Advertisement

Modeling Polymer Crystallization

  • M. Muthukumar
Chapter
Part of the Advances in Polymer Science book series (POLYMER, volume 191)

Abstract

We summarize the salient conclusions derived from Langevin dynamics simulations of many flexible polymer molecules undergoing crystallization from solutions. These simulations reveal molecular mechanisms of nucleation and growth, and the accompanying free energy barriers, during the very early stages of crystallization. The simulation results are also analyzed by statistical mechanics theories. Major conclusions on the growth of density fluctuations in the primordial stage, birth of baby nuclei, which then mature into lamellae through a stage of smectic pearls, and spontaneous selection of finite equilibrium lamellar thickness are addressed. Furthermore, selection of shapes is addressed using a novel Monte Carlo algorithm for polymer crystallization in solutions. In addition, details of free energy landscape just in front of the growth front are summarized, based on Langevin dynamics simulations. The mechanism of growth is seen to be an adsorption process, in contrast to previous beliefs. Finally, the role of externally imposed flow on polymer crystallization is addressed by considering the molecular mechanisms behind the formation of shish-kebab morphology in extensional flows. The major conclusions from the reviewed simulation results are qualitatively different from the established models of polymer crystallization.

Keywords

Chem Phys Spinodal Decomposition Growth Front Lamellar Thickness Free Energy Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author is grateful to all of his collaborators on the subject of the review, who are in chronological order, Chester Liu, Paul Welch, Ilija Dukovski, Jianing Zhang, and Arindam Kundagrami. Acknowledgement is made to NSF Grant DMR-0209256 for financial support.

References

  1. 1.
    Wunderlich B (1973) Macromolecular Physics, vols I and II. Academic Press, New York Google Scholar
  2. 2.
    Yoon DY, Flory PJ (eds) (1979) Special issue on the organization of macromolecules in the condensed phase. Faraday Discuss. Chem Soc 68:7 Google Scholar
  3. 3.
    Bassett DC (1981) Principles of polymer morphology. Cambridge University Press, Cambridge Google Scholar
  4. 4.
    Phillips PJ (1990) Rep Prog Phys 53:549 CrossRefGoogle Scholar
  5. 5.
    Armitstead K, Goldbeck-Wood G (1992) Adv Polym Sci 100:219 Google Scholar
  6. 6.
    Muthukumar M (2004) Adv Chem Phys 128:1 Google Scholar
  7. 7.
    Strobl G (1996) The physics of polymers. Springer, Berlin Heidelberg New York Google Scholar
  8. 8.
    Imai M, Kaji K, Kanaya T (1994) Macromolecules 27:7103 CrossRefGoogle Scholar
  9. 9.
    Ezquerra TA, Lopez-Cabarcos E, Hsiao BS, Balta-Calleja FJ (1996) Phys Rev E 54:989 CrossRefGoogle Scholar
  10. 10.
    Terrill NJ, Fairclough JPA, Towns-Andrews E, Komanschek BU, Young RJ, Ryan AJ (1998) Polymer 39:2381 CrossRefGoogle Scholar
  11. 11.
    Olmsted PD, Poon WCK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373 CrossRefGoogle Scholar
  12. 12.
    Ryan AJ, Fairclough RPA, Terrill NJ, Olmsted PD, Poon WCK (1999) Faraday Discuss. Chem Soc 112:13 CrossRefGoogle Scholar
  13. 13.
    Akpalu Y, Kielhorn L, Hsiao BS, Stein RS, Russell TP, van Egmond J, Muthukumar M (1999) Macromolecules 32:765 CrossRefGoogle Scholar
  14. 14.
    Strobl G (2000) Eur Phys J E 3:165 CrossRefGoogle Scholar
  15. 15.
    Lotz B (2000) Eur Phys J E 3:185 CrossRefGoogle Scholar
  16. 16.
    Muthukumar M (2000) Eur Phys J E 3:199 CrossRefGoogle Scholar
  17. 17.
    Toxvaerd S (1990) J Chem Phys 93:4290 CrossRefGoogle Scholar
  18. 18.
    Kavassalis TA, Sundararajan PR (1993) Macromolecules 26:4144 CrossRefGoogle Scholar
  19. 19.
    Boyd RH, Gee RH, Han J, Jin Y (1994) J Chem Phys 101:788 Google Scholar
  20. 20.
    Sundararajan PR, Kavassalis TA (1995) J Chem Soc Faraday Trans 91:2541 CrossRefGoogle Scholar
  21. 21.
    Toma L, Toma S, Subirana JA (1998) Macromolecules 31:2328 CrossRefGoogle Scholar
  22. 22.
    Liu C, Muthukumar M (1998) J Chem Phys 109:2536 Google Scholar
  23. 23.
    Yamamoto T (1998) J Chem Phys 109:4638 Google Scholar
  24. 24.
    Takeuchi H (1998) J Chem Phys 109:5614 CrossRefGoogle Scholar
  25. 25.
    Balijepalli S, Rutledge GC (1998) J Chem Phys 109:6523 CrossRefGoogle Scholar
  26. 26.
    Doye JPK, Frenkel D (1999) J Chem Phys 110:2692 Google Scholar
  27. 27.
    Fujiwara S, Sato T (1999) J Chem Phys 110:9757 CrossRefGoogle Scholar
  28. 28.
    Sommer J-U, Reiter G (2000) J Chem Phys 112:4384 CrossRefGoogle Scholar
  29. 29.
    Muthukumar M, Welch P (2000) Polymer 41:8833 CrossRefGoogle Scholar
  30. 30.
    Welch P, Muthukumar M (2001) Phys Rev Lett 87:218302 CrossRefGoogle Scholar
  31. 31.
    Yamamoto T (2001) J Chem Phys 115:8675 Google Scholar
  32. 32.
    Muthukumar M (2003) Phil Trans R Soc Lond A 361:539 Google Scholar
  33. 33.
    Dukovski I, Muthukumar M (2003) J Chem Phys 118:6648 CrossRefGoogle Scholar
  34. 34.
    Zhang J, Muthukumar M (manuscript in preparation) Google Scholar
  35. 35.
    Yamamoto T (2003) J Macromol Sci B42:629 Google Scholar
  36. 36.
    Yamamoto T (2004) Polymer 45:1357 Google Scholar
  37. 37.
    Lavine MS, Waheed N, Rutledge GC (2003) Polymer 44:1771 CrossRefGoogle Scholar
  38. 38.
    Hu W, Frenkel D, Mathot VBF (2003) Macromolecules 36:8178 Google Scholar
  39. 39.
    Hu W, Frenkel D (2004) Macromolecules 37:4336 Google Scholar
  40. 40.
    Hoffman JD, Davis GT, Lauritzen JI (1976) In: Hannay NB (ed) Treatise on solid state chemistry, vol 3, Chapt 7. Plenum Press, New York, p 497–614 Google Scholar
  41. 41.
    Lauritzen JI, Hoffman JD (1960) J Res Nat Bur Std 64A:73 Google Scholar
  42. 42.
    DiMarzio EA (1967) J Chem Phys 47:3451 CrossRefGoogle Scholar
  43. 43.
    Passaglio E, DiMarzio EA (1987) J Chem Phys 87:4901,4908 Google Scholar
  44. 44.
    Point JJ, Dosière M (1989) Macromolecules 22:3501 CrossRefGoogle Scholar
  45. 45.
    Sadler DM, Gilmer GH (1984) Polymer 25:1446 Google Scholar
  46. 46.
    Hoffman JD, Miller RL (1997) Polymer 38:3151 CrossRefGoogle Scholar
  47. 47.
    Allegra G (1977) J Chem Phys 66:5453 CrossRefGoogle Scholar
  48. 48.
    Keller A, Kolnaar HWH (1997) In: Meijer HEH (ed) Processing of Polymers, vol 18. VCH, New York Google Scholar
  49. 49.
    Organ SJ, Keller A (1985) J Mater Sci 20:1571 Google Scholar
  50. 50.
    Ungar G, Stejny J, Keller A, Bidd I, Whiting MC (1985) Science 229:386 Google Scholar
  51. 51.
    Ergoz E, Fatou JG, Mandelkern L (1972) Macromolecules 5:147 CrossRefGoogle Scholar
  52. 52.
    Ross GS, Frolen LJ (1980) Methods of Experimental Physics, vol 16B. Academic Press, New York, 363 pp Google Scholar
  53. 53.
    Mandelkern L (1964) Crystallization of Polymers. McGraw-Hill, New York Google Scholar
  54. 54.
    Pennings AJ, Kiel AM (1965) Kolloid Z Z Polym 205:160 CrossRefGoogle Scholar
  55. 55.
    Pennings AJ (1977) J Polym Sci: Polym Symp 59:55 Google Scholar
  56. 56.
    Liu T, Lieberwirth I, Petermann J (2001) Macromol Chem Phys 202:2921 Google Scholar
  57. 57.
    Hobbs JK, Miles MJ (2001) Macromolecules 34:353 Google Scholar
  58. 58.
    Hobbs JK, Humphris ADL, Miles MJ (2001) Macromolecules 34:5508 Google Scholar
  59. 59.
    Perkins TT, Smith DE, Chu S (1997) Science 276:2016 CrossRefGoogle Scholar
  60. 60.
    Pennings AJ, van der Mark JMAA, Booij HC (1970) Kolloid Z Z Polym 236:99 CrossRefGoogle Scholar
  61. 61.
    Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon, Oxford Google Scholar
  62. 62.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011 CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstUSA

Personalised recommendations