Halogen Bonding in Hypervalent Iodine Compounds

  • Luca Catalano
  • Gabriella Cavallo
  • Pierangelo MetrangoloEmail author
  • Giuseppe ResnatiEmail author
  • Giancarlo Terraneo
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)


Halogen bonds occur when electrophilic halogens (Lewis acids) attractively interact with donors of electron density (Lewis bases). This term is commonly used for interactions undertaken by monovalent halogen derivatives. The aim of this chapter is to show that the geometric features of the bonding pattern around iodine in its hypervalent derivatives justify the understanding of some of the longer bonds as halogen bonds. We suggest that interactions directionality in ionic and neutral λ3-iodane derivatives is evidence that the electron density distribution around iodine atoms is anisotropic, a region of most positive electrostatic potential exists on the extensions of the covalent bonds formed by iodine, and these positive caps affect, or even determine, the crystal packing of these derivatives. For instance, the short cation–anion contacts in ionic λ3-iodane and λ5-iodane derivatives fully match the halogen bond definition and geometrical prerequisites. The same holds for the short contacts the cation of ionic λ3-iodanes forms with lone-pair donors or the short contacts given by neutral λ3-iodanes with incoming nucleophiles. The longer and weaker bonds formed by iodine in hypervalent compounds are usually called secondary bondings and we propose that the term halogen bond can also be used. Compared to the term secondary bond, halogen bond may possibly be more descriptive of some bonding features, e.g., its directionality and the relationships between structure of interacting groups and interaction strength.


Crystal engineering Halogen bond Hypervalent iodine Supramolecular chemistry 


  1. 1.
    Dohi T, Kita Y (2015) In: Kahio T (ed) Hypervalent iodine in iodine chemistry and applications. Wiley, HobokenGoogle Scholar
  2. 2.
    Zhdankin VV (2013) Hypervalent iodine chemistry: preparation, structure, and synthetic applications of polyvalent iodine compounds. Wiley, HobokenCrossRefGoogle Scholar
  3. 3.
    Wirth T (2005) Hypervalent iodine in synthesis: scope and new directions. Angew Chem Int Ed 44:3656–3665CrossRefGoogle Scholar
  4. 4.
    Wirth T (ed) (2003) Hypervalent iodine chemistry: modern developments in organic synthesis, Topics in current chemistry series 224. Springer, BerlinGoogle Scholar
  5. 5.
    Varvoglis A (1997) Hypervalent iodine in organic synthesis. Academic, LondonGoogle Scholar
  6. 6.
    Varvoglis A (1992) The organic chemistry of polycoordinated iodine. VCH, New YorkGoogle Scholar
  7. 7.
    Zhdankin VV, Stang PJ (2008) Chem Rev 108:5299–5358CrossRefGoogle Scholar
  8. 8.
    Zhdankin VV, Maydanovych O, Herschbach J, Bruno J, Matveeva ED, Zefirov NS (2002) Tetrahedron Lett 43:2359–2361CrossRefGoogle Scholar
  9. 9.
    Huang Z, Yu X, Huang X (2002) J Org Chem 67:8261–8264CrossRefGoogle Scholar
  10. 10.
    Stang P, Zhdankin VV (1996) Chem Rev 96:1123–1178CrossRefGoogle Scholar
  11. 11.
    Moriarty RM, Prakash I, Prakash O, Freeman WA (1984) J Am Chem Soc 106:6082–6084CrossRefGoogle Scholar
  12. 12.
    Desiraju GR, Ho PS, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Pure Appl Chem 35:1711–1713Google Scholar
  13. 13.
    Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395CrossRefGoogle Scholar
  14. 14.
    Metrangolo P, Meyer F, Pilati T, Resnati G, Terraneo G (2008) Angew Chem Int Ed 47:6114–6127CrossRefGoogle Scholar
  15. 15.
    Metrangolo P, Resnati G (2008) Science 321:918–919CrossRefGoogle Scholar
  16. 16.
    Priimagi A, Cavallo G, Metrangolo P, Resnati G (2013) Acc Chem Res 46:2686–2695CrossRefGoogle Scholar
  17. 17.
    Metrangolo P, Resnati G (eds) (2015) Halogen bonding vol I and vol II. Impact on materials chemistry and life sciences, Topics in current chemistry series 358. Springer, SwitzerlandGoogle Scholar
  18. 18.
    Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296CrossRefGoogle Scholar
  19. 19.
    Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311CrossRefGoogle Scholar
  20. 20.
    Metrangolo P, Pilati T, Resnati G (2006) CrystEngComm 8:946–947CrossRefGoogle Scholar
  21. 21.
    Nyburg SC, Szymansky JT (1968) Chem Commun 669–671Google Scholar
  22. 22.
    Nyburg SC, Faerman CH (1985) Acta Crystallogr B 41:274–279CrossRefGoogle Scholar
  23. 23.
    Hathwar VR, Guru Row TN (2011) J Phys Chem A 114:13434–13441CrossRefGoogle Scholar
  24. 24.
    Brezgunova ME, Aubert E, Dahaoui S, Fertey P, Lebègue S, Jelsch C, Angyàn JG, Espinosa E (2012) Cryst Growth Des 12:5273–5386CrossRefGoogle Scholar
  25. 25.
    Hantzsch A (1915) Chem Ber 48:797–816CrossRefGoogle Scholar
  26. 26.
    Nakamoto K, Margoshes M, Rundle RE (1955) J Am Chem Soc 77:6480–6486CrossRefGoogle Scholar
  27. 27.
    Schleyer P (1959) J Am Chem Soc 81:3164–3165CrossRefGoogle Scholar
  28. 28.
    Nelyubina YV, Antipin MY, Dunin DS, Kotov VY, Lyssenko KA (2010) Chem Commun 46:5325–5327CrossRefGoogle Scholar
  29. 29.
    Colin JJ (1814) Ann Chim 91:252–272Google Scholar
  30. 30.
    Walsh R, Padgett CW, Metrangolo P, Resnati G, Hanks TW, Pennington WT (2001) Cryst Growth Des 1:165–175CrossRefGoogle Scholar
  31. 31.
    Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116CrossRefGoogle Scholar
  32. 32.
    Metrangolo P, Resnati G, Pilati T, Biella S (2008) Struct Bond 126:105–136CrossRefGoogle Scholar
  33. 33.
    Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620CrossRefGoogle Scholar
  34. 34.
    Aäckeroy CB, Baldrighi M, Desper J, Metrangolo P, Resnati G (2013) Chem Eur J 13:16240–16247CrossRefGoogle Scholar
  35. 35.
    Aäckeroy CB, Wijethunga CK, Desper J (2014) J Mol Struct 1072:20–27CrossRefGoogle Scholar
  36. 36.
    Le Questel JY, Laurence C, Graton J (2013) CrystEngComm 15:3212–3221CrossRefGoogle Scholar
  37. 37.
    Kapecki JA, Baldwin JE (1969) J Am Chem Soc 91:1120–1123CrossRefGoogle Scholar
  38. 38.
    Rosenfield RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862CrossRefGoogle Scholar
  39. 39.
    Guru Row TN, Parthasarathy R (1981) J Am Chem Soc 103:477–479CrossRefGoogle Scholar
  40. 40.
    Bleiholder C, Werz DB, Köppel H, Gleiter R (2006) J Am Chem Soc 128:2666–2674CrossRefGoogle Scholar
  41. 41.
    Murray JS, Lane P, Clark T, Politzer P (2007) J Mol Med 13:1033–1038CrossRefGoogle Scholar
  42. 42.
    Wang W, Ji B, Zhang YJ (2009) J Phys Chem A 113:8132–8135CrossRefGoogle Scholar
  43. 43.
    Metrangolo P, Resnati G (2012) Nat Chem 4:437–438CrossRefGoogle Scholar
  44. 44.
    Politzer P, Riley KE, Bulat FA, Murray JS (2012) Comput Theor Chem 998:2–8CrossRefGoogle Scholar
  45. 45.
    Bauza A, Quiñonero D, Deya PM, Frontera A (2013) CrystEngComm 15:3137–3144CrossRefGoogle Scholar
  46. 46.
    Hu NH, Liu W, Aoki K (2000) Bull Chem Soc Jpn 73:1043–1052CrossRefGoogle Scholar
  47. 47.
    Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:2286–2292CrossRefGoogle Scholar
  48. 48.
    Politzer P, Murray JS, Lane P (2007) Int J Quantum Chem 107:3046–3052CrossRefGoogle Scholar
  49. 49.
    Zahn S, Frank R, Hey-Hawkins E, Kirchner B (2011) Chem Eur J 17:6034–6038CrossRefGoogle Scholar
  50. 50.
    Li QZ, Li R, Liu XF, Li WZ, Cheng JB (2012) ChemPhysChem 13:1205–1212CrossRefGoogle Scholar
  51. 51.
    Adhikari U, Scheiner S (2012) Chem Phys Lett 532:31–35CrossRefGoogle Scholar
  52. 52.
    Scheiner S (2013) Acc Chem Res 46:280–288CrossRefGoogle Scholar
  53. 53.
    Setiawan D, Krafka E, Cremer D (2015) J Phys Chem A 119:1642–1656CrossRefGoogle Scholar
  54. 54.
    Nelyubina YV, Korlyukov AA, Lyssenko KA (2015) ChemPhysChem 16:676–681CrossRefGoogle Scholar
  55. 55.
    Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52:12317–12321CrossRefGoogle Scholar
  56. 56.
    Politzer P, Murray JS, Clark T (2013) Phys Chem Chem Phys 15:11178–11189CrossRefGoogle Scholar
  57. 57.
    Politzer P, Murray JS (2013) ChemPhysChem 14:278–294CrossRefGoogle Scholar
  58. 58.
    Politzer P, Murray JS, Lane P, Concha MC (2009) Int J Quantum Chem 109:3773–3780CrossRefGoogle Scholar
  59. 59.
    Murray JS, Lane P, Politzer P (2009) J Mol Model 15:723–729CrossRefGoogle Scholar
  60. 60.
    Grabowski SJ (2014) Phys Chem Chem Phys 16:1824–1834CrossRefGoogle Scholar
  61. 61.
    Merrit EA, Olofsson B (2009) Angew Chem Int Ed 48:9052–9070CrossRefGoogle Scholar
  62. 62.
    Rissanen K, Haukka M (2015) Halonium ions as halogen bond donors in the solid state [XL2]Y complexes. Top Curr Chem 358:77–90CrossRefGoogle Scholar
  63. 63.
    Politzer P, Murray JS, Metrangolo P, Resnati G. Manuscript in preparationGoogle Scholar
  64. 64.
    Alcock NW, Countyman RM (1977) J Chem Soc Dalton Trans 3:217–219CrossRefGoogle Scholar
  65. 65.
    Khotsyanova TL, Babushkina TA, Saatsazov VV, Tolstaya TP, Lisichkina IN, Semin GK (1976) Koord Chim 2:1567Google Scholar
  66. 66.
    Alcock NW, Countryman RM (1977) J Chem Soc Dalton Trans 217–219Google Scholar
  67. 67.
    Bykowski D, McDonald R, Tykwinski RR (2003) ARKIVOC 4:21–29Google Scholar
  68. 68.
    Zhiying H, Yuanzhu C, Jiaxi L, Huaxue J (1982) Chin J Struct Chem 1:77–79Google Scholar
  69. 69.
    Hinkle RJ, McDonald R (2003) Acta Crystallogr C58:117–121Google Scholar
  70. 70.
    Murray SJ, Muller-Bünz H, Ibrahim H (2012) Chem Commun 48:6268–6270CrossRefGoogle Scholar
  71. 71.
    Camps P, Gomez T, Lozano D, Calvet T, Font-Bardia M (2012) Molecules 17:8795–8803CrossRefGoogle Scholar
  72. 72.
    Bailly F, Barthen P, Frohn HJ, Kockerling M (2000) Z Anorg Allg Chem 626:2419–2427Google Scholar
  73. 73.
    Frohn HJ, Wenda A, Flörke U (2008) Z Anorg Allg Chem 634:764–770CrossRefGoogle Scholar
  74. 74.
    Frohn HJ, Wenda A, Flörke U (2010) Tetrahedron 66:5762–5767CrossRefGoogle Scholar
  75. 75.
    Lubriks D, Sokolovs I, Suna E (2012) J Am Chem Soc 134:15436–15442CrossRefGoogle Scholar
  76. 76.
    Suefuji T, Shiro M, Yamaguchi K, Ochiai M (2006) Heterocycles 67:391–397CrossRefGoogle Scholar
  77. 77.
    DesMarteau DD, Pennigton WT, Montanari V, Thomas BH (2003) J Fluor Chem 122:57–61CrossRefGoogle Scholar
  78. 78.
    Stang PJ, Chen K, Arif AM (1995) J Am Chem Soc 117:8793–8797CrossRefGoogle Scholar
  79. 79.
    Wu G, Zheng PJ, Zhu SZ, Chen QY (1991) Acta Crystallogr C47:1227–1230Google Scholar
  80. 80.
    Ochiai M, Suefuji T, Miyamoto K, Tada N, Goto S, Shiro M, Sakamoto S, Yamaguchi K (2003) J Am Chem Soc 126:769–776CrossRefGoogle Scholar
  81. 81.
    Williamson BL, Stang PJ, Arif AM (1993) J Am Chem Soc 115:2590–2597CrossRefGoogle Scholar
  82. 82.
    Schafer S, Wirth T (2010) Angew Chem Int Ed 49:2786–2789CrossRefGoogle Scholar
  83. 83.
    Dixon L, Carroll MA, Gregson TJ, Ellames GJ, Harrington RW, Clegg W (2013) Eur J Org Chem 12:2334–2345CrossRefGoogle Scholar
  84. 84.
    Stang PJ, Arif AM, Crittell CM (1990) Angew Chem Int Ed 29:287–288CrossRefGoogle Scholar
  85. 85.
    Justik MW, Protasiewicz JD, Updegraff JB (2009) Tetrahedron Lett 50:6072–6075Google Scholar
  86. 86.
    Brand JP, Chevalley C, Scepelliti R, Waser J (2012) Chem Eur J 18:5655–5666CrossRefGoogle Scholar
  87. 87.
    Lubriks D, Sokolovs I, Suna E (2011) Org Lett 13:4324–4327CrossRefGoogle Scholar
  88. 88.
    Zhdankin VV, Mayadanovych O, Herschbach J, McDonald R, Tykwinski RR (2002) J Am Chem Soc 124:11614–11615CrossRefGoogle Scholar
  89. 89.
    Koser GF, McConville DB, Rabah GA, Youngs WJ (1995) J Chem Crystallogr 25:857–862CrossRefGoogle Scholar
  90. 90.
    Ochiai M, Masaki Y, Shiro M (1991) J Org Chem 56:5511–5513CrossRefGoogle Scholar
  91. 91.
    Eisenberger P, Gischig S, Togni A (2006) Chem Eur J 12:2579–2586CrossRefGoogle Scholar
  92. 92.
    Niedermann K, Welch JM, Koller R, Cvengroŝ J, Santschi N, Battaglia P, Togni A (2010) Tetrahedron 66:5753–5761CrossRefGoogle Scholar
  93. 93.
    Yusubov MS, Yusubova RY, Nemykin VN, Zhdankin VV (2013) J Org Chem 78:3767–3773CrossRefGoogle Scholar
  94. 94.
    Moss RA, Bracken K, Emge TJ (1995) J Org Chem 60:7739–7746CrossRefGoogle Scholar
  95. 95.
    Kieltsch I, Eisenberger P, Togni A (2007) Angew Chem Int Ed 5:754–757CrossRefGoogle Scholar
  96. 96.
    Niederman K, Welch JM, Koller R, Cvengroš J, Santschi N, Battaglia P, Togni A (2010) Tetrahedron 66:5753–5761CrossRefGoogle Scholar
  97. 97.
    Blake AJ, Novak A, Davies M, Robinson RI, Woodward S (2009) Synth Commun 39:1065–1075CrossRefGoogle Scholar
  98. 98.
    Eisenberg P, Gischig S, Togni A (2006) Chem Eur J 12:2579–2586CrossRefGoogle Scholar
  99. 99.
    Zhdankin VV, Krasutsky AP, Kuehl CJ, Simonsen AJ, Woodward JK, Mismash B, Boltz JT (1996) J Am Chem Soc 118:5192–5197CrossRefGoogle Scholar
  100. 100.
    Legault CY, Prévost J (2012) Acta Crystallogr E68:1238Google Scholar
  101. 101.
    Geary GC, Hope EG, Singh K, Stuart AM (2013) Chem Commun 49:9263–9265CrossRefGoogle Scholar
  102. 102.
    Zhdankin VV, Khuel CJ, Arif AM, Stang PJ (1996) Mendeleev Commun 6:50–51CrossRefGoogle Scholar
  103. 103.
    Frohn J, Hirschberg ME, Boese R, Blaser D, Florke U (2008) Z Anorg Allg Chem 634:2539–2550CrossRefGoogle Scholar
  104. 104.
    Bess DB, Martin JC (1983) J Org Chem 48:4155–4156CrossRefGoogle Scholar
  105. 105.
    Cui LQ, Dong ZL, Liu K, Zhang C (2011) Org Lett 13:6488–6491CrossRefGoogle Scholar
  106. 106.
    Dess DB, Wilson SR, Martin JC (1993) J Am Chem Soc 115:2488–2495CrossRefGoogle Scholar
  107. 107.
    Stevenson PJ, Treacy AB, Nieuwenhuyzen M (1997) J Chem Soc Perk Trans 2:589–592CrossRefGoogle Scholar
  108. 108.
    O’Hair RAJ, Williams CM, Clark T (2010) J Mol Model 16:559–565CrossRefGoogle Scholar
  109. 109.
    Wang W (2011) J Phys Chem A 115:9294–9299CrossRefGoogle Scholar
  110. 110.
    Cheng N, Bi F, Liu Y, Zhang C, Liu C (2014) New J Chem 38:1256–1263CrossRefGoogle Scholar
  111. 111.
    Moriarty RM, Vaid RK (1990) Synthesis 6:431–447CrossRefGoogle Scholar
  112. 112.
    Stang PJ, Wingert H, Arif AM (1987) J Am Chem Soc 109:7235–7236CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanItaly

Personalised recommendations