Site-Selective Reactions with Peptide-Based Catalysts

Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 372)

Abstract

The problem of catalyst-controlled site-selectivity can potentially require a catalyst to overcome energetic barriers larger than those associated with enantioselective reactions. This challenge is a signature of substrates that present reactive sites that are not of equivalent reactivity. Herein we present a narrative of our laboratory’s efforts to overcome this challenge using peptide-based catalysts. We highlight the interplay between understanding the inherent reactivity preferences of a given target molecule and the development of catalysts that can overcome intrinsic preferences embedded within a substrate.

Keywords

Asymmetric synthesis Catalysis Natural products Peptides Site-selective reactions 

References

  1. 1.
    Matsumoto M, Lee SJ, Gagne MR, Waters ML (2014) Cross-strand histidine-aromatic interactions enhance acyl-transfer rates in beta-hairpin peptide catalysts. Org Biomol Chem 12:8711–8718CrossRefGoogle Scholar
  2. 2.
    Matsumoto M, Lee SJ, Waters ML, Gagne MR (2014) A catalyst selection protocol that identifies biomimetic motifs from β-hairpin libraries. J Am Chem Soc 136:15817–15820CrossRefGoogle Scholar
  3. 3.
    Julia S, Masana J, Vega JC (1980) “Synthetic enzymes”. Highly stereoselective epoxidation of a chalcone in a triphasic toluene-water-poly[(S)-alanine] system. Angew Chem Int Ed 19:929–931CrossRefGoogle Scholar
  4. 4.
    Porter MJ, Roberts SM, Skidmore J (1999) Polyamino acids as catalysts in asymmetric synthesis. Bioorg Med Chem 7:2145–2156CrossRefGoogle Scholar
  5. 5.
    Jarvo ER, Miller SJ (2002) Amino acids and peptides as asymmetric organocatalysts. Tetrahedron 58:2481–2495CrossRefGoogle Scholar
  6. 6.
    Miller SJ (2004) In search of peptide-based catalysts for asymmetric organic synthesis. Acc Chem Res 37:601–610CrossRefGoogle Scholar
  7. 7.
    Colby Davie EA, Mennen SM, Xu Y, Miller SJ (2007) Asymmetric catalysis mediated by synthetic peptides. Chem Rev 107:5759–5812CrossRefGoogle Scholar
  8. 8.
    Wenemers H (2011) Asymmetric catalysis with peptides. Chem Commun 47:12036–12041CrossRefGoogle Scholar
  9. 9.
    Lewandowski B, Wennemers H (2014) Asymmetric catalysis with short-chain peptides. Curr Opin Chem Biol 22:40–46CrossRefGoogle Scholar
  10. 10.
    Kagan HB, Fiaud JC (1979) New approaches in asymmetric synthesis. In: Eliel EL, Allinger NL (eds) Topics in stereochemistry, vol 10. Wiley, Hoboken, pp 175–285CrossRefGoogle Scholar
  11. 11.
    Kagan HB, Fiaud JC (1988) Kinetic resolution. In: Eliel EL, Wilen SH (eds) Topics in stereochemistry, vol 18. Wiley, Hoboken, pp 249–330CrossRefGoogle Scholar
  12. 12.
    Fenwick DR, Kagan HB (1999) Asymmetric amplification. In: Denmark SE (ed) Topics in stereochemistry, vol 122. Wiley, Hoboken, pp 257–296CrossRefGoogle Scholar
  13. 13.
    Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934CrossRefGoogle Scholar
  14. 14.
    Krebs EG (1983) Historical perspectives on protein phosphorylation and a classification system for protein kinases. Philos Trans R Soc Lond B Biol Sci 302:3–11CrossRefGoogle Scholar
  15. 15.
    Demchenko AV (ed) (2008) Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Wiley-VCH, WeinheimGoogle Scholar
  16. 16.
    Ernst B, Hart GW, Sinay P (2000) Protecting groups: effects on reactivity, glycosylation stereoselectivity, and coupling efficiency. In: Green LG, Ley SV (eds) Carbohydrates in chemistry and biology. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  17. 17.
    Fischer E (1914) Über Phosphorsäureester des Methyl-glucosids und Theophyllin-glucosids. Ber Chem 47:3193–3205CrossRefGoogle Scholar
  18. 18.
    Moffatt JG, Khorana HG (1957) Carbodiimides. VII. Tetra-p-nitrophenyl pyrophosphate, a new phosphorylating agent. J Am Chem Soc 79:3741–3746CrossRefGoogle Scholar
  19. 19.
    Chambers RW, Moffatt JG, Khorana HG (1957) Nucleoside polyphosphates. IV. A new synthesis of guanosine-5′-phosphate. J Am Chem Soc 79:3747CrossRefGoogle Scholar
  20. 20.
    Sculimbrene BR, Miller SJ (2001) Discovery of a catalytic asymmetric phosphorylation through selection of a minimal kinase mimic: a concise total synthesis of D-myo-inositol-1-phosphate. J Am Chem Soc 123:10125–10126CrossRefGoogle Scholar
  21. 21.
    Sculimbrene BR, Morgan AJ, Miller SJ (2002) Enantiodivergence in small-molecule catalysis of asymmetric phosphorylation: concise total syntheses of the enantiomeric D-myo-inositol-1-phosphate and D-myo-inositol-3-phosphate. J Am Chem Soc 124:11653–11656CrossRefGoogle Scholar
  22. 22.
    Sculimbrene BR, Morgan AJ, Miller SJ (2003) Nonenzymatic peptide-based catalytic asymmetric phosphorylation of inositol derivatives. Chem Commun 1781–1785Google Scholar
  23. 23.
    Agranoff BW, Fisher SK (1991) Inositol phosphates and derivatives: synthesis, biochemistry, and therapeutic potential. In Reitz AB (ed) ACS Symposium series 463, American Chemical Society, Washington, p 20Google Scholar
  24. 24.
    Billington DC (1993) The inositol phosphates: chemical synthesis and biological significance. VCH, New YorkGoogle Scholar
  25. 25.
    Pirrung MC (1999) Histidine kinases and two-component signal transduction systems. Chem Biol 121:11638–11643Google Scholar
  26. 26.
    Kee JM, Muir TW (2012) Chasing phosphohistidine, an elusive sibling in the phosphoamino acid family. ACS Chem Biol 7:44–51CrossRefGoogle Scholar
  27. 27.
    Copeland GT, Miller SJ (2001) Selection of enantioselective acyl transfer catalysts from a pooled peptide library through a fluorescence-based activity assay: an approach to kinetic resolution of secondary alcohols of broad structural scope. J Am Chem Soc 123:6496–6502CrossRefGoogle Scholar
  28. 28.
    Jarvo ER, Copeland GT, Papaioannou N, Bonitatebus PJ, Miller SJ (1999) A biomimetic approach to asymmetric acyl transfer catalysis. J Am Chem Soc 121:11638–11643CrossRefGoogle Scholar
  29. 29.
    Billington DC, Baker R, Kulagowski JJ, Mawer IM, Vacca JP, deSolms SJ, Huff JR (1989) The total synthesis of myo-inositol phosphates via myo-inositol orthoformate. J Chem Soc Perkin Trans 1:1423–1429CrossRefGoogle Scholar
  30. 30.
    Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2:327–338CrossRefGoogle Scholar
  31. 31.
    Prestwich GD (2004) Phosphoinositide signaling: from affinity probes to pharmaceutical targets. Chem Biol 11:619–637CrossRefGoogle Scholar
  32. 32.
    Di Paolo G, de Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657CrossRefGoogle Scholar
  33. 33.
    Sculimbrene BR, Xu Y, Miller SJ (2004) Asymmetric syntheses of phosphatidylinositol-3-phosphates with saturated and unsaturated side chains through catalytic asymmetric phosphorylation. J Am Chem Soc 126:13182–13183CrossRefGoogle Scholar
  34. 34.
    Morgan AJ, Wang YK, Roberts MF, Miller SJ (2004) Chemistry and biology of deoxy-myo-inositol phosphates: stereospecificity of substrate interactions within an archaeal and a bacterial IMPase. J Am Chem Soc 126:15370–15371CrossRefGoogle Scholar
  35. 35.
    Morgan AJ, Komiya S, Xu Y, Miller SJ (2006) Unified total syntheses of the inositol polyphosphates: D-I-3,5,6P3, D-I-3,4,5P3, and D-I-3,4,5,6P4 via catalytic enantioselective and site-selective phosphorylation. J Org Chem 71:6923–6931CrossRefGoogle Scholar
  36. 36.
    Xu Y, Sculimbrene BR, Miller SJ (2006) Streamlined synthesis of phosphatidylinositol (PI), PI3P, PI3,5P2, and deoxygenated analogues as potential biological probes. J Org Chem 71:4919–4928CrossRefGoogle Scholar
  37. 37.
    Longo CM, Wei Y, Roberts MF, Miller SJ (2009) Asymmetric syntheses of L, L- and L, D-di-myo-inositol-1,1′-phosphate and their behavior as stabilizers of enzyme activity at extreme temperatures. Angew Chem Int Ed 48:4158–4161CrossRefGoogle Scholar
  38. 38.
    Cuilla R, Burrgraf S, Stetter KO, Roberts MF (1994) Occurrence and role of di-myo-inositol-1,1′-phosphate in Methanococcus igneus. Appl Environ Microbiol 60:3660–3664Google Scholar
  39. 39.
    Chen L, Spiliotis ET, Roberts MF (1998) Biosynthesis of di-myo-inositol-1,1′-phosphate, a novel osmolyte in hyperthermophilic Archaea. J Bacteriol 180:3785–3792Google Scholar
  40. 40.
    Chandler BD, Burkhardt AL, Foley K, Cullis C, Driscoll D, D’Amore NR, Miller SJ (2014) A fully synthetic and biochemically validated phosphatidyl inositol-3-phosphate hapten via asymmetric synthesis and native chemical ligation. J Am Chem Soc 136:412–418CrossRefGoogle Scholar
  41. 41.
    Harris JR, Markl J (1999) Keyhole limpet hemocyanin (KLH): a biomedical review. Micron 6:597–623CrossRefGoogle Scholar
  42. 42.
    Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor, New York, Chapter 5Google Scholar
  43. 43.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Academic, New York, Chapter 19Google Scholar
  44. 44.
    Martin SF, Josey JA, Wong YL, Dean DW (1994) General method for the synthesis of phospholipid derivatives of 1,2-O-diacyl-sn-glycerols. J Org Chem 59:4805–4820CrossRefGoogle Scholar
  45. 45.
    Dawson PE, Muir TW, Clark-Lewis I, Kent SBH (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779CrossRefGoogle Scholar
  46. 46.
    Johnson ECB, Kent SBH (2006) Insights into the mechanism and catalysis of the native chemical ligation reaction. J Am Chem Soc 128:6640–6646CrossRefGoogle Scholar
  47. 47.
    Nilsson BL, Soellner MB, Raines RT (2005) Chemical synthesis of proteins. Annu Rev Biophys Biomol Struct 34:91–118CrossRefGoogle Scholar
  48. 48.
    Fang GM, Cui HK, Zheng JS, Liu L (2010) Chemoselective ligation of peptide phenyl esters with N-terminal cysteines. ChemBioChem 11:1061–1065CrossRefGoogle Scholar
  49. 49.
    Lewis CA, Sculimbrene BR, Xu Y, Miller SJ (2005) Desymmetrization of glycerol derivatives with peptide-based acylation catalysts. Org Lett 7:3021–3023CrossRefGoogle Scholar
  50. 50.
    Griswold KS, Miller SJ (2003) A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron 59:8869–8875CrossRefGoogle Scholar
  51. 51.
    Evans JW, Fierman MB, Miller SJ, Ellman JA (2004) Catalytic enantioselective synthesis of sulfinate esters through the dynamic resolution of tert-butanesulfinyl chloride. J Am Chem Soc 126:8134–8135CrossRefGoogle Scholar
  52. 52.
    Schreiber SL, Schreiber TS, Smith DB (1987) Reactions that proceed with a combination of enantiotopic group and diastereotopic face selectivity can deliver products with very high enantiomeric excess: experimental support of a mathematical model. J Am Chem Soc 109:1525–1529CrossRefGoogle Scholar
  53. 53.
    Kawabata T, Nagato M, Takasu K, Fuji K (1997) Nonenzymatic kinetic resolution of racemic alcohols through an “induced fit” process. J Am Chem Soc 119:3169–3170CrossRefGoogle Scholar
  54. 54.
    Kawabata T, Yamamoto K, Momose Y, Yoshida H, Nagaoka Y, Fuji K (2001) Kinetic resolution of amino alcohol derivatives with a chiral nucleophilic catalyst: access to enantiopure cyclic cis-amino alcohols. Chem Commun 2700–2701Google Scholar
  55. 55.
    Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890–12895CrossRefGoogle Scholar
  56. 56.
    Ueda Y, Muramatsu W, Mishiro K, Furuta T, Kawabata T (2009) Functional group tolerance in organocatalytic regioselective acylation of carbohydrates. J Org Chem 74:8802–8805CrossRefGoogle Scholar
  57. 57.
    Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation, and alkylation of diols and carbohydrates: expansion of substrate and mechanistic studies. J Am Chem Soc 134:8260–8267CrossRefGoogle Scholar
  58. 58.
    Taylor MS (2015) Catalysis based on reversible covalent interactions of organoboron compounds. Acc Chem Res 48:295–305CrossRefGoogle Scholar
  59. 59.
    Sun X, Lee H, Lee S, Tan KL (2013) Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nat Chem 5:790–795CrossRefGoogle Scholar
  60. 60.
    Manville N, Alite H, Haeffner F, Hoveyda AH, Snapper ML (2013) Enantioselective silyl protection of alcohols promoted by a combination of chiral and achiral Lewis basic catalysts. Nat Chem 5:768–774CrossRefGoogle Scholar
  61. 61.
    Blaisdell TP, Lee S, Kasaplar P, Sun X, Tan KL (2013) Practical silyl protection of ribonucleosides. Org Lett 15:4710–4713CrossRefGoogle Scholar
  62. 62.
    Sun X, Worthy AD, Tan KL (2013) Resolution of terminal 1,2-diols via silyl transfer. J Org Chem 78:10494–10499CrossRefGoogle Scholar
  63. 63.
    Sun X, Lee H, Lee S, Tan KL (2013) Catalyst recognition of cis-1,2-diols enables site-selective functionalization of complex molecules. Nature Chem 5:790–795CrossRefGoogle Scholar
  64. 64.
    Zhao Y, Rodrigo J, Hoveyda AH, Snapper ML (2006) Enantioselective silyl protection of alcohols catalysed by amino-acid-based small molecule. Nature 443:64–70CrossRefGoogle Scholar
  65. 65.
    Rawlings BJ (1999) Biosynthesis of polyketides (other than actinomycete macrolides). Nat Prod Rep 16:425–484CrossRefGoogle Scholar
  66. 66.
    Shen B (2000) Biosynthesis of aromatic polyketides. Top Curr Chem 209:1–51CrossRefGoogle Scholar
  67. 67.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefGoogle Scholar
  68. 68.
    Walsh CT (2008) The chemical versatility of natural product assembly lines. Acc Chem Res 41:4–10CrossRefGoogle Scholar
  69. 69.
    Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695CrossRefGoogle Scholar
  70. 70.
    Hertweck C (2009) The biosynthetic logic of polyketide diversity. Angew Chem Int Ed 48:4688–4716CrossRefGoogle Scholar
  71. 71.
    Schetter B, Mahrwald R (2006) Modern aldol methods for the total synthesis of polyketides. Angew Chem Int Ed 45:7506–7525CrossRefGoogle Scholar
  72. 72.
    Dechert-Schmitt AMR, Schmitt DC, Gao X, Itoh T, Krische MJ (2014) Polyketide construction via hydrohydroxyalkylation and related alcohol C-H functionalizations. Reinventing the chemistry of carbonyl addition. Nat Prod Rep 31:504–513CrossRefGoogle Scholar
  73. 73.
    Dalby SM, Paterson I (2010) Synthesis of polyketide natural products and analogs as promising anticancer agents. Curr Opin Drug Discov Devel 13:777–794Google Scholar
  74. 74.
    Cane DE, Walsh CT, Khosla C (1998) Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:63–68CrossRefGoogle Scholar
  75. 75.
    Khosla C, Herschlag D, Cane DE, Walsh CT (2014) Assembly line polyketide synthases: mechanistic insights and unsolved problems. Biochemistry 53:2875–2883CrossRefGoogle Scholar
  76. 76.
    Hutchinson CR, Fuji I (1995) Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu Rev Microbiol 49:201–238CrossRefGoogle Scholar
  77. 77.
    Jacobsen JR, Hutchinson CR, Cane DE, Khosla C (1997) Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 277:367–369CrossRefGoogle Scholar
  78. 78.
    Hertweck C (2015) Decoding and reprogramming complex polyketide assemblylines: prospects for synthetic biology. Trends Biochem Sci 40:189–199CrossRefGoogle Scholar
  79. 79.
    Wiley PF, Gerzon K, Flynn EH, Sigal MV, Weaver O, Quarck UC, Chauvette RR, Monahan R (1957) Erythromycin. X. Structure of erythromycin. J Am Chem Soc 79:6062–6070CrossRefGoogle Scholar
  80. 80.
    Kim JW, Adachi H, Kazuo SY, Hayakwa Y, Seto H (1997) Apoptolidin, a new apoptosis inducer in transformed cells from Nocardiopsis sp. J Antibiot 50:628–630CrossRefGoogle Scholar
  81. 81.
    Taylor RE, Chen Y, Galvin GM, Prabba PK (2004) Conformation-activity relationships in polyketide natural products. Towards to biologically active conformation of epothilone. Org Biomol Chem 2:127–132CrossRefGoogle Scholar
  82. 82.
    Larsen EM, Wilson MR, Taylor RE (2015) Conformation-activity relationships of polyketide natural products. Nat Prod Rep 32:1183–1206CrossRefGoogle Scholar
  83. 83.
    Wright GD (2005) Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev 57:1451–1470CrossRefGoogle Scholar
  84. 84.
    Walsh CT (2005) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781CrossRefGoogle Scholar
  85. 85.
    Peddibhotia S, Dang Y, Liu JO, Romo D (2007) Simultaneous arming and structure/activity studies of natural products employing O-H insertions: an expedient and versatile strategy for natural products-based chemical genetics. J Am Chem Soc 129:12222–12231CrossRefGoogle Scholar
  86. 86.
    Robles O, Romo D (2014) Chemo- and site-selective derivatizations of natural products enabling biological studies. Nat Prod Rep 31:318–334CrossRefGoogle Scholar
  87. 87.
    Lewis CA, Miller SJ (2006) Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew Chem Int Ed 45:5616–5619CrossRefGoogle Scholar
  88. 88.
    Lewis CA, Merkel J, Miller SJ (2008) Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg Med Chem Lett 18:6007–6011CrossRefGoogle Scholar
  89. 89.
    Jones PH, Perun TJ, Rowley EK, Baker EJ (1972) Chemical modifications of erythromycin antibiotics. 3. Synthesis of 4″ and 11 esters of erythromycin A and B. J Med Chem 15:631–634CrossRefGoogle Scholar
  90. 90.
    Martin YC, Jones PH, Perun TJ, Grundy WE, Bell S, Bower RR, Shipkowitz NL (1972) Chemical modification of erythromycin antibiotics. 4. Structure-activity relations of erythromycin esters. J Med Chem 15:635–638CrossRefGoogle Scholar
  91. 91.
    Haque TS, Little JC, Gellman SH (1994) ‘Mirror image’ reverse turns promote β-hairpin formation. J Am Chem Soc 116:4105–4106CrossRefGoogle Scholar
  92. 92.
    Haque TS, Little JC, Gellman SH (1996) Stereochemical requirements for β-hairpin formation: model studies with four-residue peptides and depsipeptides. J Am Chem Soc 118:6975–6985CrossRefGoogle Scholar
  93. 93.
    Gellman SH (1998) Minimal models systems for β-sheet secondary structure in proteins. Curr Opin Chem Biol 2:717–725CrossRefGoogle Scholar
  94. 94.
    Davies JS, Everett JR, Hatton IK, Hunt E, Tyler JW, Zomaya II, Slawin AMZ, Williams DJ (1991) NMR spectroscopic and X-ray crystallographic studies on the structure, stereochemistry and conformation of a series of 9,11 cyclic aminals of (9S)-9-N-methylerythromyclamine A. J Chem Soc Perkin Trans 2:201–214CrossRefGoogle Scholar
  95. 95.
    Everett JR, Hunt E, Tyler JW (1991) Ketone-hemiacetal tautomerism in erythromycin A in non-aqueous solutions. An NMR spectroscopic study. J Chem Soc Perkin Trans 2:1481–1487CrossRefGoogle Scholar
  96. 96.
    Tardrew PL, Mao JCH, Kenney D (1969) Antibacterial activity of 2′esters of erythromycin. Appl Microbiol 18:159–165Google Scholar
  97. 97.
    Lewis CA, Longcore KE, Miller SJ, Wender PA (2009) An approach to the site-selective diversification of apoptolidin A with peptide-based catalysts. J Nat Prod 72:1864–1869CrossRefGoogle Scholar
  98. 98.
    Wender PA, Gulledge AV, Jankowski OD, Seto H (2002) Isoapoptolidin: structure and activity of the ring-expanded isomer of apoptolidin. Org Lett 4:3819–3822CrossRefGoogle Scholar
  99. 99.
    Pennington JD, Williams HJ, Salomon AR, Sulikowski GA (2002) Toward a stable apoptolidin derivative: identification of isoapoptolidin and selective deglycosylation of apoptolidin. Org Lett 4:3823–3825CrossRefGoogle Scholar
  100. 100.
    Wender PA, Jankowski OD, Longcore K, Tabet EA, Seto H, Tomikawa T (2006) Correlation of F0F1-ATPase inhibition and antiproliferative activity of apoptolidin analogues. Org Lett 8:589–592CrossRefGoogle Scholar
  101. 101.
    Linnane P, Magnus N, Magnus P (1997) Induction of molecular asymmetry by a remote chiral group. Nature 385:799–801CrossRefGoogle Scholar
  102. 102.
    Clayden J, Lund A, Vallverdu L, Helliwell M (2004) Ultra-remote stereocontrol by conformational communication of information along a carbon chain. Nature 431:966–971CrossRefGoogle Scholar
  103. 103.
    Byrne L, Sola J, Boddaert T, Marcelli T, Adams RW, Morris GA, Clayden J (2014) Foldamer-mediated remote stereocontrol: >1,60 asymmetric induction. Angew Chem Int Ed 53:151–155CrossRefGoogle Scholar
  104. 104.
    Lewis CA, Chiu A, Kubryk M, Balsells J, Pollard D, Esser CK, Murry J, Reamer RA, Hansen KB, Miller SJ (2006) Remote desymmetrization at near-nanometer group separation catalyzed by a miniaturized enzyme mimic. J Am Chem Soc 128:16454–16455CrossRefGoogle Scholar
  105. 105.
    Lewis CA, Gustafson JL, Chiu A, Balsells J, Pollard D, Murry J, Reamer RA, Hansen KB, Miller SJ (2008) A case of remote asymmetric induction in the peptide-catalyzed desymmetrization of a bis(phenol). J Am Chem Soc 130:16358–16455CrossRefGoogle Scholar
  106. 106.
    Hoveyda A, Evans DA, Fu GC (1993) Substrate-directable chemical reactions. Chem Rev 93:1307–1370CrossRefGoogle Scholar
  107. 107.
    Yoshimoto FK, Guengerich FP (2014) Mechanism of the third oxidative step in the conversion of androgens to estrogens by cytochrome P450 19A1 steroid aromatase. J Am Chem Soc 136:15016–15025CrossRefGoogle Scholar
  108. 108.
    Pallan PS, Nagy LD, Li L, Gonzalez E, Kramlinger VM, Azumaya CM, Waterman MR, Guengerich FP, Egli M, Wawrzak Z (2015) Structural and kinetic basis of steroid 17α,20-lyase activity in teleost fish cytochrome P450 17A1 and its absence in cytochrome P450 17A2. J Biol Chem 290:3248–3268CrossRefGoogle Scholar
  109. 109.
    Payne AH, Hales DB (2004) Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 25:947–970CrossRefGoogle Scholar
  110. 110.
    Barton DHR, McCombie SW (1975) A new method for the deoxygenation of secondary alcohols. J Chem Soc Perkin Trans 1:1574–1585CrossRefGoogle Scholar
  111. 111.
    Barton DHR, Blundell P, Dorchak J, Jang DO, Jaszberenyi J (1991) The invention of radical reactions. Part XXI. Simple methods for the radical deoxygenation of primary alcohols. Tetrahedron 47:8969–8984CrossRefGoogle Scholar
  112. 112.
    Barton DHR, Dorchak J, Jaszberenyi J (1992) The invention of radical reactions. Part XXIV. Relative rates of acylation and radical deoxygenation of secondary alcohols. Tetrahedron 48:7435–7446CrossRefGoogle Scholar
  113. 113.
    Sanchez-Rosello M, Puchlopek ALA, Morgan AJ, Miller SJ (2008) Site-selective catalysis of phenyl thionoformate transfer as a tool for regioselective deoxygenation of polyols. J Org Chem 73:1774–1782CrossRefGoogle Scholar
  114. 114.
    Jordan PA, Kayser-Bricker KJ, Miller SJ (2010) Asymmetric phosphorylation through catalytic P(III) phosphoramidite transfer: enantioselective synthesis of D-myo-inositol-6-phosphate. Proc Natl Acad Sci U S A 107:20620–20624CrossRefGoogle Scholar
  115. 115.
    Sculimbrene BR (2004). Catalytic asymmetric phosphorylation. Ph.D. thesis. Boston College, BostonGoogle Scholar
  116. 116.
    Carruthers MH (1991) Chemical synthesis of DNA and DNA analogs. Acc Chem Res 24:278–284CrossRefGoogle Scholar
  117. 117.
    Vlasuk GP, Webb TR, Abelman MM, Pearson DA, Miller TA (21, 1999) US Patent 5492895Google Scholar
  118. 118.
    Hayakawa Y, Katoka M (1997) Preparation of short oligonucleotides via the phosphoramidite method using a tetrazole promoter in a catalytic manner. J Am Chem Soc 119:11758–11762CrossRefGoogle Scholar
  119. 119.
    Jordan PA, Miller SJ (2012) An approach to the site-selective deoxygenation of hydroxyl groups based on catalytic phosphoramidite transfer. Angew Chem Int Ed 51:2907–2911CrossRefGoogle Scholar
  120. 120.
    Zhang L, Koreeda M (2004) Radical deoxygenation of hydroxyl groups via phosphites. J Am Chem Soc 126:13190–13191CrossRefGoogle Scholar
  121. 121.
    Fiori KW, Puchlopek ALA, Miller SJ (2009) Enantioselective sulfonylation reactions mediated by a tetrapeptide catalyst. Nat Chem 1:630–634CrossRefGoogle Scholar
  122. 122.
    Butler MS, Hansford KA, Blaskovich MAT, Halai R, Cooper MA (2014) Glycopeptide antibiotics: back to the future. J Antibiot 67:631–644CrossRefGoogle Scholar
  123. 123.
    Hubbard BK, Walsh CT (2003) Vancomycin assembly: nature’s way. Angew Chem Int Ed 42:730–765CrossRefGoogle Scholar
  124. 124.
    Nicolaou KC, Boddy CNC, Brase S, Winissinger N (1999) Chemistry, biology, and medicine of the glycopeptide antibiotics. Angew Chem Int Ed 38:2097–2152Google Scholar
  125. 125.
    Williams DH (1996) The glycopeptide story – how to kill the deadly ‘superbugs.’. Nat Prod Rep 13:469–477CrossRefGoogle Scholar
  126. 126.
    Min G, Chen Z, Onishi HR, Kohler J, Silver LL, Kerns R, Fukuzawa S, Thompson C, Kahne D (1999) Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507–511CrossRefGoogle Scholar
  127. 127.
    Kerns R, Dong SD, Fukuzawa S, Carbeck J, Kohler J, Silver LL, Kahne D (2000) The role of hydrophobic substituents in the biological activity of glycopeptide antibiotics. J Am Chem Soc 122:12608–12609CrossRefGoogle Scholar
  128. 128.
    Sun B, Chen Z, Eggert US, Shaw SJ, LaTour JV, Kahne D (2001) Hybrid glycopeptide antibiotics. J Am Chem Soc 123:12722–12723CrossRefGoogle Scholar
  129. 129.
    Lin H, Walsh CT (2004) A chemoenzymatic approach to glycopeptide antibiotics. J Am Chem Soc 126:13998–14003CrossRefGoogle Scholar
  130. 130.
    Leimkuhler C, Chen L, Barrett D, Panzone G, Sun B, Falcone B, Oberthuer M, Walker S, Kahne D (2005) Differential inhibition of Staphylococcus aureus PBP2 by glycopeptide antibiotics. J Am Chem Soc 127:3250–3251CrossRefGoogle Scholar
  131. 131.
    Ashford PA, Bew SP (2012) Recent advances in the synthesis of new glycopeptide antibiotics. Chem Soc Rev 41:957–978CrossRefGoogle Scholar
  132. 132.
    Higgins DL, Chang R, Debabov DV, Leung J, Wu T, Krause KM, Sandvik E, Hubbard JM, Kaniga K, Schmidt DE et al (2005) Telavancin, a multifunctional lipoglycopeptide, disrupts both cell wall synthesis and cell membrane integrity in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:1127–1134CrossRefGoogle Scholar
  133. 133.
    Zhanel GC, Calic D, Schweizer F, Zelenitsky S, Adam H, Lagace-Wiens PRS, Rubinstein E, Gin AS, Hoban DJ, Karlowsky JA (2010) New lipoglycopeptides: a comparative review of dalbavancin, oritavancin, and telavancin. Drugs 70:859–886CrossRefGoogle Scholar
  134. 134.
    Reynolds PE (1989) Structure, biochemistry, and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8:943–950CrossRefGoogle Scholar
  135. 135.
    Mackay JP, Gerhard U, Beauregard DA, Williams DH, Westwell MS, Searle MS (1994) Glycopeptide antibiotic activity and the possible role of dimerization: a model for biological signaling. J Am Chem Soc 116:4581–4590CrossRefGoogle Scholar
  136. 136.
    Dong SD, Oberthuer M, Losey HC, Anderson JW, Eggert US, Peczuh MW, Walsh CT, Kahne D (2002) The structural basis for induction of VanB resistance. J Am Chem Soc 124:9064–9065CrossRefGoogle Scholar
  137. 137.
    McComas CC, Crowley BM, Boger DL (2003) Partitioning the loss in vancomycin binding affinity or D-Ala-D-Lac into lost H-bond and repulsive lone pair contributions. J Am Chem Soc 125:9314–9315CrossRefGoogle Scholar
  138. 138.
    Crowley BM, Boger DL (2006) Total synthesis and evaluation of [Ψ[CH2NH]Tpg4]vancomycin aglycon: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 128:2885–2892CrossRefGoogle Scholar
  139. 139.
    Xie J, Pierce JG, James RC, Okano A, Boger DL (2011) A redesigned vancomycin engineered for dual D-Ala-D-Ala and D-Ala-D-Lac binding exhibits potent antimicrobial activity against vancomycin-resistant bacteria. J Am Chem Soc 133:13946–13949CrossRefGoogle Scholar
  140. 140.
    Xie J, Okano A, Pierce JG, James RC, Stamm S, Crane CM, Boger DL (2012) Total synthesis of [Ψ[C(═S)NH]Tpg4]vancomycin aglycon, [Ψ[C(═NH)NH]Tpg4]vancomycin aglycon, and related key compounds: reengineering vancomycin for dual D-Ala-D-Ala and D-Ala-D-Lac binding. J Am Chem Soc 134:1284–1297CrossRefGoogle Scholar
  141. 141.
    Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415CrossRefGoogle Scholar
  142. 142.
    Walsh CT, Fisher SL, Park IS, Prahalad M, Wu Z (1996) Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem Biol 3:21–28CrossRefGoogle Scholar
  143. 143.
    Walsh CT (1993) Vancomycin resistance: decoding the molecular logic. Science 261:308–309CrossRefGoogle Scholar
  144. 144.
    Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109:2234–2239CrossRefGoogle Scholar
  145. 145.
    Hanessian S, Giguere A, Grzyb J, Maianti JP, Saavedra OM, Aggen JB, Linsell MS, Goldblum AA, Hildebrandt DJ, Kane TR, Dozzo P, Gliedt MJ, Matias RD, Feeney LA, Armstrong ES (2011) Toward overcoming Staphylococcus aureus aminoglycoside resistance mechanism with a functionally designed neomycin analogue. ACS Med Chem Lett 2:924–928CrossRefGoogle Scholar
  146. 146.
    Szpilman AM, Cereghetti DM, Manthorpe JM, Wurtz NR, Carreira EM (2009) Synthesis and biophysical studies on 35-deoxy amphotericin B methyl ester. Chem Eur J 15:7117–7128CrossRefGoogle Scholar
  147. 147.
    Fujisawa KL, Hoshiya T, Kawaguchi H (1974) Aminoglycoside antiobiotics. VII. Acute toxicity of aminoglycoside antibiotics. J Antibiot 27:677–681CrossRefGoogle Scholar
  148. 148.
    Griffith BR, Krepel C, Fu X, Blanchard S, Ahmed A, Edmiston CE, Thorson JS (2007) Model for antibiotic optimization via neoglycosylation: synthesis of liponeoglycopeptides active against VRE. J Am Chem Soc 129:8150–8155CrossRefGoogle Scholar
  149. 149.
    Thompson C, Ge M, Kahne D (1999) Synthesis of vancomycin from the aglycon. J Am Chem Soc 121:1237–1244CrossRefGoogle Scholar
  150. 150.
    Fowler BS, Lammerhold KM, Miller SJ (2012) Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxy-dependent conformational effects. J Am Chem Soc 134:9755–9761CrossRefGoogle Scholar
  151. 151.
    Yoganathan S, Miller SJ (2015) Structure diversificiation of vancomycin through peptide-catalyzed, site-selective lipidation: a catalysis-based approach to combat glycopeptide-resistant pathogens. J Med Chem 58:2367–2377CrossRefGoogle Scholar
  152. 152.
    Fowler BS, Mikochik PJ, Miller SJ (2010) Peptide-catalyzed kinetic resolution of formamides and thioformamides as an entry to nonracemic amines. J Am Chem Soc 132:2870–2871CrossRefGoogle Scholar
  153. 153.
    Han S, Miller SJ (2013) Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J Am Chem Soc 135:12414–12421CrossRefGoogle Scholar
  154. 154.
    Han S, Le BV, Hajare HS, Baxter RHG, Miller SJ (2014) X-Ray crystal structure of teicoplanin-A2-2 bound to a catalytic peptide sequence via the carrier protein strategy. J Org Chem 79:8550–8556CrossRefGoogle Scholar
  155. 155.
    Chan HC, Huang YT, Lyu SY, Huang CJ, Li YS, Liu YC, Chou CC, Tsai MD, Li TL (2011) Regioselective deacetylation based on teicoplanin-complexed Orf2* crystal structures. Mol Biosyst 7:1224–1231CrossRefGoogle Scholar
  156. 156.
    Nieto M, Perkins HR (1971) The specificity of combination between ristocetins and peptides related to bacterial cell-wall mucopeptide precursors. Biochem J 124:845–852CrossRefGoogle Scholar
  157. 157.
    Economou NJ, Zentner IJ, Lazo E, Jakonicic J, Stojanoff V, Weeks SD, Gratsky KC, Cocklin S, Loll PJ (2013) Structure of the complex between teicoplanin and a bacterial cell-wall peptide: use of a carrier-protein approach. Acta Crystallogr D69:520–533Google Scholar
  158. 158.
    Economou NJ, Nahoum V, Weeks SD, Gratsky KC, Zentner IJ, Townsend TM, Bhuiya MW, Cocklin S, Loll PJ (2012) A carrier protein strategy yields the structure of dalbavancin. J Am Chem Soc 134:4637–4645CrossRefGoogle Scholar
  159. 159.
    Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A 95:6705–6710CrossRefGoogle Scholar
  160. 160.
    Muir TW (2013) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289CrossRefGoogle Scholar
  161. 161.
    Gustafson J, Lim D, Miller SJ (2010) Dynamic kinetic resolution of biaryl atropisomers via peptide-catalyzed asymmetric bromination. Science 328:1251–1255CrossRefGoogle Scholar
  162. 162.
    Garand E, Kamrath MZ, Jordan PA, Wolk AB, McCoy AB, Miller SJ (2012) Determination of non-covalent docking by IR spectroscopy of cold gas-phase complexes. Science 335:694–698CrossRefGoogle Scholar
  163. 163.
    Barrett KT, Miller SJ (2013) Enantioselective synthesis of atropisomeric benzamides through peptide-catalyzed bromination. J Am Chem Soc 135:2963–2966CrossRefGoogle Scholar
  164. 164.
    Barrett KT, Metrano AJ, Rablen PR, Miller SJ (2014) Spontaneous transfer of chirality in an atropisomerically enriched two-axis system. Nature 509:71–75CrossRefGoogle Scholar
  165. 165.
    Denmark SE, Burk MT (2010) Lewis base catalysis of bromo- and iodolactonization and cycloetherification. Proc Natl Acad Sci U S A 107:20655–20660CrossRefGoogle Scholar
  166. 166.
    Pathak TP, Miller SJ (2012) Site-selective bromination of vancomycin. J Am Chem Soc 134:6120–6123CrossRefGoogle Scholar
  167. 167.
    Pathak TP, Miller SJ (2013) Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 135:8415–8422CrossRefGoogle Scholar
  168. 168.
    Fu X, Tan CH (2011) Mechanistic considerations of guanidine-catalyzed reactions. Chem Commun 47:8210–8222CrossRefGoogle Scholar
  169. 169.
    Anderson KW, Buchwald SL (2005) General catalysts for the Suzuki-Miyaura and Songoashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water. Angew Chem Int Ed 44:6173–6177CrossRefGoogle Scholar
  170. 170.
    Van Temelen EE, Heys JR (1975) Enzymic epoxidation of squalene variants. J Am Chem Soc 97:1252–1253CrossRefGoogle Scholar
  171. 171.
    Maayan G, Ward MD, Kirshenbaum K (2009) Folded biomimetic oligomers for enantioselective catalysis. Proc Natl Acad Sci U S A 106:13679–13684CrossRefGoogle Scholar
  172. 172.
    Berkessel A, Koch B, Toniolo C, Rainaldi M, Broxterman QB, Kaptein B (2006) Asymmetric enone epoxidation by short solid-phase bound peptides: further evidence for catalyst helicity and catalytic activity of individual peptide strands. Biopolymers 84:90–96CrossRefGoogle Scholar
  173. 173.
    Formagio F, Boncio M, Crisma M, Peggion C, Mezzato S, Polese A, Barazza A, Antonello S, Maran F, Broxterman QB, Kaptein B, Kamphuis J, Vitale RM, Saviano M, Benedetti E, Toniolo C (2002) Nitroxyl peptides as catalysts of enantioselective oxidations. Chem Eur J 8:84–93CrossRefGoogle Scholar
  174. 174.
    Peris G, Jakobsche CE, Miller SJ (2007) Aspartate-catalyzed asymmetric epoxidation reactions. J Am Chem Soc 129:8710–8711CrossRefGoogle Scholar
  175. 175.
    Jakobsche CE, Peris G, Miller SJ (2008) Functional analysis of an aspartate-based epoxidation catalyst with amide-to-alkene peptidomimetic catalyst analogues. Angew Chem Int Ed 120:6809–6813CrossRefGoogle Scholar
  176. 176.
    Kolundzic F, Noshi MN, Tjandra M, Movassaghi M, Miller SJ (2011) Chemoselective and enantioselective oxidation of indoles employing aspartyl peptide catalysts. J Am Chem Soc 133:9104–9111CrossRefGoogle Scholar
  177. 177.
    Mercado-Marin EV, Garcia-Reynaga P, Romminger S, Pimenta EF, Romney DK, Lodewyk MW, Williams DE, Andersen RJ, Miller SJ, Tantillo DJ, Berlinck RGS, Sarpong R (2014) Total synthesis and isolation of citrinalin and cyclopiamine congeners. Nature 509:293–294CrossRefGoogle Scholar
  178. 178.
    Gnanadesikan V, Corey EJ (2008) A strategy for position-selective epoxidation of polyprenols. J Am Chem Soc 130:8089–8093CrossRefGoogle Scholar
  179. 179.
    Chang S, Lee NH, Jacobsen EN (1993) Regio- and enantioselective catalytic epoxidation of conjugated polyenes. Formal synthesis of LTA4 methyl ester. J Org Chem 58:6939–6941CrossRefGoogle Scholar
  180. 180.
    Burke CP, Shi Y (2006) Regio- and enantioselective epoxidation of dienes by a chiral dioxirane: synthesis of optically active vinyl cis-epoxides. Angew Chem Int Ed 45:4475–4478CrossRefGoogle Scholar
  181. 181.
    Barlan AU, Baak A, Yamamoto H (2006) Enantioselective oxidation of olefins catalyzed by a chiral bishydroxamic acid complex of molybdenum. Angew Chem Int Ed 45:5849–5852CrossRefGoogle Scholar
  182. 182.
    Lichtor PA, Miller SJ (2012) Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. Nat Chem 4:990–995CrossRefGoogle Scholar
  183. 183.
    Lichtor PA, Miller SJ (2014) Experimental lineage and functional analysis of a remotely directed peptide epoxidation catalyst. J Am Chem Soc 136:5301–5308CrossRefGoogle Scholar
  184. 184.
    Abascal NC, Lichtor PA, Giuliano MW, Miller SJ (2014) Function-oriented investigations of a peptide-based catalyst that mediates enantioselective allylic alcohol epoxidation. Chem Sci 5:4504–4511CrossRefGoogle Scholar
  185. 185.
    Lichtor PA, Miller SJ (2011) One-bead-one-catalyst approach to aspartic acid-based oxidation catalyst discovery. ACS Comb Sci 13:321–326CrossRefGoogle Scholar
  186. 186.
    Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210CrossRefGoogle Scholar
  187. 187.
    Foo K, Usui I, Gotz DCG, Werner EW, Holte D, Baran PS (2012) Scalable, enantioselective synthesis of germacrenes and related sesquiterpenes inspired by terpene cyclase phase logic. Angew Chem Int Ed 51:11491–11495CrossRefGoogle Scholar
  188. 188.
    Yoon TP, Jacobsen EN (2003) Privileged chiral catalysts. Science 299:1691–1693CrossRefGoogle Scholar
  189. 189.
    Breslow R, Gellman SH (1983) Intramolecular nitrene C-H insertions mediated by transition-metal complexes as nitrogen analogues of cytochrome P-450 reactions. J Am Chem Soc 105:6729–6730CrossRefGoogle Scholar
  190. 190.
    Breslow R, Gellman SH (1982) Tosylamidation of cyclohexane by a cytochrome P-450 model. J Chem Soc Chem Commun 1400–1401Google Scholar
  191. 191.
    Breslow R (1980) Biomimetic control of chemical selectivity. Acc Chem Res 13:170–177CrossRefGoogle Scholar
  192. 192.
    Xu D, Crispino GA, Sharpless KB (1992) Selective asymmetric dihydroxylation (AD) of dienes. J Am Chem Soc 114:7570–7571CrossRefGoogle Scholar
  193. 193.
    Becker H, Soler MA, Sharpless KB (1995) Selective asymmetric dhihydroxylation of polyenes. Tetrahedron 51:1345–1376CrossRefGoogle Scholar
  194. 194.
    Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Catalytic asymmetric dihydroxylation. Chem Rev 94:2483–2547CrossRefGoogle Scholar
  195. 195.
    Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive asymmetric catalysis, vol I–III and Supplement 1. Springer, New YorkGoogle Scholar
  196. 196.
    Chen MS, White MC (2007) A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis. Science 318:783–787CrossRefGoogle Scholar
  197. 197.
    Newhouse T, Baran PS (2011) If C-H bonds could talk: selective C-H bond oxidation. Angew Chem Int Ed 50:3362–3374CrossRefGoogle Scholar
  198. 198.
    Vohidov F, Coughlin JM, Ball ZT (2015) Rhodium(II) metallopeptie catalyst design enables fine control in selective functionalization of natural SH3 domains. Angew Chem Int Ed 54:4587–4591CrossRefGoogle Scholar
  199. 199.
    Ball ZT (2012) Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study. Acc Chem Res 46:560–570CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryYale UniversityNew HavenUSA

Personalised recommendations