Abstract
In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.
Keywords
- Electrocatalysis
- In operando
- In situ
- Photocatalysis
- Solar fuels
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Fujishima A, Honda K (1972) Nature 238:37–38
Chen Z et al (2010) J Mater Res 25:3–16
Chen Z, Dinh H, Miller E (2013) Photoelectrochemical water splitting: standards, experimental methods, and protocols. Springer, New York
Kanimura J, Bogdanoff P, Lähnemann J, Hauswald C, Geelhaar L, Fiechter S, Riechert H (2013) J Am Chem Soc 135:10242–10245
Hill JC, Choi K-S (2012) J Phys Chem C 116(14):7612–7620
Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS (2012) Energy Environ Sci 5:5694–5700
Mi Q, Coridan RH, Brunschwig BS, Gray HB, Lewis NS (2013) Energy Environ Sci 6:2646–2653
Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605
Weinhardt L, Blum M, Fuchs O, Pookpanratana S, George K, Cole B, Marsen B, Gaillard N, Miller E, Ahn K-S, Shet S, Yan Y, Al-Jassim MM, Denlinger JD, Yang W, Bär M, Heske C (2013) J Electron Spectrosc 190:106–112
Arrigo R, Havecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlögl R (2013) Angew Chem Int Ed 52:11660
Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Sci Rep 5:9788
Casalongue HGS, Benck JD, Tsai C, Karlsson RKB, Kaya S, Ng ML, Pettersson LGM, Abild-Pedersen F, Norskov JK, Ogasawara H, Jaramillo TF, Nilsson A (2014) J Phys Chem C 118:29252
Bora DK, Braun A, Erat S, Löhnert R, Ariffin AK, Manzke R, Sivula K, Graule T, Grätzel M, Constable E (2011) J Phys Chem C 115(13):5619–5625
Kanan MW, Nocera DG (2008) Science 321:1072–1075
Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) J Am Chem Soc 132(39):13692–13701
Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, Asakura K, Uosaki K, Kondoh H (2014) J Phys Chem C 118:24302–24309
Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Science 345:804
Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545
McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) J Am Chem Soc 132:6882
Huang Z, Lin Y, Xiang X, Rodriguez-Cordoba W, McDonald KJ, Hagen KS, Choi KS, Brunschwig BS, Musaev DG, Hill CL, Wang D, Lian T (2012) Energy Environ Sci 5:8923
Waegele MM, Chen X, Herlihy DH, Cuk T (2014) J Am Chem Soc 136:10632–10639
Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ (2012) J Phys Chem C 116:17360–17368
Sivasankar N, Weare WW, Frei H (2011) J Am Chem Soc 133:12976
Zhang M, de Respinis M, Frei H (2014) Nat Chem 6:362
Andrews E, Ren MM, Wang F, Zhang FZY, Sprunger P, Kurtz R, Flake J (2013) J Electrochem Soc 160:H841
Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) J Am Chem Soc 134(9):4294–4302
Tan SJ, Feng H, Ji YF, Wang Y, Zhao J, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2012) J Am Chem Soc 134:9978
Lee J, Sorescu DC, Deng XY, Jordan KD (2013) J Phys Chem Lett 4:53
Tan SJ, Zhao Y, Zhao J, Wang Z, Ma CX, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2011) Phys Rev B 84:155418
Liu C, Hwang YJ, Jeong HE, Yang P (2011) Nano Lett 11:3755
Baker RTK, Harris PS (1972) J Phys E 5(8):793–797
Parkinson GM (1989) Catal Lett 2:303–307
Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) Science 336:61–64
Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669
Wang C-M (2015) J Mater Res 30(3):326–339
Zhang LX, Miller BK, Crozier PA (2013) Nano Lett 13(2):679–684
Liu Q, Zhang L, Crozier PA (2015) Appl Catal B Environ 172–173:58–64
Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C 119:7207–7214
Liu Y, Dillon SJ (2014) Chem Commun 50:1761–1763
Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Phys Rev Lett 102:096101
Krivanek OL et al (2014) Nature 514:209–212
Crozier PA, Chenna S (2011) Ultramicroscopy 111:177–185
Chenna S, Crozier PA (2012) ACS Catal 2(11):2395–2402
Miller BK, Crozier PA (2014) Microsc Microanal 20:815–824
Woodhouse M, Parkinson BA (2009) Chem Soc Rev 38:197–210
Drews J (2000) Science 287:1960–1964
Sliozberg K, Stein HS, Khare C, Parkinson BA, Ludwig A, Schuhmann W (2015) ACS Appl Mater Interfaces 7(8):4883–4889
Smith JL, Hendrickson WA, Terwilliger TC, Berendzen J (2006) MAD and MIR. In: International tables for crystallography, vol F, pp 299–309 (Chapter 14.2)
Krishna Murthy HM (1996) Use of multiple-wavelength anomalous diffraction measurements in ab initio phase determination for macromolecular structures. In: Jones C, Mulloy B, Sanderson MR (eds) Crystallographic methods and protocols, vol 56, Methods in Molecular Biology™. Humana, Totowa, pp 127–151. doi:10.1385/0-89603-259-0:127, Print ISBN 978-0-89603-259-0, Online ISBN 978-1-59259-543-3
Koningsberger DC, Prins R (eds) (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York. ISBN 978-0471875475
Gu W, Jacquamet L, Patil DS, Wang H-X, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP (2003) J Inorg Biochem 93:41–51
Gu W (2003) Study of active sites in Ni enzymes using X-ray absorption spectroscopy. PhD thesis, UC Davis
Richter J, Braun A, Harvey AS, Holtappels P, Graule T, Gauckler LJ (2008) Physica B 403(1):87–94
Braun A, Wang H, Bergmann U, Tucker MC, Gu W, Cramer SP, Cairns EJ (2003) J Power Sources 112(1):231–235
Bergmann U, Grush MM, Horne CR, DeMarois P, Penner-Hahn JE, Yocum CF, Wright DW, Dube CE, Armstrong WH, Christou G, Eppley HJ, Cramer SP (1998) J Phys Chem B 102(42):8350–8352
Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2000) J Am Chem Soc 122:10544–10552
Weigand W, Schollhammer P (2014) Bioinspired catalysis: metal-sulfur complexes. Wiley-VCH, Weinheim, 440 pages. ISBN 978-3-527-33308-0
de Groot FMF, Kotani A (2008) Core level spectroscopy of solids. CRC, New York
Wang H, Ge P, Riordan CG, Brooker S, Woomer CG, Collins T, Melendres CA, Graudejus O, Bartlett N, Cramer SP (1998) J Phys Chem B 102(42):8343–8346
Braun A, Bayraktar D, Harvey AS, Beckel D, Purton JA, Holtappels P, Gauckler LJ, Graule T (2009) Appl Phys Lett 94:202102
Braun A, Erat S, Bayraktar D, Harvey A, Graule T (2012) Chem Mater 24(8):1529–1535
Jiang P, Chen J-L, Borondics F, Glans P-A, West MW, Chang C-L, Salmeron M, Guo J (2010) Electrochem Commun 12(6):820–822
Myneni S, Luo Y, Näslund LÅ, Cavalleri M, Ojamäe L, Ogasawara H, Pelmenschikov A, Wernet P, Väterlein P, Heske C, Hussain Z, Pettersson LGM, Nilsson A (2002) J Phys Condens Matter 14:L213–L219
Hetényi B, De Angelis F, Giannozzi P, Car R (2004) J Chem Phys 120(18):8632–8637
Braun A, Sivula K, Bora DK, Zhu J, Zhang L, Grätzel M, Guo J, Constable EC (2012) Direct observation of two electron holes in hematite during photo-electrochemical water splitting. J Phys Chem C 116(23):16870–16875
Bora DK, Hu Y, Thiess S, Erat S, Feng X, Mukherjee S, Fortunato G, Gaillard N, Toth R, Gajda-Schrantz K, Drube W, Grätzel M, Guo J, Zhu J, Constable EC, Sarma DD, Wang H, Braun A (2013) J Electron Spectrosc Relat Phenom 190A:93–105
Sivula K (2013) J Phys Chem Lett 4(10):624–1633
Cavalleri M, Ogasawara H, Pettersson LGM, Nilsson A (2002) Chem Phys Lett 364:363–370
Lanyi JK (1997) J Biol Chem 272:31209–31212
Balasubramanian S, Wang P, Schaller RD, Rajh T, Rozhkova EA (2013) Nano Lett 13(7):3365–3371
Pieper J, Buchsteiner A, Dencher NA, Lechner RE, Hauß T (2009) Photochem Photobiol 85:590–597
Patzelt H, Simon B, terLaak A, Kessler B, Kuhne R, Schmieder P, Oesterhaelt D, Oschkinat H (2002) Proc Natl Acad Sci U S A 99:9765–9770
Dencher NA, Dresselhaus D, Zaccai G, Büldt G (1989) Proc Natl Acad Sci U S A 86:7876–7879
Horn C, Steinem C (2005) Biophys J 89:1046–1054
Allam NK, Yen C-W, Near RD, El-Sayed MA (2011) Energy Environ Sci 4:2909–2914
Chen Q, Holdsworth S, Embs J, Pomjakushin V, Frick B, Braun A (2012) High Press Res 32(4):471–481
Chen Q, Banyte J, Zhang X, Embs JP, Braun A (2013) Solid State Ionics 252:2–6
Fabbri E, Pergolesi D, Traversa E (2010) Sci Technol Adv Mater 11:044301
Chen Q, El Gabaly F, Aksoy Akgul F, Liu Z, Mun BS, Yamaguchi S, Braun A (2013) Chem Mater 25(23):4690–4696
Braun A, Embs J-P, Remhof A (2014) 2013 ESS science symposium: neutrons for future energy strategies. Neutron News (Taylor & Francis) 25(1):6–7
Pieper J (1804) Biochim Biophys Acta 2010:83–88
Raman CV, Krishnan KS (1928) Nature 121:501
Fleischmann M, Hendra PJ, Mcquilla AJ (1974) Chem Phys Lett 26:163
Albrecht AC (1961) J Chem Phys 34:1476
Albrecht AC, Hutley MC (1971) J Chem Phys 55:4438
Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101
Moskovits M (2005) J Raman Spectrosc 36:485
Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76:113409
Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Nature 498:82
Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854
Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A (2013) Inorg Chem 52:9897
Schlögl R (2010) ChemSusChem 3:209
Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587
Yeo BS, Bell AT (2012) J Phys Chem C 116:8394
Ranjan C, Zoran P, Schloegl R (2014) E-MRS 2014 spring meeting, Lille, France
Schmitt KG, Gewirth AA (2014) J Phys Chem C 118:17567
Klink S, Höche D, La Mantia F, Schuhmann W (2013) J Power Sources 240:273–280
Klink S, Madej E, Ventosa E, Lindner A, Schuhmann W, La Mantia F (2012) Electrochem Commun 22:120–123
Agarwal P, Orazem ME, Garcia-Rubio LH (1995) J Electrochem Soc 142(12):4159–4168
Agarwal P, Orazem ME, Garcia-Rubio LH (1992) J Electrochem Soc 139(7):1917–1927
La Mantia F, Vetter J, Novák P (2008) Electrochim Acta 53(12):4109–4121
Schiller CA, Richter F, Gulzow E, Wagner N (2001) Phys Chem Chem Phys 3(3):374–378
Newman JS, Tobias CW (1962) J Electrochem Soc 109(12):1183–1191
de Levie R (1963) Electrochim Acta 8(10):751–780
Darby R (1966) J Electrochem Soc 113(4):392–396
De Vidts P, White RE (1997) J Electrochem Soc 144(4):1343–1353
Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2011) Phys Chem Chem Phys 13(20):9083–9118
Dewald JF (1960) J Phys Chem Solid 14:155–161
Abram RA, Doherty PJ (1982) Philos Mag B 45(2):167–176
Archibald IW, Abram RA (1983) Philos Mag B 48(2):111–125
Archibald IW, Abram RA (1986) Philos Mag B 54(5):421–438
Cohen JD, Lang DV (1982) Phys Rev B 25(8):5321–5350
Di Quarto F, La Mantia F, Santamaria M (2005) Electrochim Acta 50(25–26):5090–5102
La Mantia F, Habazaki H, Santamaria M, Di Quarto F (2010) Russ J Electrochem 46(11):1306–1322
La Mantia F, Stojadinović J, Santamaria M, Di Quarto F (2010) ChemPhysChem 13(12):2910–2918
Huang VMW, Vivier V, Orazem ME, Pebere N, Tribollet B (2007) J Electrochem Soc 154(2):C81–C88
Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55(21):6218–6227
Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. VCH, Weinheim
Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley-VCH, New York
Crozier PA, Hansen TW (2015) MRS Bull 40:38–45
Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C. doi:10.1021/jp512907g
Liu Q, Zhang L, Crozier PA (2015) Appl Catal Environ 172:58–64
Yoshida K, Yamasaki J, Tanaka N (2004) Appl Phys Lett 84:2542–2544
Yoshida K, Nozaki T, Hirayama T, Tanaka N (2007) J Electron Microsc (Tokyo) 56:177–180
Cavalca F, Laursen AB, Kardynal BE, Dunin-Borkowski RE, Dahl S, Wagner JB, Hansen TW (2012) Nanotechnology 23:6
Cavalca F, Laursen AB, Wagner JB, Damsgaard CD, Chorkendorff I, Hansen TW (2013) ChemCatChem 5:2667–2672
Miller BK, Crozier PA (2013) Microsc Microanal 19:461–469
Crozier PA, McCartney MR, Smith DJ (1990) Surf Sci 237:232–240
McCartney MR, Crozier PA, Weiss JK, Smith DJ (1991) Vacuum 42:301–308
Brydson R, Sauer H, Engel W, Thomas JM, Zeitler E, Kosugi N, Kuroda H (1989) J Phys Condens Matter 1:797–812
Lazar S, Botton GA, Wu M-Y, Tichelaar FD, Zandbergen HW (2003) Ultramicroscopy 96:535–546
Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028–1035
Henderson MA (1996) Langmuir 12:5093–5098
Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Phys Rev Lett 96:4
Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598:226–245
Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nat Mater 5:189–192
Bohmer N, Roussiere T, Kuba M, Schunk SA (2012) Comb Chem High Throughput Screen 15:123
Green ML, Takeuchi I, Hattrick-Simpers JR (2013) J Appl Phys 113:231101
Barber ZH, Blamire MG (2008) Mater Sci Technol 24:757
Koinuma H, Takeuchi I (2004) Nat Mater 3:429
Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) Electrochim Acta 56:9679
Sun S, Ding J, Bao J, Luo Z, Gao C (2011) Comb Chem High Throughput Screen 14:160
Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, McFarland EW (2004) Macromol Rapid Commun 25:297–301
Baeck SH, Jaramillo TF, Brändli C, McFarland EW (2002) J Comb Chem 4:563
Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, Choi K-S, Stucky GD, McFarland EW (2005) J Comb Chem 7:264
Woodhouse M, Herman GS, Parkinson BA (2005) Chem Mater 17:4318–4324
Woodhouse M, Parkinson BA (2008) Chem Mater 20:2495
Seley D, Ayers K, Parkinson BA (2013) ACS Comb Sci 15:82
Haber JA, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell AT, Gregoire JM (2014) Energy Environ Sci 7:682
Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60
Gregoire JM, Kirby SD, Turk ME, van Dover RB (2009) Thin Solid Films 517:1607
Perkins JD, Teplin CW, van Hest MF, Alleman JL, Li X, Dabney MS, Keyes BM, Gedvilas LM, Ginley DS, Lin Y, Lu Y (2004) Appl Surf Sci 223:124
Sigdel AK, Ndione PF, Perkins JD, Gennett T, van Hest MF, Shaheen SE, Ginley DS, Berry JJ (2012) J Appl Phys 111:093718
Gregoire JM, Xiang C, Liu X, Marcin M, Jin J (2013) Rev Sci Instrum 84:024102
Hassel AW, Lohrengel MM (1997) Electrochim Acta 42:3327
Haber JA, Xiang C, Guevarra D, Jung S, Jin J, Gregoire JM (2014) ChemElectroChem 1:524–528
Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Energy Environ Sci 2:103–112
Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) Energy Environ Sci 6:2984
Ye H, Lee L, Jang JS, Bard AJ (2010) J Phys Chem C 114:13322
Lewis NS (1984) J Electrochem Soc 131:2496
Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM (2014) ACS Comb Sci 16:120
Chen G, Bare SR, Mallouk TE (2002) J Electrochem Soc 149:A1092
Dokoutchaev AG, Abdelrazzaq F, Thompson ME, Willson J, Chang C, Bocarsly A (2002) Chem Mater 14:3343
Nakayama A, Suzuki E, Ohmori T (2002) Appl Surf Sci 189:260
Gerken JB, Chen JYC, Massé RC, Powell AB, Stahl SS (2012) Angew Chem 51:6676
Xiang C, Suram SK, Haber JA, Guevarra DW, Jin J, Gregoire JM (2014) ACS Comb Sci 16:47
Nozik AJ (1975) Nature 257:383–386
Parkinson B (1984) Annu Rev Phys Chem 17:431–437
Bard AJ, Fox MA (1995) Annu Rev Phys Chem 28:141–145
McKone JR, Lewis NS, Gray HB (2013) Chem Mater 26:407–414
Xiang X-D, Sun X, Briceño G, Lou Y, Wang K-A, Chang H, Wallace-Freedman WG, Chen S-W, Schultz PG (1995) Science 268:1738–1740
Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Int J Hydrogen Energy 37:11618–11624
Seyler M, Stoewe K, Maier WF (2007) Appl Catal B Environ 76:146–157
Bard AJ, Fan FRF, Kwak J, Lev O (1989) Anal Chem 61:132–138
Lee J, Ye H, Pan S, Bard AJ (2008) Anal Chem 80:7445–7450
Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735–1737
Baeck S-H, Jaramillo TF, Jeong DH, McFarland EW (2004) Chem Commun 390–391
Bard A, Lee HC, Leonard K, Park HS, Wang S (2013) Rapid screening methods in the discovery and investigation of new photocatalyst compositions. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials processes and architectures. The Royal Society of Chemistry, London, pp 132–153
Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154
Liu G, Liu C, Bard AJ (2010) J Phys Chem C 114:20997–21002
Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) J Phys Chem C 115:17870–17879
Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115(25):12464–12470
Zhang F, Roznyatovskiy V, Fan F-RF, Lynch V, Sessler JL, Bard AJ (2011) J Phys Chem C 115:2592–2599
Cong Y, Park HS, Wang S, Dang HX, Fan F-RF, Mullins CB, Bard AJ (2012) J Phys Chem C 116:14541–14550
Esposito DV, Levin I, Moffat TP, Talin AA (2013) Nat Mater 12:562–568
Park HS, Leonard KC, Bard AJ (2013) J Phys Chem C 117:12093–12102
Fosdick SE, Berglund SP, Mullins CB, Crooks RM (2014) ACS Catal 4:1332–1339
Trotochaud L, Mills TJ, Boettcher SW (2013) J Phys Chem Lett 4(6):931–935
Walter MC et al (2010) Chem Rev 110(11):6446–6473
McCrory CC et al (2013) J Am Chem Soc 135(45):16977–16987
Sun J, Zhong DK, Gamelin DR (2010) Energy Environ Sci 3(9):1252–1261
Klahr B et al (2012) J Am Chem Soc 134(40):16693–16700
Seabold JA, Choi K-S (2011) Chem Mater 23(5):1105–1112
Liu R et al (2011) Angew Chem Int Ed 50(2):499–502
Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128(49):15714–15721
Tilley SD et al (2010) Angew Chem Int Ed 49(36):6405–6408
Abdi FF, van de Krol R (2012) J Phys Chem C 116(17):9398–9404
Gamelin DR (2012) Nat Chem 4(12):965–967
Zhong DK, Gamelin DR (2010) J Am Chem Soc 132(12):4202–4207
McDonald KJ, Choi K-S (2011) Chem Mater 23(7):1686–1693
Barroso M et al (2011) J Am Chem Soc 133(38):14868–14871
Steinmiller EMP, Choi K-S (2009) Proc Natl Acad Sci U S A 106(49):20633–20636
Surendranath Y, Bediako DK, Nocera DG (2012) Proc Natl Acad Sci U S A 109:15617–15621
Pijpers JJH et al (2011) Proc Natl Acad Sci U S A 108(25):10056–10061
Reece SY et al (2011) Science 334(6056):645–648
Young ER et al (2011) Energy Environ Sci 4(6):2058–2061
Zhong DK, Choi S, Gamelin DR (2011) J Am Chem Soc 133(45):18370–18377
Gregoire JM et al (2013) J Electrochem Soc 160(4):F337–F342
Malara F et al (2014) ACS Appl Mater Interfaces 6(12):9290–9297
Dyer AL et al (2014) Adv Mater 26(28):4895–4900
Seike T, Nagai J (1991) Solar Energy Mater 22:107–117
Hugot-Le Goff A, Cordoba de Torresi S (1990) Electrochromic materials. In: Proceedings of the electrochemical society, Pennington, NJ
Corrigan DA, Knight SL (1989) J Electrochem Soc 136(3):613–619
McIntyre JDE, Kolb DM (1970) Specular reflection spectroscopy of electrode surface films. Symp Faraday Soc 4:99–113
Decker F et al (1992) Electrochim Acta 37(6):1033–1038
Trotochaud L et al (2012) J Am Chem Soc 134(41):17253–17261
Trotochaud L et al (2014) J Am Chem Soc 136(18):6744–6753
Azens A et al (1998) Sol Energy Mater Sol Cells 54(1–4):85–91
Monk PMS et al (2001) Electrochim Acta 46(13–14):2091–2096
Smith RDL et al (2013) J Am Chem Soc 135(31):11580–11586
Brückner A (2001) Chemic Commun 2122–2123
Brückner A (2005) Chem Commun 1761–1763
Zeng K, Zhang DK (2010) Prog Energy Combust Sci 36(3):307–326
Leenheer AJ, Atwater HA (2010) J Electrochem Soc 157(9):B1290–B1294
Sides PJ, Tobias CW (1982) J Electrochem Soc 129(12):2715–2720
Yu HT, Shen JQ, Wei YH (2008) Particuology 6(5):340–346
Balzer RJ, Vogt H (2003) J Electrochem Soc 150(1):E11–E16
Eigeldinger J, Vogt H (2000) Electrochim Acta 45(27):4449–4456
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Chan, C.K. et al. (2015). Advanced and In Situ Analytical Methods for Solar Fuel Materials. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_650
Download citation
DOI: https://doi.org/10.1007/128_2015_650
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23098-6
Online ISBN: 978-3-319-23099-3
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)