Skip to main content

Molecular Dynamics Modeling of the Crystal-Melt Interfaces and the Growth of Chain Folded Lamellae

  • Chapter
  • First Online:
Interphases and Mesophases in Polymer Crystallization III

Part of the book series: Advances in Polymer Science ((POLYMER,volume 191))

Abstract

The molecular mechanism of polymer crystallization is one of the most difficult problems and has defied innumerable efforts to understand the process over the last fifty years in spite of its great importance both from the academic and the industrial point of view. We have been studying this historical problem by use of the molecular dynamics simulation method. In this chapter of the book, we review our recent work on the crystal growth of polymers with special focus on polymer behavior at the crystal surface, either at crystal-vapor or crystal-melt interfaces. Our starting molecular model is a bead-spring chain, or a wormlike chain, made of methylene-like united atoms; the zigzag structure of polymethylene is here neglected in order to accelerate crystallization. We proceed with stepwise revisions of the model toward the realistic modeling of polymer crystallization from the dense melt. We start our discussion with the crystallization of polymers on a two-dimensional surface, which is a model of the chain strongly adsorbed on the growth surface. Then we treat the three-dimensional process of crystallization of a single chain from a vapor phase: the adsorption to and the ordering on the growth substrate. Lastly, polymer crystallization from the dense melt is investigated. We also report on fiber formation from a highly oriented amorphous state. Various important issues concerning the molecular mechanism of polymer crystallization are discussed in the light of findings from our direct molecular simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wunderlich B (1976) Macromolecular Physics. Academic Press, New York, 1–2

    Google Scholar 

  2. Hoffman JD, Davies GT, Lauritzten JI (1976) Treatise on Solid-state Chemistry. Plenum, New York, 3

    Google Scholar 

  3. Armistead K, Goldbeck-Wood G (1992) Adv Polym Sci 100:219

    Google Scholar 

  4. Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Polymer 33:4451

    CAS  Google Scholar 

  5. Lee CH, Saito H, Inoue T (1996) Macromolecules 29:7034

    CAS  Google Scholar 

  6. Fukao K, Miyamoto Y (1997) Phys Rev Lett 79:4613

    Article  CAS  Google Scholar 

  7. Tashiro K, Imanishi K, Izumi Y, Kobayashi M, Kobayashi K, Satoh M, Stein R (1995) Macromolecules 28:8477

    CAS  Google Scholar 

  8. Mandelkern L (2002) Crystallization of Polymers. Cambridge University Press, Edinburgh

    Google Scholar 

  9. Hoffman JD, Miller RL (1997) Polymer 38:3151

    Article  CAS  Google Scholar 

  10. Sadler DM, Gilmer GM (1984) Polymer 25:1446

    CAS  Google Scholar 

  11. Point JJ (1979) Faraday Discuss Chem Soc 68:167

    Google Scholar 

  12. Hokosaka M (1990) Polymer 31:458

    Google Scholar 

  13. Keller A, Hikosaka M, Rastogi S, Toda A, Barham PJ, Goldbeck-Wood G (1994) J Mater Sci 29:2579

    Article  CAS  Google Scholar 

  14. Strobl G (2000) Eur Phys J E 3:165

    Article  CAS  Google Scholar 

  15. Cheng SZD, Noid DW, Wunderlich B (1989) J Polym Sci, Part B 27:1149

    CAS  Google Scholar 

  16. Yamamoto T, Hikosaka M, Takahashi N (1994) Macromolecules 27:1466

    CAS  Google Scholar 

  17. Yamamoto T (1995) J Chem Soc Faraday Trans 91:2559

    Article  CAS  Google Scholar 

  18. Kavassalis TA, Sundararajan PR (1993) Macromolecules 26:4144

    Article  CAS  Google Scholar 

  19. Fujiwara S, Sato T (1997) J Chem Phys 107:613

    CAS  Google Scholar 

  20. Yamamoto T (1997) J Chem Phys 107:2653

    CAS  Google Scholar 

  21. Yamamoto T (1998) J Chem Phys 89:2356

    Google Scholar 

  22. Yamamoto T (2001) J Chem Phys 115:8675

    CAS  Google Scholar 

  23. Yamamoto T (2003) J Macromol Sci B 42:629

    Google Scholar 

  24. Yamamoto T (2004) Polymer 45:1357

    CAS  Google Scholar 

  25. Koyama A, Yamamoto T, Fukao K, Miyamoto Y (2002) Phys Rev E 65:050801

    Google Scholar 

  26. Chen CM, Higgs PG (1998) J Chem Phys 108:4305

    CAS  Google Scholar 

  27. Liu C, Muthukumar M (1998) J Chem Phys 109:2536

    CAS  Google Scholar 

  28. Welch P, Muthukumar M (2001) Phys Rev Letts 87:218302

    Article  CAS  Google Scholar 

  29. Doye JP, Frenkel D (1998) J Chem Phys 109:10033

    CAS  Google Scholar 

  30. Doye JP, Frenkel D (1999) J Chem Phys 110:2692

    CAS  Google Scholar 

  31. Meyer H, Mueller-Plathe F (2001) J Chem Phys 115:7807

    CAS  Google Scholar 

  32. Meyer H, Mueller-Plathe F (2002) Macromolecules 35:1241

    CAS  Google Scholar 

  33. Waheed N, Lavine MS, Rutledge G (2002) J Chem Phys 116:2301

    Article  CAS  Google Scholar 

  34. Hu W, Frenkel D, Mathot VBF (2003) Macromolecules 36:549

    CAS  Google Scholar 

  35. Miura T, Kishi R, Mikami M, Tanabe Y (2001) Phys Rev E 63:061807

    Article  CAS  Google Scholar 

  36. Toda A, Kiho H (1987) J Phys Soc Japan 56:1631

    Article  CAS  Google Scholar 

  37. Flory PJ (1969) Statistical Mechanics of chain molecules. Wiley, New York, 432 pp

    Google Scholar 

  38. Steele WA (1973) Surf Sci 36:317

    Article  CAS  Google Scholar 

  39. Sanchez IC, Colson JP, Eby RK (1973) J Appl Phys 44:4332

    Article  CAS  Google Scholar 

  40. Granick S (1991) Science 253:1374

    CAS  Google Scholar 

  41. Yoon DY, Vacatello M, Smith GD (1995) In: Binder K (ed) Monte Carlo and Molecular Dynamics Simulation in Polymer Science. Oxford Univ Press, Oxford, pp 433–475

    Google Scholar 

  42. Hobbs JK, Miles MJ (2001) Macromolecules 34:353

    CAS  Google Scholar 

  43. Gautam S, Balijepalli S, Rutledge GC (2000) Macromolecules 37:9136

    Google Scholar 

  44. Yamamoto T (1979) J Macromol Sci Phys B16:487

    CAS  Google Scholar 

  45. Shimizu T, Yamamoto T (2000) J Chem Phys 113:3351

    CAS  Google Scholar 

  46. Li HZ, Yamamoto T (2001) J Chem Phys 114:5774

    Google Scholar 

  47. Abraham CF, Kremer K (2002) J Chem Phys 116:3162

    Google Scholar 

Download references

Acknowledgments

The present work was supported by the Grant-in-Aid of Scientific Research on Priority Areas, “Mechanism of Polymer Crystallization” (No.12127206), from the Ministry of Education, Science, and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Yamamoto .

Editor information

Giuseppe Allegra

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Yamamoto, T. Molecular Dynamics Modeling of the Crystal-Melt Interfaces and the Growth of Chain Folded Lamellae. In: Allegra, G. (eds) Interphases and Mesophases in Polymer Crystallization III. Advances in Polymer Science, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/12_012

Download citation

Publish with us

Policies and ethics