Advertisement

Alkynylation with Hypervalent Iodine Reagents

  • Jerome Waser
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)

Abstract

Alkynes are among the most versatile functional groups in organic synthesis. They are also frequently used in chemical biology and materials science. Whereas alkynes are traditionally added as nucleophiles into organic molecules, hypervalent iodine reagents offer a unique opportunity for the development of electrophilic alkyne synthons. Since 1985, alkynyliodonium salts have been intensively used for the alkynylation of nucleophiles, in particular soft carbon nucleophiles and heteroatoms. They have made an especially strong impact in the synthesis of highly useful ynamides. Nevertheless, their use has been limited by their instability. Since 2009, more stable ethynylbenziodoxol(on)e (EBX) reagents have been identified as superior electrophilic alkyne synthons in many transformations. They can be used for the alkynylation of acidic C–H bonds with bases or aromatic C–H bonds using transition metal catalysts. They were also highly successful for the functionalization of radicals or transition metal-catalyzed domino processes. Finally, they allowed the alkynylation of a further range of heteroatom nucleophiles, especially thiols, under exceptionally mild conditions. With these recent developments, hypervalent iodine reagents have definitively demonstrated their utility for the efficient synthesis of alkynes based on non-classical disconnections.

Keywords

Alkynes Alkynyliodonium salts Ethynylbenziodoxol(on)e (EBX) reagents 

References

  1. 1.
    Diederich F, Stang PJ, Tykwinski RR (2005) Acetylene chemistry: chemistry, biology and material science. Wiley-VCH, WeinheimGoogle Scholar
  2. 2.
    Kolb HC, Finn MG, Sharpless KB (2001) Angew Chem Int Ed 40:2004CrossRefGoogle Scholar
  3. 3.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) Angew Chem Int Ed 41:2596CrossRefGoogle Scholar
  4. 4.
    Trost BM, Weiss AH (2009) Adv Synth Catal 351:963CrossRefGoogle Scholar
  5. 5.
    Chinchilla R, Najera C (2007) Chem Rev 107:874CrossRefGoogle Scholar
  6. 6.
    Chinchilla R, Najera C (2011) Chem Soc Rev 40:5084CrossRefGoogle Scholar
  7. 7.
    Dudnik AS, Gevorgyan V (2010) Angew Chem Int Ed 49:2096CrossRefGoogle Scholar
  8. 8.
    Messaoudi S, Brion J-D, Alami M (2010) Eur J Org Chem 6495Google Scholar
  9. 9.
    Brand JP, Waser J (2012) Chem Soc Rev 41:4165CrossRefGoogle Scholar
  10. 10.
    Zhdankin VV, Stang PJ (2002) Chem Rev 102:2523CrossRefGoogle Scholar
  11. 11.
    Zhdankin VV, Stang PJ (2008) Chem Rev 108:5299CrossRefGoogle Scholar
  12. 12.
    Zhdankin VV (2014) Hypervalent iodine chemistry: preparation, structure, and synthetic applications of polyvalent iodine compounds. Wiley, ChichesterGoogle Scholar
  13. 13.
    Wirth T (2003) Hypervalent iodine chemistry: modern developments in organic synthesis. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Wirth T (2005) Angew Chem Int Ed 44:3656CrossRefGoogle Scholar
  15. 15.
    Dohi T, Kita Y (2009) Chem Commun 2073Google Scholar
  16. 16.
    Zhdankin VV, Stang PJ (1998) Tetrahedron 54:10927CrossRefGoogle Scholar
  17. 17.
    Zhdankin VV (2005) Curr Org Synth 2:121CrossRefGoogle Scholar
  18. 18.
    Brand JP, Fernandez Gonzalez D, Nicolai S, Waser J (2011) Chem Commun 47:102CrossRefGoogle Scholar
  19. 19.
    Kende AS, Fludzinski P, Hill JH, Swenson W, Clardy J (1984) J Am Chem Soc 106:3551CrossRefGoogle Scholar
  20. 20.
    Smorada RL, Truce WE (1979) J Org Chem 44:3444CrossRefGoogle Scholar
  21. 21.
    Gong J, Fuchs PL (1996) J Am Chem Soc 118:4486CrossRefGoogle Scholar
  22. 22.
    Schaffner A-P, Darmency V, Renaud P (2006) Angew Chem Int Ed 45:5847CrossRefGoogle Scholar
  23. 23.
    Ruano JLG, Aleman J, Marzo L, Alvarado C, Tortosa M, Diaz-Tendero S, Fraile A (2012) Angew Chem Int Ed 51:2712CrossRefGoogle Scholar
  24. 24.
    Moloney MG, Pinhey JT, Roche EG (1986) Tetrahedron Lett 27:5025CrossRefGoogle Scholar
  25. 25.
    Parkinson CJ, Hambley TW, Pinhey JT (1997) J Chem Soc Perkin Trans 1:1465CrossRefGoogle Scholar
  26. 26.
    Rebrovic L, Koser GF (1984) J Org Chem 49:4700CrossRefGoogle Scholar
  27. 27.
    Ochiai M, Kunishima M, Sumi K, Nagao Y, Fujita E, Arimoto M, Yamaguchi H (1985) Tetrahedron Lett 26:4501CrossRefGoogle Scholar
  28. 28.
    Kitamura T, Stang PJ (1988) J Org Chem 53:4105CrossRefGoogle Scholar
  29. 29.
    Stang PJ, Arif AM, Crittell CM (1990) Angew Chem Int Ed 29:287CrossRefGoogle Scholar
  30. 30.
    Kitamura T, Kotani M, Fujiwara Y (1998) Synthesis 1416Google Scholar
  31. 31.
    Stang PJ, Williamson BL, Zhdankin VV (1991) J Am Chem Soc 113:5870CrossRefGoogle Scholar
  32. 32.
    Williamson BL, Tykwinski RR, Stang PJ (1994) J Am Chem Soc 116:93CrossRefGoogle Scholar
  33. 33.
    Bouma MJ, Olofsson B (2012) Chem Eur J 18:14242CrossRefGoogle Scholar
  34. 34.
    Beringer FM, Galton SA (1965) J Org Chem 30:1930CrossRefGoogle Scholar
  35. 35.
    Ochiai M, Kunishima M, Nagao Y, Fuji K, Shiro M, Fujita E (1986) J Am Chem Soc 108:8281CrossRefGoogle Scholar
  36. 36.
    Ochiai M, Ito T, Takaoka Y, Masaki Y, Kunishima M et al. (1990) J Chem Soc Chem Commun 118Google Scholar
  37. 37.
    Suzuki T, Uozumi Y, Shibasaki M (1991) J Chem Soc Chem Commun 1593Google Scholar
  38. 38.
    Kitamura T, Nagata K, Taniguchi H (1995) Tetrahedron Lett 36:1081CrossRefGoogle Scholar
  39. 39.
    Kitamura T, Fukuoka T, Zheng L, Fujimoto T, Taniguchi H, Fujiwara Y (1996) Bull Chem Soc Jpn 69:2649CrossRefGoogle Scholar
  40. 40.
    Bachi MD, Bar-Ner N, Crittell CM, Stang PJ, Williamson BL (1991) J Org Chem 56:3912CrossRefGoogle Scholar
  41. 41.
    Bachi MD, Barner N, Stang PJ, Williamson BL (1993) J Org Chem 58:7923CrossRefGoogle Scholar
  42. 42.
    Finkbeiner P, Weckenmann NM, Nachtsheim BJ (2014) Org Lett 16:1326CrossRefGoogle Scholar
  43. 43.
    Kitamura T, Tanaka T, Taniguchi H, Stang PJ (1991) J Chem Soc Perkin Trans 1:2892CrossRefGoogle Scholar
  44. 44.
    Stang PJ, Kitamura T (1987) J Am Chem Soc 109:7561CrossRefGoogle Scholar
  45. 45.
    Eaton PE, Galoppini E, Gilardi R (1994) J Am Chem Soc 116:7588CrossRefGoogle Scholar
  46. 46.
    Kitamura T, Mihara I, Taniguchi H, Stang PJ (1990) J Chem Soc Chem Commun 614Google Scholar
  47. 47.
    Kang S-K, Jung K-Y, Park C-H, Jang S-B (1995) Tetrahedron Lett 36:8047CrossRefGoogle Scholar
  48. 48.
    Zhu M, Song Y, Cao Y (2007) Synthesis 853Google Scholar
  49. 49.
    Kang S-K, Lee H-W, Jang S-B, Ho P-S (1996) J Chem Soc Chem Commun 835Google Scholar
  50. 50.
    Yu C-M, Kweon J-H, Ho P-S, Kang S-C, Lee GY (2005) Synlett 2631Google Scholar
  51. 51.
    Stang PJ, Surber BW (1985) J Am Chem Soc 107:1452CrossRefGoogle Scholar
  52. 52.
    Stang PJ, Surber BW, Chen ZC, Roberts KA, Anderson AG (1987) J Am Chem Soc 109:228CrossRefGoogle Scholar
  53. 53.
    Stang PJ, Boehshar M, Lin J (1986) J Am Chem Soc 108:7832CrossRefGoogle Scholar
  54. 54.
    Stang PJ, Boehshar M, Wingert H, Kitamura T (1988) J Am Chem Soc 110:3272CrossRefGoogle Scholar
  55. 55.
    Stang PJ, Kitamura T, Boehshar M, Wingert H (1989) J Am Chem Soc 111:2225CrossRefGoogle Scholar
  56. 56.
    Murch P, Williamson BL, Stang PJ (1994) Synthesis 1255Google Scholar
  57. 57.
    Feldman KS, Bruendl MM, Schildknegt K, Bohnstedt AC (1996) J Org Chem 61:5440CrossRefGoogle Scholar
  58. 58.
    Witulski B, Stengel T (1998) Angew Chem Int Ed 37:489CrossRefGoogle Scholar
  59. 59.
    Evano G, Coste A, Jouvin K (2010) Angew Chem Int Ed 49:2840CrossRefGoogle Scholar
  60. 60.
    Witulski B, Stengel T (1999) Angew Chem Int Ed 38:2426CrossRefGoogle Scholar
  61. 61.
    Witulski B, Alayrac C (2002) Angew Chem Int Ed 41:3281CrossRefGoogle Scholar
  62. 62.
    Witulski B, Lumtscher J, Bergstraesser U (2003) Synlett 708Google Scholar
  63. 63.
    Denonne F, Seiler P, Diederich F (2003) Helv Chim Acta 86:3096CrossRefGoogle Scholar
  64. 64.
    Naud S, Cintrat J-C (2003) Synthesis 1391Google Scholar
  65. 65.
    Couty S, Liegault B, Meyer C, Cossy J (2004) Org Lett 6:2511CrossRefGoogle Scholar
  66. 66.
    Kerwin SM, Nadipuram A (2004) Synlett 1404Google Scholar
  67. 67.
    Kitamura T, Morshed MH, Tsukada S, Miyazaki Y, Iguchi N, Inoue D (2011) J Org Chem 76:8117CrossRefGoogle Scholar
  68. 68.
    Banert K, Arnold R, Hagedorn M, Thoss P, Auer AA (2012) Angew Chem Int Ed 51:7515CrossRefGoogle Scholar
  69. 69.
    Ochiai M, Kunishima M, Nagao Y, Fuji K, Fujita E (1987) J Chem Soc Chem Commun 1708Google Scholar
  70. 70.
    Stang PJ, Crittell CM (1992) J Org Chem 57:4305CrossRefGoogle Scholar
  71. 71.
    Stang PJ, Tykwinski R, Zhdankin VV (1992) J Org Chem 57:1861CrossRefGoogle Scholar
  72. 72.
    Laali KK, Regitz M, Birkel M, Stang PJ, Crittell CM (1993) J Org Chem 58:4105CrossRefGoogle Scholar
  73. 73.
    Lodaya JS, Koser GF (1990) J Org Chem 55:1513CrossRefGoogle Scholar
  74. 74.
    Zhang JL, Chen ZC (1998) Synth Commun 28:175CrossRefGoogle Scholar
  75. 75.
    Fischer DR, Williamson BL, Stang PJ (1992) Synlett 535Google Scholar
  76. 76.
    Williamson BL, Murch P, Fischer DR, Stang PJ (1993) Synlett 858Google Scholar
  77. 77.
    Liu Z, Chen Z (1993) J Org Chem 58:1924CrossRefGoogle Scholar
  78. 78.
    Wipf P, Venkatraman S (1996) J Org Chem 61:8004CrossRefGoogle Scholar
  79. 79.
    Miyamoto K, Nishi Y, Ochiai M (2005) Angew Chem Int Ed 44:6896CrossRefGoogle Scholar
  80. 80.
    Tykwinski RR, Williamson BL, Fischer DR, Stang PJ, Arif AM (1993) J Org Chem 58:5235CrossRefGoogle Scholar
  81. 81.
    Liu ZD, Chen ZC (1992) Synth Commun 22:1997CrossRefGoogle Scholar
  82. 82.
    Koumbis AE, Kyzas CM, Savva A, Varvoglis A (2005) Molecules 10:1340CrossRefGoogle Scholar
  83. 83.
    Hamnett DJ, Moran WJ (2014) Org Biomol Chem 12:4156CrossRefGoogle Scholar
  84. 84.
    Ochiai M, Nagaoka T, Sueda T, Yan J, Chen D-W, Miyamoto K (2003) Org Biomol Chem 1:1517CrossRefGoogle Scholar
  85. 85.
    Nagaoka T, Sueda T, Ochiai M (1995) Tetrahedron Lett 36:261CrossRefGoogle Scholar
  86. 86.
    Zhang JL, Chen ZC (1997) Synth Commun 27:3757CrossRefGoogle Scholar
  87. 87.
    Zhang JL, Chen ZC (1997) Synth Commun 27:3881CrossRefGoogle Scholar
  88. 88.
    Stang PJ, Crittell CM (1990) Organometallics 9:3191CrossRefGoogle Scholar
  89. 89.
    Stang PJ, Tykwinski R (1992) J Am Chem Soc 114:4411CrossRefGoogle Scholar
  90. 90.
    Tykwinski RR, Stang PJ (1994) Organometallics 13:3203CrossRefGoogle Scholar
  91. 91.
    Bykowski D, McDonald R, Tykwinski RR (2003) Arkivoc 21Google Scholar
  92. 92.
    Stang PJ, Crittell CM, Arif AM (1993) Organometallics 12:4799CrossRefGoogle Scholar
  93. 93.
    Canty AJ, Rodemann T, Skelton BW, White AH (2005) Inorg Chem Commun 8:55CrossRefGoogle Scholar
  94. 94.
    Canty AJ, Rodemann T, Skelton BW, White AH (2006) Organometallics 25:3996CrossRefGoogle Scholar
  95. 95.
    Canty AJ, Watson RP, Karpiniec SS, Rodemann T, Gardiner MG, Jones RC (2008) Organometallics 27:3203CrossRefGoogle Scholar
  96. 96.
    Sharma M, Canty AJ, Gardiner MG, Jones RC (2011) J Organomet Chem 696:1441CrossRefGoogle Scholar
  97. 97.
    Sharma M, Ariafard A, Canty AJ, Yates BF, Gardiner MG, Jones RC (2012) Dalton Trans 41:11820CrossRefGoogle Scholar
  98. 98.
    Canty AJ, Gardiner MG, Jones RC, Rodemann T, Sharma M (2009) J Am Chem Soc 131:7236CrossRefGoogle Scholar
  99. 99.
    Merritt EA, Olofsson B (2009) Angew Chem Int Ed 48:9052CrossRefGoogle Scholar
  100. 100.
    Ochiai M, Sueda T, Miyamoto K, Kiprof P, Zhdankin VV (2006) Angew Chem Int Ed 45:8203CrossRefGoogle Scholar
  101. 101.
    Ochiai M, Masaki Y, Shiro M (1991) J Org Chem 56:5511CrossRefGoogle Scholar
  102. 102.
    Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonsen AJ (1996) J Org Chem 61:6547CrossRefGoogle Scholar
  103. 103.
    Brand JP, Chevalley C, Scopelliti R, Waser J (2012) Chem Eur J 18:5655CrossRefGoogle Scholar
  104. 104.
    Brand JP, Waser J (2012) Synthesis 44:1155CrossRefGoogle Scholar
  105. 105.
    Koser GF, Sun G, Porter CW, Youngs WJ (1993) J Org Chem 58:7310CrossRefGoogle Scholar
  106. 106.
    Fernandez Gonzalez D, Brand JP, Waser J (2010) Chem Eur J 16:9457CrossRefGoogle Scholar
  107. 107.
    Vita MV, Mieville P, Waser J (2014) Org Lett 16:5768CrossRefGoogle Scholar
  108. 108.
    Shi H, Fang L, Tan C, Shi L, Zhang W, Li CC, Luo T, Yang Z (2011) J Am Chem Soc 133:14944CrossRefGoogle Scholar
  109. 109.
    Long R, Huang J, Shao W, Liu S, Lan Y, Gong J, Yang Z (2014) Nat Commun 5. doi: 10.1038/ncomms6707
  110. 110.
    Shi H, Tan C, Zhang W, Zhang Z, Long R, Luo T, Yang Z (2015) Org Lett 17:2342CrossRefGoogle Scholar
  111. 111.
    Fernández González D, Brand JP, Mondière R, Waser J (2013) Adv Synth Catal 355:1631CrossRefGoogle Scholar
  112. 112.
    Wu X, Shirakawa S, Maruoka K (2014) Org Biomol Chem 12:5388CrossRefGoogle Scholar
  113. 113.
    Kamlar M, Putaj P, Veselý J (2013) Tetrahedron Lett 54:2097CrossRefGoogle Scholar
  114. 114.
    Silva LF Jr, Utaka A, Calvalcanti L (2014) Chem Commun 50:3810CrossRefGoogle Scholar
  115. 115.
    Kamlar M, Cisarova I, Vesely J (2015) Org Biomol Chem 13:2884CrossRefGoogle Scholar
  116. 116.
    Wang Z, Li X, Huang Y (2013) Angew Chem Int Ed 52:14219CrossRefGoogle Scholar
  117. 117.
    Brand JP, Charpentier J, Waser J (2009) Angew Chem Int Ed 48:9346CrossRefGoogle Scholar
  118. 118.
    De Nanteuil F, Loup J, Waser J (2013) Org Lett 15:3738CrossRefGoogle Scholar
  119. 119.
    Dickson E, Copp BR, Barker D (2013) Tetrahedron Lett 54:5239CrossRefGoogle Scholar
  120. 120.
    de Haro T, Nevado C (2010) J Am Chem Soc 132:1512CrossRefGoogle Scholar
  121. 121.
    Brand JP, Waser J (2010) Angew Chem Int Ed 49:7304CrossRefGoogle Scholar
  122. 122.
    Li Y, Brand JP, Waser J (2013) Angew Chem Int Ed 52:6743CrossRefGoogle Scholar
  123. 123.
    Li YF, Waser J (2013) Beilstein J Org Chem 9:1763CrossRefGoogle Scholar
  124. 124.
    Brand JP, Waser J (2012) Org Lett 14:744CrossRefGoogle Scholar
  125. 125.
    Ariafard A (2014) ACS Catal 4:2896CrossRefGoogle Scholar
  126. 126.
    Nierth A, Marletta MA (2014) Angew Chem Int Ed 53:2611CrossRefGoogle Scholar
  127. 127.
    Tolnai GL, Ganss S, Brand JP, Waser J (2013) Org Lett 15:112CrossRefGoogle Scholar
  128. 128.
    Feng C, Loh T-P (2014) Angew Chem Int Ed 53:2722CrossRefGoogle Scholar
  129. 129.
    Collins KD, Lied F, Glorius F (2014) Chem Commun 50:4459CrossRefGoogle Scholar
  130. 130.
    Xie F, Qi Z, Yu S, Li X (2014) J Am Chem Soc 136:4780CrossRefGoogle Scholar
  131. 131.
    Ai W, Yang X, Wu Y, Wang X, Li Y, Yang Y, Zhou B (2014) Chem Eur J 20:17653CrossRefGoogle Scholar
  132. 132.
    Feng C, Feng D, Luo Y, Loh T-P (2014) Org Lett 16:5956CrossRefGoogle Scholar
  133. 133.
    Feng C, Feng D, Loh T-P (2014) Chem Commun 50:9865CrossRefGoogle Scholar
  134. 134.
    Loh TP, Yang X-F, Hu X-H, Feng C (2014) Chem Commun 51:2532Google Scholar
  135. 135.
    Jin N, Pan C, Zhang H, Xu P, Cheng Y, Zhu C (2015) Adv Synth Catal 357. doi: 10.1002/adsc.201401007
  136. 136.
    Wu Y, Yang Y, Zhou B, Li Y (2015) J Org Chem 80:1946CrossRefGoogle Scholar
  137. 137.
    Jeong J, Patel P, Hwang H, Chang S (2014) Org Lett 16:4598CrossRefGoogle Scholar
  138. 138.
    Zhang X, Qi Z, Gao J, Li X (2014) Org Biomol Chem 12:9329CrossRefGoogle Scholar
  139. 139.
    Kang D, Hong S (2015) Org Lett 17:1938CrossRefGoogle Scholar
  140. 140.
    Wang H, Xie F, Qi Z, Li X (2015) Org Lett 17:920CrossRefGoogle Scholar
  141. 141.
    Finkbeiner P, Kloeckner U, Nachtsheim BJ (2015) Angew Chem Int Ed 54:4949CrossRefGoogle Scholar
  142. 142.
    Liu X, Yu L, Luo M, Zhu J, Wei W (2015) Chem Eur J 21. doi: 10.1002/chem.201501094
  143. 143.
    Ano Y, Tobisu M, Chatani N (2011) J Am Chem Soc 133:12984CrossRefGoogle Scholar
  144. 144.
    Zhang R-Y, Xi L-Y, Zhang L, Liang S, Chen S-Y, Yu X-Q (2014) RSC Adv 4:54349CrossRefGoogle Scholar
  145. 145.
    Liu X, Wang Z, Cheng X, Li C (2012) J Am Chem Soc 134:14330CrossRefGoogle Scholar
  146. 146.
    Huang H, Zhang G, Gong L, Zhang S, Chen Y (2014) J Am Chem Soc 136:2280CrossRefGoogle Scholar
  147. 147.
    Huang H, Zhang G, Chen Y (2015) Angew Chem 127:7983CrossRefGoogle Scholar
  148. 148.
    Wang Z, Li L, Huang Y (2014) J Am Chem Soc 136:12233Google Scholar
  149. 149.
    Tietze LF (1996) Chem Rev 96:115CrossRefGoogle Scholar
  150. 150.
    Nicolai S, Erard S, Fernandez Gonzalez D, Waser J (2010) Org Lett 12:384CrossRefGoogle Scholar
  151. 151.
    Nicolai S, Piemontesi C, Waser J (2011) Angew Chem Int Ed 50:4680CrossRefGoogle Scholar
  152. 152.
    Ariafard A (2014) Organometallics 33:7318CrossRefGoogle Scholar
  153. 153.
    Brand JP, Chevalley C, Waser J (2011) Beilstein J Org Chem 7:565CrossRefGoogle Scholar
  154. 154.
    Hashmi ASK, Schwarz L, Choi J-H, Frost TM (2000) Angew Chem Int Ed 39:2285CrossRefGoogle Scholar
  155. 155.
    Li Y, Waser J (2015) Angew Chem Int Ed 54:5438CrossRefGoogle Scholar
  156. 156.
    Hashmi ASK, Yang WB, Rominger F (2012) Chem Eur J 18:6576CrossRefGoogle Scholar
  157. 157.
    Aubineau T, Cossy J (2013) Chem Commun 49:3303CrossRefGoogle Scholar
  158. 158.
    Tokimizu Y, Oishi S, Fujii N, Ohno H (2014) Org Lett 16:3138CrossRefGoogle Scholar
  159. 159.
    Frei R, Waser J (2013) J Am Chem Soc 135:9620CrossRefGoogle Scholar
  160. 160.
    Frei R, Wodrich MD, Hari DP, Borin PA, Chauvier C, Waser J (2014) J Am Chem Soc 136:16563CrossRefGoogle Scholar
  161. 161.
    Chen CC, Waser J (2015) Org Lett 17:736CrossRefGoogle Scholar
  162. 162.
    Chen CC, Waser J (2014) Chem Commun 50:12923CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Catalysis and Organic SynthesisEPFL SB ISIC LCSOLausanneSwitzerland

Personalised recommendations