Topological Mechanism of Polymer Nucleation and Growth – The Role of Chain Sliding Diffusion and Entanglement

  • Masamichi HikosakaEmail author
  • Kaori Watanabe
  • Kiyoka Okada
  • Shinichi Yamazaki
Part of the Advances in Polymer Science book series (POLYMER, volume 191)


Direct evidence of nucleation during the induction period of nucleation from the melt is obtained for the first time by means of small angle X-ray scattering (SAXS). This confirmed that the induction period of crystallization from the melt corresponds to the process of nucleation, not to that of spinodal decomposition. This success is due to a significant increase in the scattering intensity (Ix) from the nuclei (104 times as large as is normal), which was achieved by adding a nucleating agent (NA) to a “model polymer” of polyethylene (PE). Ix increased soon after quenching to the crystallization temperature (Tc) and saturated after the induction time (τi). Lamellae start stacking later than the Mn.

Power laws of the molecular weight (Mn) dependence of the primary nucleation rate (I) and the growth rate (V) of PE, i.e., I or V ∝ Mn−H where H is a constant, were found for both morphologies of folded chain crystals (FCCs) and extended chain crystals (ECCs). As the power law was also confirmed on isotactic polypropylene (iPP), universality of the power law is suggested. It is to be noted that the power H increases significantly with increase of the degree of order of the crystal structure. The power law confirms that the topological nature of polymer chains, such as chain sliding diffusion and the chain entanglement within the interface between the nucleus and the melt or those within a nucleus, adopts a most important role in the nucleation and growth of polymers. This is theoretically explained by improving the “chain sliding diffusion theory” proposed by Hikosaka.

Entanglement dependence of the nucleation rate I is qualitatively obtained for the first time by changing the number density of entanglement (νe) within the melt. An experimental formula of I as a function of νe was obtained on PE, Ie) ∝ exp(−γνe) where γis a constant.

Crystallization Degree of supercooling Entanglement Extended chain crystal (ECC) Folded chain crystal (FCC) Growth Growth rate Induction period Melt relaxation Molecular weight Nucleation Nucleation rate Nucleus Optical microscope (OM) Polyethylene Polymer Power law Sliding diffusion Small angle X-ray scattering (SAXS) Topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Prof. Akihiko Toda, Dr. Isao Wataoka, Dr. Swapan K. Ghosh of Hiroshima University, Dr. K. Yamada of SunAllomer Co. Ltd., Dr. Katsuaki Inoue of the Japan Synchrotron Radiation Institute (JASRI) and Dr. Zdenek Kozisek of the Institute of Physics, Academy of Sciences of the Czech Republic for their help with the experiments and discussions. SAXS experiments were carried out at the BL40B2 of SPring8 (SP8) at JASRI (Proposal No. 2001B0187-NDL-np—2004A0224-NL-2b-np) in Harima and at the BL-10C small angle installation of the Photon Factory (PF) at KEK in Tsukuba. The authors also thank Asahi Denka Kogyo K.K. for supplying the nucleating agent. This work was partly supported by the Grant-in-Aid for Scientific Research on Priority Areas B2 (No.12127205) and Scientific Research A2 (No. 12305062). The authors are grateful to the financial support from the International Joint Research grant, NEDO, 1996–1998.


  1. 1.
    Becker R, Döring W (1935) Ann Phys 24:719 Google Scholar
  2. 2.
    Zeldovich YaB (1943) Acta Physicochim USSR 18:1 Google Scholar
  3. 3.
    Frenkel J (1946) Kinetic Theory of Liquids. Oxford University, London Google Scholar
  4. 4.
    Turnbull D, Fisher JC (1949) J Chem Phys 17:71 CrossRefGoogle Scholar
  5. 5.
    Flory PJ (1953) Principles of Polymer Chemistry. Cornell University, Ithaca, New York Google Scholar
  6. 6.
    de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University, Ithaca, New York Google Scholar
  7. 7.
    Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon Press, Oxford Google Scholar
  8. 8.
    Hikosaka M, Amano K, Rastogi S, Keller A (2000) J Materials Sci 35:5157 CrossRefGoogle Scholar
  9. 9.
    Hikosaka M, Amano K, Rastogi S, Keller A (1997) Macromolecules 30:2067 CrossRefGoogle Scholar
  10. 10.
    Hikosaka M, Tsukijima K, Rastogi S, Keller A (1992) Polymer 33:2502 CrossRefGoogle Scholar
  11. 11.
    Bassett DC, Block S, Piermarini GJ (1974) J Appl Phys 45:4146 CrossRefGoogle Scholar
  12. 12.
    Yasuniwa M, Enoshita R, Takemura T (1976) Jpn J Appl Phys 15:1421 CrossRefGoogle Scholar
  13. 13.
    Hikosaka M, Minomura S, Seto T (1980) Jpn J Appl Phys 19:1763 CrossRefGoogle Scholar
  14. 14.
    Hikosaka M (1987) Polymer 28:1257 CrossRefGoogle Scholar
  15. 15.
    Hikosaka M (1990) Polymer 31:458 CrossRefGoogle Scholar
  16. 16.
    Frisch HL (1957) J Chem Phys 27:90 Google Scholar
  17. 17.
    Andres RP, Boudart M (1965) J Chem Phys 42:2057 CrossRefGoogle Scholar
  18. 18.
    Akpalu YA, Amis EJ (1999) J Chem Phys 111:8686 CrossRefGoogle Scholar
  19. 19.
    Imai M, Mori K, Kizukami T, Kaji K, Kanaya T (1992) Polymer 33:4457 Google Scholar
  20. 20.
    Nishi M, Hikosaka M, Ghosh SK, Toda A, Yamada K (1999) Polym J 31:749 CrossRefGoogle Scholar
  21. 21.
    Nishi M, Hikosaka M, Toda A, Takahashi M (1998) Polymer 39:1591 CrossRefGoogle Scholar
  22. 22.
    Rastogi S, Hikosaka M, Kawabata H, Keller A (1991) Macromolecules 24:6384 CrossRefGoogle Scholar
  23. 23.
    Hikosaka M, Okada H, Toda A, Rastogi S, Keller A (1995) J Chem Soc Faraday Trans 91:2573 CrossRefGoogle Scholar
  24. 24.
    Frank FC, Tosi M (1961) Proc Roy Soc A263:323 Google Scholar
  25. 25.
    Price F (1969) Nucleation in polymer crystallization. In: Zettlemoyer AC (ed) Nucleation. Marcel Dekker, Inc, New York Google Scholar
  26. 26.
    Wunderlich B (1980) Macromolecular Physics. Academic Press, London Google Scholar
  27. 27.
    Okada M, Nishi M, Takahashi M, Matsuda H, Toda A, Hikosaka M (1998) Polymer 39:4535 CrossRefGoogle Scholar
  28. 28.
    Hoffman JD, Frolen LJ, Ross GS, Lauritzen JI (1975) J Res NBS 79A:671 Google Scholar
  29. 29.
    Hikosaka M, Yamazaki S, Wataoka I, Das NC, Okada K, Toda A, Inoue K (2003) J Macromol Sci B42:847 Google Scholar
  30. 30.
    Guinier A (1967) Theory of technique of the radiocrystallograpy, (Japanese ed). Rigaku Denki, Tokyo Google Scholar
  31. 31.
    Roe RJ (2000) Methods of X-rayand neutron scattering in polymer science. Oxford Univ Press, New York Google Scholar
  32. 32.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373 CrossRefGoogle Scholar
  33. 33.
    Ghosh SK, Hikosaka M, Toda A (2001) Colloid Polym Sci 279:382 CrossRefGoogle Scholar
  34. 34.
    Ghosh SK, Hikosaka M, Toda A, Yamazaki S, Yamada K (2002) Macromolecules 18:6985 Google Scholar
  35. 35.
    Garti N, Sato K (eds) (2001) Crystallization Process in Fats and Lipid Systems. Marcel Dekker, Inc, New York Google Scholar
  36. 36.
    Nozaki K, Hikosaka M (2000) J Material Sci 35:1239 CrossRefGoogle Scholar
  37. 37.
    Wunderlich B (1973) Macromolecular Physics, vol 1&2. Academic Press, New York Google Scholar
  38. 38.
    Magill JH, Kojima M, Li HM (1973) the IUPAC Symp Macromol, Aberdeen, UK Google Scholar
  39. 39.
    Labaig JJ (1978) PhD Thesis, Faculty of Science, University of Strasbourg Google Scholar
  40. 40.
    Hoffman JD (1982) Polymer 23:656 CrossRefGoogle Scholar
  41. 41.
    Hoffman JD, Miller RL (1988) Macromolecules 21:3038 CrossRefGoogle Scholar
  42. 42.
    Kossel W (1927) Nach Ges Wiss Gottingen 135 Google Scholar
  43. 43.
    Volmer M (1939) Kinetik der Phasenbildung Google Scholar
  44. 44.
    Burton WK, Cabrera N, Frank FC (1950-1951) Phil Trans Roy Soc A243:299 Google Scholar
  45. 45.
    Watanabe H (1986) Kobunnshi High Polym Jpn 35:111046 Google Scholar
  46. 46.
    Hoffman JD (1994) International Polymer Physics Symposium (Honoring Prof Kawai) p 19 Google Scholar
  47. 47.
    Toda A (1992) Colloid Polym Sci 270:667 CrossRefGoogle Scholar
  48. 48.
    Hikosaka M, Rastogi S, Keller A, Kawabata H (1992) J Macromol Sci Phys B31:87 Google Scholar
  49. 49.
    Yamazaki S, Hikosaka M, Gu F, Ghosh SK, Arakaki M, Toda A (2001) Polym J 33:906 CrossRefGoogle Scholar
  50. 50.
    Yamazaki S, Hikosaka M, Toda A, Wataoka I, Gu F (2002) Polymer 43:6585 Google Scholar
  51. 51.
    Psarski M, Piorkowska E, Galeski A (2000) Macromolecules 33:916 CrossRefGoogle Scholar
  52. 52.
    Yamazaki S, Hikosaka M, Toda A, Okada K, Gu F, Watanabe K, submitted to Polymer Google Scholar
  53. 53.
    Alfonso GC, Scardigli P (1997) Macromol Symp 118:323 Google Scholar

Authors and Affiliations

  • Masamichi Hikosaka
    • 1
    Email author
  • Kaori Watanabe
    • 1
  • Kiyoka Okada
    • 1
  • Shinichi Yamazaki
    • 1
  1. 1.Faculty of Integrated Arts and SciencesHiroshima UniversityHigashi HiroshimaJapan

Personalised recommendations