Advertisement

Molecular Dynamics Modeling of the Crystal-Melt Interfaces and the Growth of Chain Folded Lamellae

  • Takashi YamamotoEmail author
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 191)

Abstract

The molecular mechanism of polymer crystallization is one of the most difficult problems and has defied innumerable efforts to understand the process over the last fifty years in spite of its great importance both from the academic and the industrial point of view. We have been studying this historical problem by use of the molecular dynamics simulation method. In this chapter of the book, we review our recent work on the crystal growth of polymers with special focus on polymer behavior at the crystal surface, either at crystal-vapor or crystal-melt interfaces. Our starting molecular model is a bead-spring chain, or a wormlike chain, made of methylene-like united atoms; the zigzag structure of polymethylene is here neglected in order to accelerate crystallization. We proceed with stepwise revisions of the model toward the realistic modeling of polymer crystallization from the dense melt. We start our discussion with the crystallization of polymers on a two-dimensional surface, which is a model of the chain strongly adsorbed on the growth surface. Then we treat the three-dimensional process of crystallization of a single chain from a vapor phase: the adsorption to and the ordering on the growth substrate. Lastly, polymer crystallization from the dense melt is investigated. We also report on fiber formation from a highly oriented amorphous state. Various important issues concerning the molecular mechanism of polymer crystallization are discussed in the light of findings from our direct molecular simulations.

Chain folding Computer modeling Crystal growth Crystal-melt interfaces Molecular dynamics Polymer crystallization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The present work was supported by the Grant-in-Aid of Scientific Research on Priority Areas, “Mechanism of Polymer Crystallization” (No.12127206), from the Ministry of Education, Science, and Culture, Japan.

References

  1. 1.
    Wunderlich B (1976) Macromolecular Physics. Academic Press, New York, 1–2 Google Scholar
  2. 2.
    Hoffman JD, Davies GT, Lauritzten JI (1976) Treatise on Solid-state Chemistry. Plenum, New York, 3 Google Scholar
  3. 3.
    Armistead K, Goldbeck-Wood G (1992) Adv Polym Sci 100:219 Google Scholar
  4. 4.
    Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4451 Google Scholar
  5. 5.
    Lee CH, Saito H, Inoue T (1996) Macromolecules 29:7034 Google Scholar
  6. 6.
    Fukao K, Miyamoto Y (1997) Phys Rev Lett 79:4613 CrossRefGoogle Scholar
  7. 7.
    Tashiro K, Imanishi K, Izumi Y, Kobayashi M, Kobayashi K, Satoh M, Stein R (1995) Macromolecules 28:8477 Google Scholar
  8. 8.
    Mandelkern L (2002) Crystallization of Polymers. Cambridge University Press, Edinburgh Google Scholar
  9. 9.
    Hoffman JD, Miller RL (1997) Polymer 38:3151 CrossRefGoogle Scholar
  10. 10.
    Sadler DM, Gilmer GM (1984) Polymer 25:1446 Google Scholar
  11. 11.
    Point JJ (1979) Faraday Discuss Chem Soc 68:167 Google Scholar
  12. 12.
    Hokosaka M (1990) Polymer 31:458 Google Scholar
  13. 13.
    Keller A, Hikosaka M, Rastogi S, Toda A, Barham PJ, Goldbeck-Wood G (1994) J Mater Sci 29:2579 CrossRefGoogle Scholar
  14. 14.
    Strobl G (2000) Eur Phys J E 3:165 CrossRefGoogle Scholar
  15. 15.
    Cheng SZD, Noid DW, Wunderlich B (1989) J Polym Sci, Part B 27:1149 Google Scholar
  16. 16.
    Yamamoto T, Hikosaka M, Takahashi N (1994) Macromolecules 27:1466 Google Scholar
  17. 17.
    Yamamoto T (1995) J Chem Soc Faraday Trans 91:2559 CrossRefGoogle Scholar
  18. 18.
    Kavassalis TA, Sundararajan PR (1993) Macromolecules 26:4144 CrossRefGoogle Scholar
  19. 19.
    Fujiwara S, Sato T (1997) J Chem Phys 107:613 Google Scholar
  20. 20.
    Yamamoto T (1997) J Chem Phys 107:2653 Google Scholar
  21. 21.
    Yamamoto T (1998) J Chem Phys 89:2356 Google Scholar
  22. 22.
    Yamamoto T (2001) J Chem Phys 115:8675 Google Scholar
  23. 23.
    Yamamoto T (2003) J Macromol Sci B 42:629 Google Scholar
  24. 24.
    Yamamoto T (2004) Polymer 45:1357 Google Scholar
  25. 25.
    Koyama A, Yamamoto T, Fukao K, Miyamoto Y (2002) Phys Rev E 65:050801 Google Scholar
  26. 26.
    Chen CM, Higgs PG (1998) J Chem Phys 108:4305 Google Scholar
  27. 27.
    Liu C, Muthukumar M (1998) J Chem Phys 109:2536 Google Scholar
  28. 28.
    Welch P, Muthukumar M (2001) Phys Rev Letts 87:218302 CrossRefGoogle Scholar
  29. 29.
    Doye JP, Frenkel D (1998) J Chem Phys 109:10033 Google Scholar
  30. 30.
    Doye JP, Frenkel D (1999) J Chem Phys 110:2692 Google Scholar
  31. 31.
    Meyer H, Mueller-Plathe F (2001) J Chem Phys 115:7807 Google Scholar
  32. 32.
    Meyer H, Mueller-Plathe F (2002) Macromolecules 35:1241 Google Scholar
  33. 33.
    Waheed N, Lavine MS, Rutledge G (2002) J Chem Phys 116:2301 CrossRefGoogle Scholar
  34. 34.
    Hu W, Frenkel D, Mathot VBF (2003) Macromolecules 36:549 Google Scholar
  35. 35.
    Miura T, Kishi R, Mikami M, Tanabe Y (2001) Phys Rev E 63:061807 CrossRefGoogle Scholar
  36. 36.
    Toda A, Kiho H (1987) J Phys Soc Japan 56:1631 CrossRefGoogle Scholar
  37. 37.
    Flory PJ (1969) Statistical Mechanics of chain molecules. Wiley, New York, 432 pp Google Scholar
  38. 38.
    Steele WA (1973) Surf Sci 36:317 CrossRefGoogle Scholar
  39. 39.
    Sanchez IC, Colson JP, Eby RK (1973) J Appl Phys 44:4332 CrossRefGoogle Scholar
  40. 40.
    Granick S (1991) Science 253:1374 Google Scholar
  41. 41.
    Yoon DY, Vacatello M, Smith GD (1995) In: Binder K (ed) Monte Carlo and Molecular Dynamics Simulation in Polymer Science. Oxford Univ Press, Oxford, pp 433–475 Google Scholar
  42. 42.
    Hobbs JK, Miles MJ (2001) Macromolecules 34:353 Google Scholar
  43. 43.
    Gautam S, Balijepalli S, Rutledge GC (2000) Macromolecules 37:9136 Google Scholar
  44. 44.
    Yamamoto T (1979) J Macromol Sci Phys B16:487 Google Scholar
  45. 45.
    Shimizu T, Yamamoto T (2000) J Chem Phys 113:3351 Google Scholar
  46. 46.
    Li HZ, Yamamoto T (2001) J Chem Phys 114:5774 Google Scholar
  47. 47.
    Abraham CF, Kremer K (2002) J Chem Phys 116:3162 Google Scholar

Authors and Affiliations

  1. 1.Department of Physics, Biology, and InformaticsYamaguchi UniversityYamaguchiJapan

Personalised recommendations