Advertisement

Iodanes as Trifluoromethylation Reagents

  • Natalja Früh
  • Julie Charpentier
  • Antonio TogniEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)

Abstract

This chapter describes synthesis, structural properties, activation modes, and applications of hypervalent iodine reagents for trifluoromethylation, thereby focusing on recent advances.

Keywords

Benziodoxole Benziodoxolone Hypervalent iodine Trifluoromethylation 

References

  1. 1.
    Eisenberger P, Gischig S, Togni A (2006) Novel 10-I-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chem Eur J 12:2579–2586. doi: 10.1002/chem.200501052 CrossRefGoogle Scholar
  2. 2.
    Charpentier J, Früh N, Togni A (2015) Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem Rev 115:650–682. doi: 10.1021/cr500223h CrossRefGoogle Scholar
  3. 3.
    Ibrahim H, Kleinbeck F, Togni A (2004) Catalytic asymmetric chlorination of β-keto esters with hypervalent iodine compounds. Helv Chim Acta 87:605–610. doi: 10.1002/hlca.200490058 CrossRefGoogle Scholar
  4. 4.
    Yagupolskii LM, Maletina II, Kondratenko NV, Orda VV (1978) A new method of perfluoroalkylation. Synthesis 1978:835–837. doi: 10.1055/s-1978-24907 CrossRefGoogle Scholar
  5. 5.
    Eisenberger P (2007) The development of new hypervalent iodine reagents for electrophilic trifluoromethylation. Dissertation ETH no. 17371, ETH Zürich. doi: 10.3929/ethz-a-005507897
  6. 6.
    Matoušek V, Pietrasiak E, Schwenk R, Togni A (2013) One-pot synthesis of hypervalent iodine reagents for electrophilic trifluoromethylation. J Org Chem 78:6763–6768. doi: 10.1021/jo400774u CrossRefGoogle Scholar
  7. 7.
    Kieltsch I, Eisenberger P, Togni A (2007) Mild electrophilic trifluoromethylation of carbon- and sulfur-centered nucleophiles by a hypervalent iodine(III)–CF3 reagent. Angew Chem Int Ed 46:754–757. doi: 10.1002/anie.200603497 CrossRefGoogle Scholar
  8. 8.
    Zhdankin VV (2013) Hypervalent iodine chemistry. Wiley, Chichester. doi: 10.1002/9781118341155 CrossRefGoogle Scholar
  9. 9.
    Niedermann K, Welch JM, Koller R, Cvengroš J, Santschi N, Battaglia P, Togni A (2010) New hypervalent iodine reagents for electrophilic trifluoromethylation and their precursors: synthesis, structure, and reactivity. Tetrahedron 66:5753–5761. doi: 10.1016/j.tet.2010.04.125 CrossRefGoogle Scholar
  10. 10.
    Niedermann KM (2012) Direct trifluoromethylation of organonitrogen compounds with hypervalent iodine reagents. Dissertation ETH no. 20465, ETH Zürich. doi: 10.3929/ethz-a-007567196
  11. 11.
    Santschi N, Matthey C, Schwenk R, Otth E, Togni A (2015) On the effect of backbone modifications in 3,3-dimethyl-1-(trifluoromethyl)-3H-1λ3,2-benziodaoxole. Eur J Org Chem 2015:1925–1931. doi: 10.1002/ejoc.201403634 CrossRefGoogle Scholar
  12. 12.
    Santschi N (2013) Hypervalent iodine trifluoromethylating reagents at work. Dissertation ETH no. 21317, ETH Zürich. doi: 10.3929/ethz-a-010079638
  13. 13.
    Santschi N, Sarott RC, Otth E, Kissner R, Togni A (2014) Synthesis, characterization and initial evaluation of 5-nitro-1-(trifluoromethyl)-3H-1λ3,2-benziodaoxol-3-one. Beilstein J Org Chem 10:1–6. doi: 10.3762/bjoc.10.1 CrossRefGoogle Scholar
  14. 14.
    Eisenberger P, Kieltsch I, Armanino N, Togni A (2008) Mild electrophilic trifluoromethylation of secondary and primary aryl- and alkylphosphines using hypervalent iodine(III)-CF3 reagents. Chem Commun 1575–1577. doi: 10.1039/B801424H
  15. 15.
    Sondenecker A, Cvengroš J, Aardoom R, Togni A (2011) P-stereogenic ferrocene-based (trifluoromethyl)phosphanes: synthesis, structure, coordination properties and catalysis. Eur J Org Chem 2011:78–87. doi: 10.1002/ejoc.201001162 CrossRefGoogle Scholar
  16. 16.
    Buergler JF, Niedermann K, Togni A (2012) P-stereogenic trifluoromethyl derivatives of Josiphos: synthesis, coordination properties, and applications in asymmetric catalysis. Chem Eur J 18:632–640. doi: 10.1002/chem.201102390 CrossRefGoogle Scholar
  17. 17.
    Koller R, Stanek K, Stolz D, Aardoom R, Niedermann K, Togni A (2009) Zinc-mediated formation of trifluoromethyl ethers from alcohols and hypervalent iodine trifluoromethylation reagents. Angew Chem Int Ed 48:4332–4336. doi: 10.1002/anie.200900974 CrossRefGoogle Scholar
  18. 18.
    Niedermann K, Früh N, Senn R, Czarniecki B, Verel R, Togni A (2012) Direct electrophilic N-trifluoromethylation of azoles by a hypervalent iodine reagent. Angew Chem Int Ed 51:6511–6515. doi: 10.1002/anie.201201572 CrossRefGoogle Scholar
  19. 19.
    Koller R, Huchet Q, Battaglia P, Welch JM, Togni A (2009) Acid-mediated formation of trifluoromethyl sulfonates from sulfonic acids and a hypervalent iodine trifluoromethylating agent. Chem Commun 5993–5995. doi: 10.1039/B913962A
  20. 20.
    Santschi N, Geissbühler P, Togni A (2012) Reactivity of an electrophilic hypervalent iodine trifluoromethylation reagent with hydrogen phosphates – a mechanistic study. J Fluor Chem 135:83–86. doi: 10.1016/j.jfluchem.2011.08.014 CrossRefGoogle Scholar
  21. 21.
    Kieltsch I (2008) Elektrophile Trifluoromethylierung. Dissertation ETH no. 17990, ETH Zürich. doi: 10.3929/ethz-a-005688671
  22. 22.
    Deng Q-H, Wadepohl H, Gade LH (2012) Highly enantioselective copper-catalyzed electrophilic trifluoromethylation of β-ketoesters. J Am Chem Soc 134:10769–10772. doi: 10.1021/ja3039773 CrossRefGoogle Scholar
  23. 23.
    Wiehn MS, Vinogradova EV, Togni A (2010) Electrophilic trifluoromethylation of arenes and N-heteroarenes using hypervalent iodine reagents. J Fluor Chem 131:951–957. doi: 10.1016/j.jfluchem.2010.06.020 CrossRefGoogle Scholar
  24. 24.
    Shimizu R, Egami H, Nagi T, Chae J, Hamashima Y, Sodeoka M (2010) Direct C2-trifluoromethylation of indole derivatives catalyzed by copper acetate. Tetrahedron Lett 51:5947–5949. doi: 10.1016/j.tetlet.2010.09.027 CrossRefGoogle Scholar
  25. 25.
    Miyazaki A, Shimizu R, Egami H, Sodeoka M (2012) Rapid trifluoromethylation of indole derivatives. Heterocycles 86:979. doi: 10.3987/COM-12-S(N)101 CrossRefGoogle Scholar
  26. 26.
    Cai S, Chen C, Sun Z, Xi C (2013) CuCl-catalyzed ortho trifluoromethylation of arenes and heteroarenes with a pivalamido directing group. Chem Commun 49:4552–4554. doi: 10.1039/c3cc41331d CrossRefGoogle Scholar
  27. 27.
    Mejía E, Togni A (2012) Rhenium-catalyzed trifluoromethylation of arenes and heteroarenes by hypervalent iodine reagents. ACS Catal 2:521–527. doi: 10.1021/cs300089y CrossRefGoogle Scholar
  28. 28.
    Xie J, Yuan X, Abdukader A, Zhu C, Ma J (2014) Visible-light-promoted radical C–H trifluoromethylation of free anilines. Org Lett 16:1768–1771. doi: 10.1021/ol500469a CrossRefGoogle Scholar
  29. 29.
    Liu T, Shao X, Wu Y, Shen Q (2012) Highly selective trifluoromethylation of 1,3-disubstituted arenes through iridium-catalyzed arene borylation. Angew Chem Int Ed 51:540–543. doi: 10.1002/anie.201106673 CrossRefGoogle Scholar
  30. 30.
    Liu T, Shen Q (2011) Copper-catalyzed trifluoromethylation of aryl and vinyl boronic acids with an electrophilic trifluoromethylating reagent. Org Lett 13:2342–2345. doi: 10.1021/ol2005903 CrossRefGoogle Scholar
  31. 31.
    Zheng H, Huang Y, Wang Z, Li H, Huang K-W, Yuan Y, Weng Z (2012) Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates. Tetrahedron Lett 53:6646–6649. doi: 10.1016/j.tetlet.2012.09.083 CrossRefGoogle Scholar
  32. 32.
    Weng Z, Li H, He W, Yao L-F, Tan J, Chen J, Yuan Y, Huang K-W (2012) Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent. Tetrahedron 68:2527–2531. doi: 10.1016/j.tet.2011.12.085 CrossRefGoogle Scholar
  33. 33.
    Parsons AT, Buchwald SL (2011) Copper-catalyzed trifluoromethylation of unactivated olefins. Angew Chem Int Ed 50:9120–9123. doi: 10.1002/anie.201104053 CrossRefGoogle Scholar
  34. 34.
    Parsons AT, Senecal TD, Buchwald SL (2012) Iron(II)-catalyzed trifluoromethylation of potassium vinyltrifluoroborates. Angew Chem Int Ed 51:2947–2950. doi: 10.1002/anie.201108267 CrossRefGoogle Scholar
  35. 35.
    Yasu Y, Koike T, Akita M (2013) Visible-light-induced synthesis of a variety of trifluoromethylated alkenes from potassium vinyltrifluoroborates by photoredox catalysis. Chem Commun 49:2037–2039. doi: 10.1039/c3cc39235j CrossRefGoogle Scholar
  36. 36.
    He Z, Luo T, Hu M, Cao Y, Hu J (2012) Copper-catalyzed di- and trifluoromethylation of α, β-unsaturated carboxylic acids: a protocol for vinylic fluoroalkylations. Angew Chem Int Ed 51:3944–3947. doi: 10.1002/anie.201200140 CrossRefGoogle Scholar
  37. 37.
    Wang F, Qi X, Liang Z, Chen P, Liu G (2014) Copper-catalyzed intermolecular trifluoromethylazidation of alkenes: convenient access to CF3-containing alkyl azides. Angew Chem Int Ed 53:1881–1886. doi: 10.1002/anie.201309991 CrossRefGoogle Scholar
  38. 38.
    Li L, Chen Q-Y, Guo Y (2014) Synthesis of α-trifluoromethyl ketones via the Cu-catalyzed trifluoromethylation of silyl enol ethers using an electrophilic trifluoromethylating agent. J Org Chem 79:5145–5152. doi: 10.1021/jo500713f CrossRefGoogle Scholar
  39. 39.
    Früh N, Togni A (2014) Vanadium-catalyzed solvent-free synthesis of quaternary α-trifluoromethyl nitriles by electrophilic trifluoromethylation. Angew Chem Int Ed 53:10813–10816. doi: 10.1002/anie.201406181 CrossRefGoogle Scholar
  40. 40.
    Kieltsch I, Eisenberger P, Stanek K, Togni A (2008) Recent advances in electrophilic CF3-transfer using hypervalent iodine(III) reagents. Chimia 62:260–263. doi: 10.2533/chimia.2008.260 CrossRefGoogle Scholar
  41. 41.
    Matoušek V, Pietrasiak E, Sigrist L, Czarniecki B, Togni A (2014) O-Trifluoromethylation of N,N-disubstituted hydroxylamines with hypervalent iodine reagents. Eur J Org Chem 2014:3087–3092. doi: 10.1002/ejoc.201402225 CrossRefGoogle Scholar
  42. 42.
    Hojczyk KN, Feng P, Zhan C, Ngai M-Y (2014) Trifluoromethoxylation of arenes: synthesis of ortho-trifluoromethoxylated aniline derivatives by OCF3 migration. Angew Chem Int Ed 53:14559–14563. doi: 10.1002/anie.201409375 CrossRefGoogle Scholar
  43. 43.
    Xiong YP, Wu MY, Zhang XY, Ma CL, Huang L, Zhao LJ, Tan B, Liu XY (2014) Direct access to α-trifluoromethyl enones via efficient copper-catalyzed trifluoromethylation of Meyer–Schuster rearrangement. Org Lett 16:1000–1003. doi: 10.1021/ol403741m CrossRefGoogle Scholar
  44. 44.
    Egami H, Ide T, Fujita M, Tojo T, Hamashima Y, Sodeoka M (2014) Dual catalysis with copper and rhenium for trifluoromethylation of propargylic alcohols: efficient synthesis of α-trifluoromethylated enones. Chem Eur J 20:12061–12065. doi: 10.1002/chem.201403447 CrossRefGoogle Scholar
  45. 45.
    Gao P, Shen Y-W, Fang R, Hao X-H, Qiu Z-H, Yang F, Yan X-B, Wang Q, Gong X-J, Liu X-Y, Liang Y-M (2014) Copper-catalyzed one-pot trifluoromethylation/aryl migration/carbonyl formation with homopropargylic alcohols. Angew Chem Int Ed 53:7629–7633. doi: 10.1002/anie.201403383 CrossRefGoogle Scholar
  46. 46.
    Tomita R, Yasu Y, Koike T, Akita M (2014) Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: facile synthesis of α-trifluoromethylated ketones from aromatic alkenes. Angew Chem Int Ed 53:7144–7148. doi: 10.1002/anie.201403590 CrossRefGoogle Scholar
  47. 47.
    Li Y, Ye Z, Bellman TM, Chi T, Dai M (2015) Efficient synthesis of β-CF3/SCF3-substituted carbonyls via copper-catalyzed electrophilic ring-opening cross-coupling of cyclopropanols. Org Lett 17:2186–2189. doi: 10.1021/acs.orglett.5b00782 CrossRefGoogle Scholar
  48. 48.
    Otth E (2014) Caught in the activation of hypervalent iodine trifluoromethylating reagents. Dissertation ETH no. 22305, ETH Zürich. doi: 10.3929/ethz-a-010400061
  49. 49.
    Kawamura S, Egami H, Sodeoka M (2015) Aminotrifluoromethylation of olefins via cyclic amine formation: mechanistic study and application to synthesis of trifluoromethylated pyrrolidines. J Am Chem Soc 137:4865–4873. doi: 10.1021/jacs.5b02046 CrossRefGoogle Scholar
  50. 50.
    Ling L, Liu K, Li X, Li Y (2015) General reaction mode of hypervalent iodine trifluoromethylation reagent: a density functional theory study. ACS Catal 5:2458–2468. doi: 10.1021/cs501892s CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Natalja Früh
    • 1
  • Julie Charpentier
    • 1
  • Antonio Togni
    • 1
    Email author
  1. 1.Department of Chemistry and Applied BiosciencesSwiss Federal Institute of TechnologyZürichSwitzerland

Personalised recommendations