa IJ, Jeoungd M, Ji TH, Gandy SE, Martins RN (2005) J Alzheimer's Disease 7:303–314

    CAS  Google Scholar 

  42. Hol WGJ, Halie LM, Sander C (1981) Nature 29:532–536

    Google Scholar 

  43. Minor DL, Kim PS (1996) Nature 380:730–734

    CAS  Google Scholar 

  44. Tan S, Richmond TJ (1998) Nature 391:660–666

    CAS  Google Scholar 

  45. Takahashi Y, Ueno A, Mihara H (1999) Bioorg Med Chem 7:177–185

    CAS  Google Scholar 

  46. Whitesides GM et al. (1991) Science 254:1312–1319

    CAS  Google Scholar 

  47. Mrksich M, Whitesides GM (1996) Annu Rev Biophys Biomol Struct 25:55–78

    CAS  Google Scholar 

  48. Chen CS et al. (1997) Science 276:1425–1428

    CAS  Google Scholar 

  49. Holmes TC et al. (2000) Proc Natl Acad Sci USA 97:6728–6733

    CAS  Google Scholar 

  50. Wallin E, von Heinje G (1998) Protein Sci 7:1029–1038

    CAS  CrossRef  Google Scholar 

  51. Loll PJ (2003) J Struct Biol 142:144–153

    CAS  Google Scholar 

  52. Vauthey S, Santoso S, Gong H, Watson N, Zhang S (2002) Proc Natl Acad Sci USA 99:5355–5360

    CAS  Google Scholar 

  53. Santoso S, Hwang W, Hartman H, Zhang SG (2002) Nano Lett 2:687–691

    CAS  Google Scholar 

  54. von Maltzahn G, Vauthey S, Santoso S, Zhang SG (2003) Langmuir 19:4332–4337

    Google Scholar 

  55. Orchid Biocomputers http://www.orchidbio.com

    Google Scholar 

  56. Rajagopal K, Schneider JP (2004) Curr Opin Struct Biol 14:480–486

    CAS  Google Scholar 

  57. Marini D et al. (2002) Nano Lett 2:295–299

    CAS  Google Scholar 

  58. Yokoi H, Takatoshi K, Zhang S (2005) Proc Natl Acad Sci USA 102:8414–8419

    CAS  Google Scholar 

  59. Kisiday J et al. (2002) Proc Natl Acad Sci USA 99:9996–10001

    CAS  Google Scholar 

  60. Goraman J (2000) Science News 158:23–24

    Google Scholar 

  61. Pandya MJ, Spooner GM, Sunde M, Thorpe JR, Rodger A, Woolfson DN (2000) Biochemistry 39:8728–8734

    CAS  Google Scholar 

  62. Potekhin SA, Melnik TN, Popov V, Lanina NF, Vazina AA, Rigler P, Verdini AS, Corradin G, Kajava AV (2001) Chem Biol 8:1025–1032

    CAS  Google Scholar 

  63. Zimenkov Y, Conticello VP, Guo L, Thiyagarajan P (2004) Tetrahedron 60:7237–7246

    CAS  Google Scholar 

  64. Wagner DE, Phillips CL, Lee LS, Ali WM, Nybakken EN, Crawford ED, Schwab AD, Smith WF, Fairman R (2005) Towards the development of peptide nanofilaments and nanoropes as smart materials. Proc Natl Acad Sci USA 102:12656–12661

    CAS  Google Scholar 

  65. Melnik TN, Villard V, Vasiliev V, Corradin G, Kajava AV, Potekhin SA (2003) Protein Eng 16:1125–1130

    CAS  Google Scholar 

  66. Ryadnov MG, Woolfson DN (2003) Angew Chem Int Ed 42:3021–3023

    CAS  Google Scholar 

  67. Ryadnov MG, Woolfson DN (2003) Nat Mater 2:329–332

    CAS  Google Scholar 

  68. Ciani B, Hutchinson EG, Sessions RB, Woolfson DN (2002) J Biol Chem 277:10150–10155

    CAS  Google Scholar 

  69. Lopez De La Paz M, Goldie K, Zurdo J, Lacroix E, Dobson CM, Hoenger A, Serrano L (2002) Proc Natl Acad Sci USA 99:16052–16057

    Google Scholar 

  70. Kammerer RA et al. (2004) Proc Natl Acad Sci USA 101:4435–4440

    CAS  Google Scholar 

  71. Israelachvili JN (1991) Intermolecular Surface Forces, 2nd edn. Academic Press, San Diego

    Google Scholar 

  72. Heuser J, Meth (1981) Cell Biol 22:97

    CAS  CrossRef  Google Scholar 

  73. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Science 276:1425–1428

    CAS  Google Scholar 

  74. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661–664

    CAS  Google Scholar 

  75. Lee K-B, Park SJ, Mirkin CA, Smith JC, Mrksich M (2002) Science 295:1702–1705

    CAS  Google Scholar 

  76. Demers LM, Ginger DS, Park S-J, Li Z, Chung S-W, Mirkin CA (2002) Science 296(5574):1836–1838

    CAS  Google Scholar 

  77. Mrksich M, Whitesides GM (1996) Annu Rev Biophys Biomol Struct 25:55–78

    CAS  Google Scholar 

  78. Dillo AK, Ochsenhirt SE, McCarthy JB, Fields GB, Tirrell M (2001) Biomaterials 22:1493–1505

    CAS  Google Scholar 

  79. Leufgen K, Mutter M, Vogel H, Szymczak W (2003) J Am Chem Soc 125:8911–8915

    CAS  Google Scholar 

  80. Djalali R, Chen YF, Matsui H (2002) J Am Chem Soc 124:13660–13661

    CAS  Google Scholar 

  81. Lvov YM, Price RR, Selinger JV, Singh A, Spector MS, Schnur JM (2000) Langmuir 16:5932–5935

    CAS  Google Scholar 

  82. Reches M, Gazit E (2003) Science 300:625–627

    CAS  Google Scholar 

  83. Scheibel T, Parthasarathy R, Sawicki G, Lin X-M, Jaeger H, Lindquist SL (2003) Proc Natl Acad Sci USA 100:4527–4532

    CAS  Google Scholar 

  84. Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391:775

    CAS  Google Scholar 

  85. Richter J, Mertig M, Pompe W, Monch I, Schackert HK (2001) Appl Phys Lett 78:536

    CAS  Google Scholar 

  86. Richter J, Mertig M, Pompe W, Vinzelberg H (2002) Appl Phys A Mater Sci Proc 74:725

    CAS  Google Scholar 

  87. Mertig M, Ciacchi LC, Seidel R, Pompe W, De Vita A (2002) Nano Lett 2:841

    CAS  Google Scholar 

  88. Harnack O, Ford WE, Yasuda A, Wessels JM (2002) Nano Lett 2:919

    CAS  Google Scholar 

  89. Patolsky F, Weizmann Y, Lioubashevski O, Willner I (2002) Angew Chem Int Ed 41:2323

    CAS  Google Scholar 

  90. Whaley SR, English DS, Hu EL, Barbara PF, Belcher AM (2000) Nature 405:665–668

    CAS  Google Scholar 

  91. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Proc Natl Acad Sci USA 100:6946–6951

    CAS  Google Scholar 

  92. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F (2003) Nat Materials 2:577–585

    CAS  Google Scholar 

  93. Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Nature 412:819–822

    CAS  Google Scholar 

  94. Sundar VC, Yablon AD, Grazul JL, Ilan M, Aizenberg J (2003) Nature 424:899–900

    CAS  Google Scholar 

  95. Aizenberg J, Muller DA, Grazul JL, Hamann DR (2003) Science 299:1205–1208

    CAS  Google Scholar 

  96. Christopher J, Nulf, David RC (2002) Nucleic Acids Research 30:2782–2789

    Google Scholar 

  97. Winfree E, Liu F, Wenzler LA, Seeman NC (1998) Nature 394:539–544

    CAS  Google Scholar 

  98. Kiley P, Zhao XJ, Vaughn M, Baldo MA, Bruce BD, Zhang S (2005) PLoS BIOLOGY 3:1180–1186

    CAS  Google Scholar 

  99. Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang LY, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang SG, Baldo M (2004) Nano Lett 4:1079–1083

    CAS  Google Scholar 

  100. Chen YC, Muhlrad A, Shteyer A, Vidson M, Bab I, Chorev M (2002) J Med Chem 45:1624–1632

    CAS  Google Scholar 

  101. Holmes TC (2002) Trends Biotechnol 20:16–21

    CAS  Google Scholar 

  102. Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA (2004) Science 303:1352–1355

    CAS  Google Scholar 

  103. Service RF (2005) Science 308:44–45

    CAS  Google Scholar 

  104. Guler MO, Soukasene S, Hulvat JF, Stupp SI (2005) Nano Lett 5:249–252

    CAS  Google Scholar 

  105. Bull SR, Guler MO, Bras RE, Meade TJ, Stupp SI (2005) Nano Lett 5:1–4

    CAS  Google Scholar 

  106. Narmoneva DA, Oni O, Sieminski AL, Zhang S, Gertler JP, Kamm RD, Lee RT (2005) Biomaterials 26:4837–4846

    CAS  Google Scholar 

  107. Davis ME, Motion JPM, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT (2005) Circulation 111:442–450

    CAS  Google Scholar 

  108. Anderson WF (1998) Nature 392:25–30

    CAS  Google Scholar 

  109. Gorecki DC, MacDermot KD (1997) Arch Immunol Ther Exp 45:375–381

    CAS  Google Scholar 

  110. Norman TC, Smith DL, Sorger PK, Drees BL, O'Rourke SM, Hughes TR, Roberts CJ, Friend SH, Fields S, Murray AW (1999) Science 285:591–595

    CAS  Google Scholar 

  111. Aramburu J, Yaffe MB, López-Rodríguez C, Cantley LC, Hogan PG, Rao A (1999) Science 285:2129–2133

    CAS  Google Scholar 

  112. Schwartz JJ, Zhang SG (2000) Curr Opin Mol Ther 2:162–167

    CAS  Google Scholar 

  113. Gorman J (2003) Sci News 163:43–44

    Google Scholar 

  114. Zhao X, Zhang S (2004) Trends Biotechnol 22:470–476

    CAS  Google Scholar 

  115. Zhang S, Zhao XJ (2004) J Mater Chem 14:2082–2086

    CAS  Google Scholar 

  116. Lee SW, Mao C, Flynn CE, Belcher AM (2002) Science 296:892

    CAS  Google Scholar 

  117. Blondelle SE, Houghten RA (1996) Trends Biotechnol 14:60

    CAS  Google Scholar 

  118. Moffet DA, Hecht MH (2001) Chem Rev 101:3191

    CAS  Google Scholar 

  119. Wei YT, Liu SL, Sazinsky DA, Moffet IP, Hecht MH (2003) Protein Sci 12:92

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

About this chapter

Cite this chapter

Zhao, X., Zhang, S. Self-Assembling Nanopeptides Become a New Type of Biomaterial. In: Werner, C. (eds) Polymers for Regenerative Medicine. Advances in Polymer Science, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_088

Download citation