Advertisement

Rearrangements Induced by Hypervalent Iodine

  • Gaëtan Maertens
  • Sylvain CanesiEmail author
Chapter
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 373)

Abstract

This chapter describes advances in hypervalent iodine(III)-induced rearrangements reported between 2004 and 2015, beginning with Hofmann-type rearrangements and aliphatic aryl transpositions. In both reactions the iodine(III) reagent may be off-the-shelf or catalytically generated in situ. A number of stereoselective transformations are discussed, followed by transpositions triggered through phenol dearomatization, including Wagner–Meerwein-type rearrangements, Prins-pinacol transpositions, and a tandem polycylization-pinacol process. Other rearrangements such as an iodonio-Claisen rearrangement, an ipso-rearrangement, and rearrangements performed using iodine(V) are also described.

Keywords

Alkyl-shift Hoffman rearrangement Polycyclization and iodonio-Claisen Prins-Pinacol Ring expansions and contractions Transposition 

References

  1. 1.
    Wirth T (2003) Oxidations and rearrangements. In: Wirth T (ed) Hypervalent iodine chemistry: modern developments in organic synthesis, vol 224, Topics in current chemistry. Springer, Berlin, Heidelberg, New York, pp 185–208CrossRefGoogle Scholar
  2. 2.
    Hernández E, Vélez JM, Vlaar CP (2007) Tetrahedron Lett 48:8972–8975CrossRefGoogle Scholar
  3. 3.
    Landsberg D, Kalesse M (2010) Synlett 1104Google Scholar
  4. 4.
    Angelici G, Contaldi S, Green SL, Tomasini C (2008) Org Biomol Chem 6:1849–1852CrossRefGoogle Scholar
  5. 5.
    Okamoto N, Miwa Y, Minami H, Takeda K, Yanada R (2009) Angew Chem Int Ed 48:9693–9696CrossRefGoogle Scholar
  6. 6.
    Yoshimura A, Luedtke MW, Zhdankin VV (2012) J Org Chem 77:2087–2091CrossRefGoogle Scholar
  7. 7.
    Zagulyaeva AA, Banek CT, Yusubov MS, Zhdankin VV (2010) Org Lett 12:4644–4647CrossRefGoogle Scholar
  8. 8.
    Yoshimura A, Middleton KR, Luedtke MW, Zhu C, Zhdankin VV (2012) J Org Chem 77:11399–11404CrossRefGoogle Scholar
  9. 9.
    Moriyama K, Ishida K, Togo H (2012) Org Lett 14:946–949CrossRefGoogle Scholar
  10. 10.
    Singh FV, Rehbein J, Wirth T (2012) ChemistryOpen 1:245–250CrossRefGoogle Scholar
  11. 11.
    Liu L, Lu H, Wang H, Yang C, Zhang X, Zhang-Negrerie D, Du Y, Zhao K (2013) Org Lett 15:2906–2909CrossRefGoogle Scholar
  12. 12.
    Liu L, Du L, Zhang-Negrerie D, Du Y, Zhao K (2014) Org Lett 16:5772–5775CrossRefGoogle Scholar
  13. 13.
    Purohit VC, Allwein SP, Bakale RP (2013) Org Lett 15:1650–1653CrossRefGoogle Scholar
  14. 14.
    Uyanik M, Yasui T, Ishihara K (2010) Angew Chem Int Ed 49(12):2175–2177CrossRefGoogle Scholar
  15. 15.
    Farid U, Malmedy F, Claveau R, Albers L, Wirth T (2013) Angew Chem Int Ed 52:7018–7022CrossRefGoogle Scholar
  16. 16.
    Silva LF Jr, Vasconcelos RS, Nogueira MA (2008) Org Lett 10:1017–1020CrossRefGoogle Scholar
  17. 17.
    Silva SBL, Torre AD, Carvalho JE, Ruiz ALTG, Silva LF Jr (2015) Molecules 20:1475–1494CrossRefGoogle Scholar
  18. 18.
    Silva LF Jr, Siqueira FA, Pedrozo EC, Vieira FYM, Doriguetto AC (2007) Org Lett 9:1433–1436CrossRefGoogle Scholar
  19. 19.
    Ahmad A, Scarassati P, Jalalian N, Olofsson B, Silva LF Jr (2013) Tetrahedron Lett 54:5818–5820CrossRefGoogle Scholar
  20. 20.
    Guérard KC, Chapelle C, Giroux MA, Sabot C, Beaulieu MA, Achache N, Canesi S (2009) Org Lett 11:4756–4759CrossRefGoogle Scholar
  21. 21.
    Guérard KC, Guérinot A, Bouchard-Aubin C, Ménard MA, Lepage M, Beaulieu MA, Canesi S (2012) J Org Chem 77:2121–2133CrossRefGoogle Scholar
  22. 22.
    Fujioka H, Komatsu H, Nakamura T, Miyoshi A, Hata K, Ganesh J, Murai K, Kita Y (2010) Chem Commun 46:4133–4135CrossRefGoogle Scholar
  23. 23.
    Beaulieu MA, Guérard KC, Maertens G, Sabot C, Canesi S (2011) J Org Chem 76:9460–9471CrossRefGoogle Scholar
  24. 24.
    Beaulieu MA, Sabot C, Achache N, Guérard KC, Canesi S (2010) Chem Eur J 16:11224–11228CrossRefGoogle Scholar
  25. 25.
    Desjardins S, Maertens G, Canesi S (2014) Org Lett 16:4928–4931CrossRefGoogle Scholar
  26. 26.
    Khatri HJ, Zhu J (2012) Chem Eur J 18:12232–12236CrossRefGoogle Scholar
  27. 27.
    Jacquemot G, Canesi S (2012) J Org Chem 77:7588–7594CrossRefGoogle Scholar
  28. 28.
    Sheng S, Zhang-Negrerie D, Du Y, Zhao K (2014) Angew Chem Int Ed 53:6216–6219CrossRefGoogle Scholar
  29. 29.
    Zhang X, Huang R, Marrot J, Coeffard V, Xiong Y (2015) Tetrahedron 71:700–708CrossRefGoogle Scholar
  30. 30.
    Kita Y, Matsuda S, Fujii E, Horai M, Hata K, Fujioka H (2005) Angew Chem Int Ed 44:5857–5860CrossRefGoogle Scholar
  31. 31.
    Fujioka H, Matsuda S, Horai M, Fujii E, Morishita M, Nishiguchi N, Hata K, Kita Y (2007) Chem Eur J 13:5238–5248CrossRefGoogle Scholar
  32. 32.
    Bhalerao DS, Mahajan US, Chaudhari KH, Akamanchi KG (2007) J Org Chem 72:662–665CrossRefGoogle Scholar
  33. 33.
    Vatèle JM (2008) Synlett 1785–1788Google Scholar
  34. 34.
    Uyanik M, Fukatsu R, Ishihara K (2009) Org Lett 11:3470–3473CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratoire de Méthodologies et Synthèse de Produits NaturelsUniversité du Québec à MontréalMontréalCanada

Personalised recommendations