Advertisement

Aminations with Hypervalent Iodine

  • Kilian MuñizEmail author
Chapter
  • 2.6k Downloads
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)

Abstract

Recent progress in the area of hypervalent iodine-mediated and catalyzed amination reaction of hydrocarbons is reviewed. These reactions comprise processes under both intra and intermolecular control and include the functionalization of aromatic C–H bonds as well as conversion of sp-, sp2-, and sp3-hybridized carbon atoms. These developments demonstrate that hypervalent iodine(III) methodology has reached a high level in amination chemistry. The individual reactions are discussed with a focus on mechanistic details and emphasis is made to the underlying hypervalent iodine reagents, for which structural information is available.

Keywords

Alkenes Amination Arenes C–N bond formation Iodine–nitrogen bonds 

References

  1. 1.
    Zhdankin VV (2014) Hypervalent iodine chemistry. Wiley, ChichesterGoogle Scholar
  2. 2.
    Koser GF (2003) In: Wirth T (ed) Hypervalent iodine chemistry. Modern developments in organic synthesis, Topic curr chem 224. Springer, Berlin/Heidelberg, pp 138–172Google Scholar
  3. 3.
    Samanta R, Matcha K, Antonchick AP (2013) Eur J Org Chem 5769Google Scholar
  4. 4.
    Narayan R, Manna S, Antonchick AP (2015) Synlett 26:1785CrossRefGoogle Scholar
  5. 5.
    Cho SH, Yoon J, Chang S (2011) J Am Chem Soc 133:5996CrossRefGoogle Scholar
  6. 6.
    Antonchick AP, Samanta R, Kulikov K, Lategahn J (2011) Angew Chem Int Ed 50:8605CrossRefGoogle Scholar
  7. 7.
    Ban X, Pan Y, Lin Y, Wang S, Du Y, Zhao K (2012) Org Biomol Chem 10:3606CrossRefGoogle Scholar
  8. 8.
    Du Y, Liu R, Linn G, Zhao K (2006) Org Lett 8:5919CrossRefGoogle Scholar
  9. 9.
    Fra L, Millán E, Souto JA, Muñiz K (2014) Angew Chem Int Ed 53:7349CrossRefGoogle Scholar
  10. 10.
    Huang J, He Y, Wang Y, Zhu Q (2012) Chem Eur J 18:13964CrossRefGoogle Scholar
  11. 11.
    Alla SK, Kumar RK, Sadhu P, Punniyamurthy T (2013) Org Lett 15:1334CrossRefGoogle Scholar
  12. 12.
    Chi Y, Zhang W-X, Xi Z (2014) Org Lett 16:6274CrossRefGoogle Scholar
  13. 13.
    Maiti S, Mal P (2015) Adv Synth Catal 357:1416CrossRefGoogle Scholar
  14. 14.
    He Y, Huang J, Liang D, Liu L, Zhu Q (2013) Chem Commun 49:7352CrossRefGoogle Scholar
  15. 15.
    Liang D, He Y, Liu L, Zhu Q (2013) Org Lett 15:3476CrossRefGoogle Scholar
  16. 16.
    Wang H, Wang Y, Peng C, Zhang J, Zhu Q (2010) J Am Chem Soc 132:13217CrossRefGoogle Scholar
  17. 17.
    Chu J-H, Hsu W-T, Wu Y-H, Chaing M-F, Hsu N-H, Huang H-P, Wu J (2014) J Org Chem 79:11395CrossRefGoogle Scholar
  18. 18.
    Dohi T, Maruyama A, Minamitsuji Y, Takenaga T, Kita Y (2007) Chem Commun 43:1224CrossRefGoogle Scholar
  19. 19.
    Dohi T, Takenaga N, Fukushima K-I, Uchiyama T, Kato D, Shiro M, Fujioka H, Kita Y (2010) Chem Commun 46:7697CrossRefGoogle Scholar
  20. 20.
    Kim HJ, Kim J, Cho H, Chang S (2011) J Am Chem Soc 133:16382CrossRefGoogle Scholar
  21. 21.
    Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B (2011) J Am Chem Soc 133:19960CrossRefGoogle Scholar
  22. 22.
    Moriyama K, Ishida K, Togo H (2012) Org Lett 14:946CrossRefGoogle Scholar
  23. 23.
    Itoh N, Sakamoto T, Miyazawa E, Kikugawa Y (2002) J Org Chem 67:7424CrossRefGoogle Scholar
  24. 24.
    Samantha R, Lategahn I, Antonchick AP (2012) Chem Commun 48:3194CrossRefGoogle Scholar
  25. 25.
    Souto JA, Martínez C, Velilla I, Muñiz K (2013) Angew Chem Int Ed 52:1324CrossRefGoogle Scholar
  26. 26.
    Samantha R, Bauer JO, Strohmann C, Antonchick AP (2012) Org Lett 14:5518CrossRefGoogle Scholar
  27. 27.
    Manna S, Serebrennikova PO, Utepova IA, Antonchick AP (2015) Org Lett 17:4588CrossRefGoogle Scholar
  28. 28.
    Ivanov AS, Popov IA, Boldyrev AI, Zhdankin VV (2014) Angew Chem Int Ed 53:9617CrossRefGoogle Scholar
  29. 29.
    Macikenas D, Skrypczak-Jankun E, Protasiewicz JD (1999) J Am Chem Soc 121:7164CrossRefGoogle Scholar
  30. 30.
    Meprathu BV, Protasiewicz JD (2010) Tetrahedron 66:5768CrossRefGoogle Scholar
  31. 31.
    Meprathu BV, Protasiewicz JD (2003) Arkivoc VI:83Google Scholar
  32. 32.
    Yoshimura A, Nemykin VN, Zhdankin VV (2011) Chem Eur J 17:10538CrossRefGoogle Scholar
  33. 33.
    Müller P (1997) Adv Catal Processes 2:113CrossRefGoogle Scholar
  34. 34.
    Padwa A, Stengel T (2002) Org Lett 4:2137CrossRefGoogle Scholar
  35. 35.
    Moriarty RM, Tyagi S (2010) Org Lett 12:364CrossRefGoogle Scholar
  36. 36.
    Liu Z-G, Cheng H, Ge M-J, Xu L, Wang F-P (2013) Tetrahedron 69:5431CrossRefGoogle Scholar
  37. 37.
    Mei R-H, Liu Z-G, Cheng H, Xu L, Wang F-P (2013) Org Lett 15:2206CrossRefGoogle Scholar
  38. 38.
    Li J, Liang J-L, Chan PWH, Che C-M (2005) Org Lett 7:5801CrossRefGoogle Scholar
  39. 39.
    Li J, Liang J-L, Chan PWH, Che C-M (2004) Tetrahedron Lett 45:2685CrossRefGoogle Scholar
  40. 40.
    Richardson RD, Desaize M, Wirth T (2007) Chem Eur J 13:6745CrossRefGoogle Scholar
  41. 41.
    Ochiai M, Kaneaki T, Tada N, Miyamoto K, Chuman H, Shiro M, Hayashi S, Nakanishi W (2007) J Am Chem Soc 129:12938CrossRefGoogle Scholar
  42. 42.
    Ochiai M, Miyamoto K, Kaneaki T, Hayashi S, Nakanishi W (2011) Science 332:448CrossRefGoogle Scholar
  43. 43.
    Muñiz K (2014) In: Molander G, Knochel P (eds) Comprehensive organic synthesis II, vol 7. Elsevier, Oxford, 411 pGoogle Scholar
  44. 44.
    Romero M, Wöste TH, Muñiz K (2014) Chem Asian J 9:950CrossRefGoogle Scholar
  45. 45.
    Singh FV, Wirth T (2014) Chem Asian J 9:950CrossRefGoogle Scholar
  46. 46.
    Liang H, Ciufolini MA (2011) Angew Chem Int Ed 50:11849CrossRefGoogle Scholar
  47. 47.
    Correa A, Tellitu I, Domínguez E, SanMartin R (2006) J Org Chem 71:8316CrossRefGoogle Scholar
  48. 48.
    Tellitu I, Domínguez E (2011) Trends Heterocycl Chem 15:23Google Scholar
  49. 49.
    Wardrop DJ, Bowen EG (2011) Org Lett 13:2376CrossRefGoogle Scholar
  50. 50.
    Bowen EG, Wardrop DJ (2010) Org Lett 12:5330CrossRefGoogle Scholar
  51. 51.
    Cochran BM, Michael FE (2008) Org Lett 10:5039CrossRefGoogle Scholar
  52. 52.
    Lovick HM, Michael FE (2010) J Am Chem Soc 132:1249CrossRefGoogle Scholar
  53. 53.
    Chen H, Kaga A, Chiba S (2014) Org Lett 16:6136CrossRefGoogle Scholar
  54. 54.
    Farid U, Wirth T (2012) Angew Chem Int Ed 51:3462CrossRefGoogle Scholar
  55. 55.
    Kong W, Beige P, de Haro T, Nevado C (2013) Angew Chem Int Ed 52:2469CrossRefGoogle Scholar
  56. 56.
    Wang Q, Zhong W, Wei X, Ning M, Mang X, Li Z (2012) Org Biomol Chem 10:8566CrossRefGoogle Scholar
  57. 57.
    Liu G-Q, Li Y-M (2014) J Org Chem 79:10094CrossRefGoogle Scholar
  58. 58.
    Moriarty RM, Khosrowshahi JS (1986) Tetrahedron Lett 27:2809CrossRefGoogle Scholar
  59. 59.
    Magnus P, Lacour J, Evans PA, Roe MB, Hulme C (1996) J Am Chem Soc 118:3406CrossRefGoogle Scholar
  60. 60.
    Magnus P, Lacour J (1992) J Am Chem Soc 114:767CrossRefGoogle Scholar
  61. 61.
    Magnus P, Lacour J (1992) J Am Chem Soc 114:3993CrossRefGoogle Scholar
  62. 62.
    Magnus P, Roe MB, Hulme C (1995) Chem Commun 263Google Scholar
  63. 63.
    Martínez C, Muñiz K (2013) J Org Chem 78:2168CrossRefGoogle Scholar
  64. 64.
    Yang H-T, Lu X-W, Xing M-L, Sun X-Q, Miao C-B (2014) Org Lett 16:5882CrossRefGoogle Scholar
  65. 65.
    Röben C, Souto JA, González Y, Lishchynskyi A, Muñiz K (2011) Angew Chem Int Ed 50:9478CrossRefGoogle Scholar
  66. 66.
    Souto JA, González Y, Iglesias A, Zian D, Lishchynskyi A, Muñiz K (2012) Chem Asian J 7:1103CrossRefGoogle Scholar
  67. 67.
    Kong A, Blakey SB (2012) Synthesis 44:1190CrossRefGoogle Scholar
  68. 68.
    Röben C, Souto JA, Escudero-Adán E, Muñiz K (2013) Org Lett 15:1008CrossRefGoogle Scholar
  69. 69.
    Hong KB, Johnston JN (2014) Org Lett 16:3804CrossRefGoogle Scholar
  70. 70.
    Danneman MW, Hong KB, Johnston JN (2015) Org Lett 17:2558CrossRefGoogle Scholar
  71. 71.
    Danneman MW, Hong KB, Johnston JN (2015) Org Lett 17:3806CrossRefGoogle Scholar
  72. 72.
    Lishchynskyi A, Muñiz K (2012) Chem Eur J 18:2213CrossRefGoogle Scholar
  73. 73.
    Purkait N, Okumura S, Souto JA, Muñiz K (2014) Org Lett 16:4750CrossRefGoogle Scholar
  74. 74.
    Yoshimura A, Koski SR, Fuchs JM, Saito A, Nemykin VN, Zhdankin VV (2015) Chem Eur J 21:5328CrossRefGoogle Scholar
  75. 75.
    Mao L, Li Y, Xiong T, Sun K, Zhang Q (2013) J Org Chem 78:733CrossRefGoogle Scholar
  76. 76.
    Souto JA, Zian D, Muñiz K (2012) J Am Chem Soc 134:7242CrossRefGoogle Scholar
  77. 77.
    Kiyokawa K, Yahata S, Kojima T, Minakata S (2014) Org Lett 16:4646CrossRefGoogle Scholar
  78. 78.
    Souto J, Becker P, Iglesias A, Muñiz K (2012) J Am Chem Soc 134:15505CrossRefGoogle Scholar
  79. 79.
    Nagashima K, Sakamoto T, Kikugawa Y (2007) Heterocycles 74:273CrossRefGoogle Scholar
  80. 80.
    Hernández R, Rivera A, Salazar JA, Suárez E (1980) Chem Commun 958Google Scholar
  81. 81.
    Betancor C, Concepción JI, Hernández R, Salazar JA, Suárez E (1983) J Org Chem 48:4430CrossRefGoogle Scholar
  82. 82.
    De Armas P, Carrau R, Concepción JI, Francisco CG, Hernández R, Suárez E (1985) Tetrahedron Lett 26:2493CrossRefGoogle Scholar
  83. 83.
    Carrau R, Hernández R, Suárez E, Betancor C (1987) Perkin Trans 1 937Google Scholar
  84. 84.
    De Armas P, Francisco CG, Hernández R, Salazar JA, Suárez E (1988) Perkin Trans 1 3255Google Scholar
  85. 85.
    Fan R, Pu D, Wen F, Wu J (2007) J Org Chem 72:8994CrossRefGoogle Scholar
  86. 86.
    Kim YR, Cho S, Lee PH (2014) Org Lett 16:3098CrossRefGoogle Scholar
  87. 87.
    Martínez C, Muñiz K (2015) Angew Chem Int Ed 54:8287CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Chemical Research of Catalonia (ICIQ)TarragonaSpain
  2. 2.Catalan Institution for Research and Advanced Studies (ICREA)BarcelonaSpain

Personalised recommendations