Skip to main content

Advanced and In Situ Analytical Methods for Solar Fuel Materials

  • Chapter
  • First Online:
Solar Energy for Fuels

Abstract

In situ and operando techniques can play important roles in the development of better performing photoelectrodes, photocatalysts, and electrocatalysts by helping to elucidate crucial intermediates and mechanistic steps. The development of high throughput screening methods has also accelerated the evaluation of relevant photoelectrochemical and electrochemical properties for new solar fuel materials. In this chapter, several in situ and high throughput characterization tools are discussed in detail along with their impact on our understanding of solar fuel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  2. Chen Z et al (2010) J Mater Res 25:3–16

    Article  CAS  Google Scholar 

  3. Chen Z, Dinh H, Miller E (2013) Photoelectrochemical water splitting: standards, experimental methods, and protocols. Springer, New York

    Book  Google Scholar 

  4. Kanimura J, Bogdanoff P, Lähnemann J, Hauswald C, Geelhaar L, Fiechter S, Riechert H (2013) J Am Chem Soc 135:10242–10245

    Article  CAS  Google Scholar 

  5. Hill JC, Choi K-S (2012) J Phys Chem C 116(14):7612–7620

    Article  CAS  Google Scholar 

  6. Mi Q, Zhanaidarova A, Brunschwig BS, Gray HB, Lewis NS (2012) Energy Environ Sci 5:5694–5700

    Article  CAS  Google Scholar 

  7. Mi Q, Coridan RH, Brunschwig BS, Gray HB, Lewis NS (2013) Energy Environ Sci 6:2646–2653

    Article  CAS  Google Scholar 

  8. Somorjai GA, Frei H, Park JY (2009) J Am Chem Soc 131:16589–16605

    Article  CAS  Google Scholar 

  9. Weinhardt L, Blum M, Fuchs O, Pookpanratana S, George K, Cole B, Marsen B, Gaillard N, Miller E, Ahn K-S, Shet S, Yan Y, Al-Jassim MM, Denlinger JD, Yang W, Bär M, Heske C (2013) J Electron Spectrosc 190:106–112

    Article  CAS  Google Scholar 

  10. Arrigo R, Havecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlögl R (2013) Angew Chem Int Ed 52:11660

    Article  CAS  Google Scholar 

  11. Axnanda S, Crumlin EJ, Mao B, Rani S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Sci Rep 5:9788

    Article  CAS  Google Scholar 

  12. Casalongue HGS, Benck JD, Tsai C, Karlsson RKB, Kaya S, Ng ML, Pettersson LGM, Abild-Pedersen F, Norskov JK, Ogasawara H, Jaramillo TF, Nilsson A (2014) J Phys Chem C 118:29252

    Article  CAS  Google Scholar 

  13. Bora DK, Braun A, Erat S, Löhnert R, Ariffin AK, Manzke R, Sivula K, Graule T, Grätzel M, Constable E (2011) J Phys Chem C 115(13):5619–5625

    Article  CAS  Google Scholar 

  14. Kanan MW, Nocera DG (2008) Science 321:1072–1075

    Article  CAS  Google Scholar 

  15. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG (2010) J Am Chem Soc 132(39):13692–13701

    Article  CAS  Google Scholar 

  16. Yoshida M, Yomogida T, Mineo T, Nitta K, Kato K, Masuda T, Nitani H, Abe H, Takakusagi S, Uruga T, Asakura K, Uosaki K, Kondoh H (2014) J Phys Chem C 118:24302–24309

    Article  CAS  Google Scholar 

  17. Cox N, Retegan M, Neese F, Pantazis DA, Boussac A, Lubitz W (2014) Science 345:804

    Article  CAS  Google Scholar 

  18. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545

    Article  CAS  Google Scholar 

  19. McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, Nocera DG, Britt RD (2010) J Am Chem Soc 132:6882

    Article  CAS  Google Scholar 

  20. Huang Z, Lin Y, Xiang X, Rodriguez-Cordoba W, McDonald KJ, Hagen KS, Choi KS, Brunschwig BS, Musaev DG, Hill CL, Wang D, Lian T (2012) Energy Environ Sci 5:8923

    Article  CAS  Google Scholar 

  21. Waegele MM, Chen X, Herlihy DH, Cuk T (2014) J Am Chem Soc 136:10632–10639

    Article  CAS  Google Scholar 

  22. Cooper JK, Ling Y, Longo C, Li Y, Zhang JZ (2012) J Phys Chem C 116:17360–17368

    Article  CAS  Google Scholar 

  23. Sivasankar N, Weare WW, Frei H (2011) J Am Chem Soc 133:12976

    Article  CAS  Google Scholar 

  24. Zhang M, de Respinis M, Frei H (2014) Nat Chem 6:362

    Article  CAS  Google Scholar 

  25. Andrews E, Ren MM, Wang F, Zhang FZY, Sprunger P, Kurtz R, Flake J (2013) J Electrochem Soc 160:H841

    Article  CAS  Google Scholar 

  26. Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012) J Am Chem Soc 134(9):4294–4302

    Article  CAS  Google Scholar 

  27. Tan SJ, Feng H, Ji YF, Wang Y, Zhao J, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2012) J Am Chem Soc 134:9978

    Article  CAS  Google Scholar 

  28. Lee J, Sorescu DC, Deng XY, Jordan KD (2013) J Phys Chem Lett 4:53

    Article  CAS  Google Scholar 

  29. Tan SJ, Zhao Y, Zhao J, Wang Z, Ma CX, Zhao AD, Wang B, Luo Y, Yang JL, Hou JG (2011) Phys Rev B 84:155418

    Article  CAS  Google Scholar 

  30. Liu C, Hwang YJ, Jeong HE, Yang P (2011) Nano Lett 11:3755

    Article  CAS  Google Scholar 

  31. Baker RTK, Harris PS (1972) J Phys E 5(8):793–797

    Article  CAS  Google Scholar 

  32. Parkinson GM (1989) Catal Lett 2:303–307

    Article  CAS  Google Scholar 

  33. Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ, Crommie MF, Lee JY, Zettl A, Alivisatos AP (2012) Science 336:61–64

    Article  CAS  Google Scholar 

  34. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  35. Wang C-M (2015) J Mater Res 30(3):326–339

    Article  CAS  Google Scholar 

  36. Zhang LX, Miller BK, Crozier PA (2013) Nano Lett 13(2):679–684

    Article  CAS  Google Scholar 

  37. Liu Q, Zhang L, Crozier PA (2015) Appl Catal B Environ 172–173:58–64

    Article  CAS  Google Scholar 

  38. Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C 119:7207–7214

    Article  CAS  Google Scholar 

  39. Liu Y, Dillon SJ (2014) Chem Commun 50:1761–1763

    Article  CAS  Google Scholar 

  40. Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Phys Rev Lett 102:096101

    Article  CAS  Google Scholar 

  41. Krivanek OL et al (2014) Nature 514:209–212

    Article  CAS  Google Scholar 

  42. Crozier PA, Chenna S (2011) Ultramicroscopy 111:177–185

    Article  CAS  Google Scholar 

  43. Chenna S, Crozier PA (2012) ACS Catal 2(11):2395–2402

    Article  CAS  Google Scholar 

  44. Miller BK, Crozier PA (2014) Microsc Microanal 20:815–824

    Article  CAS  Google Scholar 

  45. Woodhouse M, Parkinson BA (2009) Chem Soc Rev 38:197–210

    Article  CAS  Google Scholar 

  46. Drews J (2000) Science 287:1960–1964

    Article  CAS  Google Scholar 

  47. Sliozberg K, Stein HS, Khare C, Parkinson BA, Ludwig A, Schuhmann W (2015) ACS Appl Mater Interfaces 7(8):4883–4889

    Article  CAS  Google Scholar 

  48. Smith JL, Hendrickson WA, Terwilliger TC, Berendzen J (2006) MAD and MIR. In: International tables for crystallography, vol F, pp 299–309 (Chapter 14.2)

    Google Scholar 

  49. Krishna Murthy HM (1996) Use of multiple-wavelength anomalous diffraction measurements in ab initio phase determination for macromolecular structures. In: Jones C, Mulloy B, Sanderson MR (eds) Crystallographic methods and protocols, vol 56, Methods in Molecular Biology™. Humana, Totowa, pp 127–151. doi:10.1385/0-89603-259-0:127, Print ISBN 978-0-89603-259-0, Online ISBN 978-1-59259-543-3

    Chapter  Google Scholar 

  50. Koningsberger DC, Prins R (eds) (1988) X-Ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York. ISBN 978-0471875475

    Google Scholar 

  51. Gu W, Jacquamet L, Patil DS, Wang H-X, Evans DJ, Smith MC, Millar M, Koch S, Eichhorn DM, Latimer M, Cramer SP (2003) J Inorg Biochem 93:41–51

    Article  CAS  Google Scholar 

  52. Gu W (2003) Study of active sites in Ni enzymes using X-ray absorption spectroscopy. PhD thesis, UC Davis

    Google Scholar 

  53. Richter J, Braun A, Harvey AS, Holtappels P, Graule T, Gauckler LJ (2008) Physica B 403(1):87–94

    Article  CAS  Google Scholar 

  54. Braun A, Wang H, Bergmann U, Tucker MC, Gu W, Cramer SP, Cairns EJ (2003) J Power Sources 112(1):231–235

    Article  Google Scholar 

  55. Bergmann U, Grush MM, Horne CR, DeMarois P, Penner-Hahn JE, Yocum CF, Wright DW, Dube CE, Armstrong WH, Christou G, Eppley HJ, Cramer SP (1998) J Phys Chem B 102(42):8350–8352

    Article  CAS  Google Scholar 

  56. Wang H, Ralston CY, Patil DS, Jones RM, Gu W, Verhagen M, Adams M, Ge P, Riordan C, Marganian CA, Mascharak P, Kovacs J, Miller CG, Collins TJ, Brooker S, Croucher PD, Wang K, Stiefel EI, Cramer SP (2000) J Am Chem Soc 122:10544–10552

    Article  CAS  Google Scholar 

  57. Weigand W, Schollhammer P (2014) Bioinspired catalysis: metal-sulfur complexes. Wiley-VCH, Weinheim, 440 pages. ISBN 978-3-527-33308-0

    Book  Google Scholar 

  58. de Groot FMF, Kotani A (2008) Core level spectroscopy of solids. CRC, New York

    Book  Google Scholar 

  59. Wang H, Ge P, Riordan CG, Brooker S, Woomer CG, Collins T, Melendres CA, Graudejus O, Bartlett N, Cramer SP (1998) J Phys Chem B 102(42):8343–8346

    Article  CAS  Google Scholar 

  60. Braun A, Bayraktar D, Harvey AS, Beckel D, Purton JA, Holtappels P, Gauckler LJ, Graule T (2009) Appl Phys Lett 94:202102

    Article  CAS  Google Scholar 

  61. Braun A, Erat S, Bayraktar D, Harvey A, Graule T (2012) Chem Mater 24(8):1529–1535

    Article  CAS  Google Scholar 

  62. Jiang P, Chen J-L, Borondics F, Glans P-A, West MW, Chang C-L, Salmeron M, Guo J (2010) Electrochem Commun 12(6):820–822

    Article  CAS  Google Scholar 

  63. Myneni S, Luo Y, Näslund LÅ, Cavalleri M, Ojamäe L, Ogasawara H, Pelmenschikov A, Wernet P, Väterlein P, Heske C, Hussain Z, Pettersson LGM, Nilsson A (2002) J Phys Condens Matter 14:L213–L219

    Article  CAS  Google Scholar 

  64. Hetényi B, De Angelis F, Giannozzi P, Car R (2004) J Chem Phys 120(18):8632–8637

    Article  CAS  Google Scholar 

  65. Braun A, Sivula K, Bora DK, Zhu J, Zhang L, Grätzel M, Guo J, Constable EC (2012) Direct observation of two electron holes in hematite during photo-electrochemical water splitting. J Phys Chem C 116(23):16870–16875

    Article  CAS  Google Scholar 

  66. Bora DK, Hu Y, Thiess S, Erat S, Feng X, Mukherjee S, Fortunato G, Gaillard N, Toth R, Gajda-Schrantz K, Drube W, Grätzel M, Guo J, Zhu J, Constable EC, Sarma DD, Wang H, Braun A (2013) J Electron Spectrosc Relat Phenom 190A:93–105

    Article  CAS  Google Scholar 

  67. Sivula K (2013) J Phys Chem Lett 4(10):624–1633

    Article  CAS  Google Scholar 

  68. Cavalleri M, Ogasawara H, Pettersson LGM, Nilsson A (2002) Chem Phys Lett 364:363–370

    Article  CAS  Google Scholar 

  69. Lanyi JK (1997) J Biol Chem 272:31209–31212

    Article  CAS  Google Scholar 

  70. Balasubramanian S, Wang P, Schaller RD, Rajh T, Rozhkova EA (2013) Nano Lett 13(7):3365–3371

    Article  CAS  Google Scholar 

  71. Pieper J, Buchsteiner A, Dencher NA, Lechner RE, Hauß T (2009) Photochem Photobiol 85:590–597

    Article  CAS  Google Scholar 

  72. Patzelt H, Simon B, terLaak A, Kessler B, Kuhne R, Schmieder P, Oesterhaelt D, Oschkinat H (2002) Proc Natl Acad Sci U S A 99:9765–9770

    Article  CAS  Google Scholar 

  73. Dencher NA, Dresselhaus D, Zaccai G, Büldt G (1989) Proc Natl Acad Sci U S A 86:7876–7879

    Article  CAS  Google Scholar 

  74. Horn C, Steinem C (2005) Biophys J 89:1046–1054

    Article  CAS  Google Scholar 

  75. Allam NK, Yen C-W, Near RD, El-Sayed MA (2011) Energy Environ Sci 4:2909–2914

    Article  CAS  Google Scholar 

  76. Chen Q, Holdsworth S, Embs J, Pomjakushin V, Frick B, Braun A (2012) High Press Res 32(4):471–481

    Article  CAS  Google Scholar 

  77. Chen Q, Banyte J, Zhang X, Embs JP, Braun A (2013) Solid State Ionics 252:2–6

    Article  CAS  Google Scholar 

  78. Fabbri E, Pergolesi D, Traversa E (2010) Sci Technol Adv Mater 11:044301

    Article  CAS  Google Scholar 

  79. Chen Q, El Gabaly F, Aksoy Akgul F, Liu Z, Mun BS, Yamaguchi S, Braun A (2013) Chem Mater 25(23):4690–4696

    Article  CAS  Google Scholar 

  80. Braun A, Embs J-P, Remhof A (2014) 2013 ESS science symposium: neutrons for future energy strategies. Neutron News (Taylor & Francis) 25(1):6–7

    Article  Google Scholar 

  81. Pieper J (1804) Biochim Biophys Acta 2010:83–88

    Google Scholar 

  82. Raman CV, Krishnan KS (1928) Nature 121:501

    Article  CAS  Google Scholar 

  83. Fleischmann M, Hendra PJ, Mcquilla AJ (1974) Chem Phys Lett 26:163

    Article  CAS  Google Scholar 

  84. Albrecht AC (1961) J Chem Phys 34:1476

    Article  CAS  Google Scholar 

  85. Albrecht AC, Hutley MC (1971) J Chem Phys 55:4438

    Article  CAS  Google Scholar 

  86. Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101

    Article  CAS  Google Scholar 

  87. Moskovits M (2005) J Raman Spectrosc 36:485

    Article  CAS  Google Scholar 

  88. Pettinger B, Domke KF, Zhang D, Schuster R, Ertl G (2007) Phys Rev B 76:113409

    Article  CAS  Google Scholar 

  89. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Nature 498:82

    Article  CAS  Google Scholar 

  90. Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854

    Article  CAS  Google Scholar 

  91. Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A (2013) Inorg Chem 52:9897

    Article  CAS  Google Scholar 

  92. Schlögl R (2010) ChemSusChem 3:209

    Article  CAS  Google Scholar 

  93. Yeo BS, Bell AT (2011) J Am Chem Soc 133:5587

    Article  CAS  Google Scholar 

  94. Yeo BS, Bell AT (2012) J Phys Chem C 116:8394

    Article  CAS  Google Scholar 

  95. Ranjan C, Zoran P, Schloegl R (2014) E-MRS 2014 spring meeting, Lille, France

    Google Scholar 

  96. Schmitt KG, Gewirth AA (2014) J Phys Chem C 118:17567

    Article  CAS  Google Scholar 

  97. Klink S, Höche D, La Mantia F, Schuhmann W (2013) J Power Sources 240:273–280

    Article  CAS  Google Scholar 

  98. Klink S, Madej E, Ventosa E, Lindner A, Schuhmann W, La Mantia F (2012) Electrochem Commun 22:120–123

    Article  CAS  Google Scholar 

  99. Agarwal P, Orazem ME, Garcia-Rubio LH (1995) J Electrochem Soc 142(12):4159–4168

    Article  CAS  Google Scholar 

  100. Agarwal P, Orazem ME, Garcia-Rubio LH (1992) J Electrochem Soc 139(7):1917–1927

    Article  CAS  Google Scholar 

  101. La Mantia F, Vetter J, Novák P (2008) Electrochim Acta 53(12):4109–4121

    Article  CAS  Google Scholar 

  102. Schiller CA, Richter F, Gulzow E, Wagner N (2001) Phys Chem Chem Phys 3(3):374–378

    Article  CAS  Google Scholar 

  103. Newman JS, Tobias CW (1962) J Electrochem Soc 109(12):1183–1191

    Article  CAS  Google Scholar 

  104. de Levie R (1963) Electrochim Acta 8(10):751–780

    Article  Google Scholar 

  105. Darby R (1966) J Electrochem Soc 113(4):392–396

    Article  CAS  Google Scholar 

  106. De Vidts P, White RE (1997) J Electrochem Soc 144(4):1343–1353

    Article  Google Scholar 

  107. Fabregat-Santiago F, Garcia-Belmonte G, Mora-Sero I, Bisquert J (2011) Phys Chem Chem Phys 13(20):9083–9118

    Article  CAS  Google Scholar 

  108. Dewald JF (1960) J Phys Chem Solid 14:155–161

    Article  CAS  Google Scholar 

  109. Abram RA, Doherty PJ (1982) Philos Mag B 45(2):167–176

    Article  CAS  Google Scholar 

  110. Archibald IW, Abram RA (1983) Philos Mag B 48(2):111–125

    Article  CAS  Google Scholar 

  111. Archibald IW, Abram RA (1986) Philos Mag B 54(5):421–438

    Article  CAS  Google Scholar 

  112. Cohen JD, Lang DV (1982) Phys Rev B 25(8):5321–5350

    Article  CAS  Google Scholar 

  113. Di Quarto F, La Mantia F, Santamaria M (2005) Electrochim Acta 50(25–26):5090–5102

    Article  CAS  Google Scholar 

  114. La Mantia F, Habazaki H, Santamaria M, Di Quarto F (2010) Russ J Electrochem 46(11):1306–1322

    Article  CAS  Google Scholar 

  115. La Mantia F, Stojadinović J, Santamaria M, Di Quarto F (2010) ChemPhysChem 13(12):2910–2918

    Article  CAS  Google Scholar 

  116. Huang VMW, Vivier V, Orazem ME, Pebere N, Tribollet B (2007) J Electrochem Soc 154(2):C81–C88

    Article  CAS  Google Scholar 

  117. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) Electrochim Acta 55(21):6218–6227

    Article  CAS  Google Scholar 

  118. Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. VCH, Weinheim

    Book  Google Scholar 

  119. Somorjai GA, Li Y (2010) Introduction to surface chemistry and catalysis. Wiley-VCH, New York

    Google Scholar 

  120. Crozier PA, Hansen TW (2015) MRS Bull 40:38–45

    Article  Google Scholar 

  121. Zhang L, Liu Q, Aoki T, Crozier PA (2015) J Phys Chem C. doi:10.1021/jp512907g

    Google Scholar 

  122. Liu Q, Zhang L, Crozier PA (2015) Appl Catal Environ 172:58–64

    Article  CAS  Google Scholar 

  123. Yoshida K, Yamasaki J, Tanaka N (2004) Appl Phys Lett 84:2542–2544

    Article  CAS  Google Scholar 

  124. Yoshida K, Nozaki T, Hirayama T, Tanaka N (2007) J Electron Microsc (Tokyo) 56:177–180

    Article  Google Scholar 

  125. Cavalca F, Laursen AB, Kardynal BE, Dunin-Borkowski RE, Dahl S, Wagner JB, Hansen TW (2012) Nanotechnology 23:6

    Article  CAS  Google Scholar 

  126. Cavalca F, Laursen AB, Wagner JB, Damsgaard CD, Chorkendorff I, Hansen TW (2013) ChemCatChem 5:2667–2672

    Article  CAS  Google Scholar 

  127. Miller BK, Crozier PA (2013) Microsc Microanal 19:461–469

    Article  CAS  Google Scholar 

  128. Crozier PA, McCartney MR, Smith DJ (1990) Surf Sci 237:232–240

    Article  CAS  Google Scholar 

  129. McCartney MR, Crozier PA, Weiss JK, Smith DJ (1991) Vacuum 42:301–308

    Article  CAS  Google Scholar 

  130. Brydson R, Sauer H, Engel W, Thomas JM, Zeitler E, Kosugi N, Kuroda H (1989) J Phys Condens Matter 1:797–812

    Article  CAS  Google Scholar 

  131. Lazar S, Botton GA, Wu M-Y, Tichelaar FD, Zandbergen HW (2003) Ultramicroscopy 96:535–546

    Article  CAS  Google Scholar 

  132. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2003) J Phys Chem B 107:1028–1035

    Article  CAS  Google Scholar 

  133. Henderson MA (1996) Langmuir 12:5093–5098

    Article  CAS  Google Scholar 

  134. Wendt S, Matthiesen J, Schaub R, Vestergaard EK, Laegsgaard E, Besenbacher F, Hammer B (2006) Phys Rev Lett 96:4

    Article  CAS  Google Scholar 

  135. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E, Rasmussen MD, Thostrup P, Molina LM, Laegsgaard E, Stensgaard I, Hammer B, Besenbacher F (2005) Surf Sci 598:226–245

    Article  CAS  Google Scholar 

  136. Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H, Thornton G (2006) Nat Mater 5:189–192

    Article  CAS  Google Scholar 

  137. Bohmer N, Roussiere T, Kuba M, Schunk SA (2012) Comb Chem High Throughput Screen 15:123

    Article  Google Scholar 

  138. Green ML, Takeuchi I, Hattrick-Simpers JR (2013) J Appl Phys 113:231101

    Article  CAS  Google Scholar 

  139. Barber ZH, Blamire MG (2008) Mater Sci Technol 24:757

    Article  CAS  Google Scholar 

  140. Koinuma H, Takeuchi I (2004) Nat Mater 3:429

    Article  CAS  Google Scholar 

  141. Muster TH, Trinchi A, Markley TA, Lau D, Martin P, Bradbury A, Bendavid A, Dligatch S (2011) Electrochim Acta 56:9679

    Article  CAS  Google Scholar 

  142. Sun S, Ding J, Bao J, Luo Z, Gao C (2011) Comb Chem High Throughput Screen 14:160

    Article  CAS  Google Scholar 

  143. Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, McFarland EW (2004) Macromol Rapid Commun 25:297–301

    Article  CAS  Google Scholar 

  144. Baeck SH, Jaramillo TF, Brändli C, McFarland EW (2002) J Comb Chem 4:563

    Article  CAS  Google Scholar 

  145. Jaramillo TF, Baeck S-H, Kleiman-Shwarsctein A, Choi K-S, Stucky GD, McFarland EW (2005) J Comb Chem 7:264

    Article  CAS  Google Scholar 

  146. Woodhouse M, Herman GS, Parkinson BA (2005) Chem Mater 17:4318–4324

    Article  CAS  Google Scholar 

  147. Woodhouse M, Parkinson BA (2008) Chem Mater 20:2495

    Article  CAS  Google Scholar 

  148. Seley D, Ayers K, Parkinson BA (2013) ACS Comb Sci 15:82

    Article  CAS  Google Scholar 

  149. Haber JA, Cai Y, Jung S, Xiang C, Mitrovic S, Jin J, Bell AT, Gregoire JM (2014) Energy Environ Sci 7:682

    Article  CAS  Google Scholar 

  150. Smith RDL, Prévot MS, Fagan RD, Zhang Z, Sedach PA, Siu MKJ, Trudel S, Berlinguette CP (2013) Science 340:60

    Article  CAS  Google Scholar 

  151. Gregoire JM, Kirby SD, Turk ME, van Dover RB (2009) Thin Solid Films 517:1607

    Article  CAS  Google Scholar 

  152. Perkins JD, Teplin CW, van Hest MF, Alleman JL, Li X, Dabney MS, Keyes BM, Gedvilas LM, Ginley DS, Lin Y, Lu Y (2004) Appl Surf Sci 223:124

    Article  CAS  Google Scholar 

  153. Sigdel AK, Ndione PF, Perkins JD, Gennett T, van Hest MF, Shaheen SE, Ginley DS, Berry JJ (2012) J Appl Phys 111:093718

    Article  CAS  Google Scholar 

  154. Gregoire JM, Xiang C, Liu X, Marcin M, Jin J (2013) Rev Sci Instrum 84:024102

    Article  CAS  Google Scholar 

  155. Hassel AW, Lohrengel MM (1997) Electrochim Acta 42:3327

    Article  CAS  Google Scholar 

  156. Haber JA, Xiang C, Guevarra D, Jung S, Jin J, Gregoire JM (2014) ChemElectroChem 1:524–528

    Article  CAS  Google Scholar 

  157. Katz JE, Gingrich TR, Santori EA, Lewis NS (2009) Energy Environ Sci 2:103–112

    Article  CAS  Google Scholar 

  158. Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) Energy Environ Sci 6:2984

    Article  CAS  Google Scholar 

  159. Ye H, Lee L, Jang JS, Bard AJ (2010) J Phys Chem C 114:13322

    Article  CAS  Google Scholar 

  160. Lewis NS (1984) J Electrochem Soc 131:2496

    Article  CAS  Google Scholar 

  161. Xiang C, Haber J, Marcin M, Mitrovic S, Jin J, Gregoire JM (2014) ACS Comb Sci 16:120

    Article  CAS  Google Scholar 

  162. Chen G, Bare SR, Mallouk TE (2002) J Electrochem Soc 149:A1092

    Article  CAS  Google Scholar 

  163. Dokoutchaev AG, Abdelrazzaq F, Thompson ME, Willson J, Chang C, Bocarsly A (2002) Chem Mater 14:3343

    Article  CAS  Google Scholar 

  164. Nakayama A, Suzuki E, Ohmori T (2002) Appl Surf Sci 189:260

    Article  CAS  Google Scholar 

  165. Gerken JB, Chen JYC, Massé RC, Powell AB, Stahl SS (2012) Angew Chem 51:6676

    Article  CAS  Google Scholar 

  166. Xiang C, Suram SK, Haber JA, Guevarra DW, Jin J, Gregoire JM (2014) ACS Comb Sci 16:47

    Article  CAS  Google Scholar 

  167. Nozik AJ (1975) Nature 257:383–386

    Article  CAS  Google Scholar 

  168. Parkinson B (1984) Annu Rev Phys Chem 17:431–437

    CAS  Google Scholar 

  169. Bard AJ, Fox MA (1995) Annu Rev Phys Chem 28:141–145

    CAS  Google Scholar 

  170. McKone JR, Lewis NS, Gray HB (2013) Chem Mater 26:407–414

    Article  CAS  Google Scholar 

  171. Xiang X-D, Sun X, Briceño G, Lou Y, Wang K-A, Chang H, Wallace-Freedman WG, Chen S-W, Schultz PG (1995) Science 268:1738–1740

    Article  CAS  Google Scholar 

  172. Stepanovich A, Sliozberg K, Schuhmann W, Ludwig A (2012) Int J Hydrogen Energy 37:11618–11624

    Article  CAS  Google Scholar 

  173. Seyler M, Stoewe K, Maier WF (2007) Appl Catal B Environ 76:146–157

    Article  CAS  Google Scholar 

  174. Bard AJ, Fan FRF, Kwak J, Lev O (1989) Anal Chem 61:132–138

    Article  CAS  Google Scholar 

  175. Lee J, Ye H, Pan S, Bard AJ (2008) Anal Chem 80:7445–7450

    Article  CAS  Google Scholar 

  176. Reddington E, Sapienza A, Gurau B, Viswanathan R, Sarangapani S, Smotkin ES, Mallouk TE (1998) Science 280:1735–1737

    Article  CAS  Google Scholar 

  177. Baeck S-H, Jaramillo TF, Jeong DH, McFarland EW (2004) Chem Commun 390–391

    Google Scholar 

  178. Bard A, Lee HC, Leonard K, Park HS, Wang S (2013) Rapid screening methods in the discovery and investigation of new photocatalyst compositions. In: Lewerenz HJ, Peter L (eds) Photoelectrochemical water splitting: materials processes and architectures. The Royal Society of Chemistry, London, pp 132–153

    Google Scholar 

  179. Batzill M, Diebold U (2005) Prog Surf Sci 79:47–154

    Article  CAS  Google Scholar 

  180. Liu G, Liu C, Bard AJ (2010) J Phys Chem C 114:20997–21002

    Article  CAS  Google Scholar 

  181. Park HS, Kweon KE, Ye H, Paek E, Hwang GS, Bard AJ (2011) J Phys Chem C 115:17870–17879

    Article  CAS  Google Scholar 

  182. Ye H, Park HS, Bard AJ (2011) J Phys Chem C 115(25):12464–12470

    Article  CAS  Google Scholar 

  183. Zhang F, Roznyatovskiy V, Fan F-RF, Lynch V, Sessler JL, Bard AJ (2011) J Phys Chem C 115:2592–2599

    Article  CAS  Google Scholar 

  184. Cong Y, Park HS, Wang S, Dang HX, Fan F-RF, Mullins CB, Bard AJ (2012) J Phys Chem C 116:14541–14550

    Article  CAS  Google Scholar 

  185. Esposito DV, Levin I, Moffat TP, Talin AA (2013) Nat Mater 12:562–568

    Article  CAS  Google Scholar 

  186. Park HS, Leonard KC, Bard AJ (2013) J Phys Chem C 117:12093–12102

    Article  CAS  Google Scholar 

  187. Fosdick SE, Berglund SP, Mullins CB, Crooks RM (2014) ACS Catal 4:1332–1339

    Article  CAS  Google Scholar 

  188. Trotochaud L, Mills TJ, Boettcher SW (2013) J Phys Chem Lett 4(6):931–935

    Article  CAS  Google Scholar 

  189. Walter MC et al (2010) Chem Rev 110(11):6446–6473

    Article  CAS  Google Scholar 

  190. McCrory CC et al (2013) J Am Chem Soc 135(45):16977–16987

    Article  CAS  Google Scholar 

  191. Sun J, Zhong DK, Gamelin DR (2010) Energy Environ Sci 3(9):1252–1261

    Article  CAS  Google Scholar 

  192. Klahr B et al (2012) J Am Chem Soc 134(40):16693–16700

    Article  CAS  Google Scholar 

  193. Seabold JA, Choi K-S (2011) Chem Mater 23(5):1105–1112

    Article  CAS  Google Scholar 

  194. Liu R et al (2011) Angew Chem Int Ed 50(2):499–502

    Article  CAS  Google Scholar 

  195. Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128(49):15714–15721

    Article  CAS  Google Scholar 

  196. Tilley SD et al (2010) Angew Chem Int Ed 49(36):6405–6408

    Article  CAS  Google Scholar 

  197. Abdi FF, van de Krol R (2012) J Phys Chem C 116(17):9398–9404

    Article  CAS  Google Scholar 

  198. Gamelin DR (2012) Nat Chem 4(12):965–967

    Article  CAS  Google Scholar 

  199. Zhong DK, Gamelin DR (2010) J Am Chem Soc 132(12):4202–4207

    Article  CAS  Google Scholar 

  200. McDonald KJ, Choi K-S (2011) Chem Mater 23(7):1686–1693

    Article  CAS  Google Scholar 

  201. Barroso M et al (2011) J Am Chem Soc 133(38):14868–14871

    Article  CAS  Google Scholar 

  202. Steinmiller EMP, Choi K-S (2009) Proc Natl Acad Sci U S A 106(49):20633–20636

    Article  CAS  Google Scholar 

  203. Surendranath Y, Bediako DK, Nocera DG (2012) Proc Natl Acad Sci U S A 109:15617–15621

    Article  CAS  Google Scholar 

  204. Pijpers JJH et al (2011) Proc Natl Acad Sci U S A 108(25):10056–10061

    Article  CAS  Google Scholar 

  205. Reece SY et al (2011) Science 334(6056):645–648

    Article  CAS  Google Scholar 

  206. Young ER et al (2011) Energy Environ Sci 4(6):2058–2061

    Article  CAS  Google Scholar 

  207. Zhong DK, Choi S, Gamelin DR (2011) J Am Chem Soc 133(45):18370–18377

    Article  CAS  Google Scholar 

  208. Gregoire JM et al (2013) J Electrochem Soc 160(4):F337–F342

    Article  CAS  Google Scholar 

  209. Malara F et al (2014) ACS Appl Mater Interfaces 6(12):9290–9297

    Article  CAS  Google Scholar 

  210. Dyer AL et al (2014) Adv Mater 26(28):4895–4900

    Article  CAS  Google Scholar 

  211. Seike T, Nagai J (1991) Solar Energy Mater 22:107–117

    Article  CAS  Google Scholar 

  212. Hugot-Le Goff A, Cordoba de Torresi S (1990) Electrochromic materials. In: Proceedings of the electrochemical society, Pennington, NJ

    Google Scholar 

  213. Corrigan DA, Knight SL (1989) J Electrochem Soc 136(3):613–619

    Article  CAS  Google Scholar 

  214. McIntyre JDE, Kolb DM (1970) Specular reflection spectroscopy of electrode surface films. Symp Faraday Soc 4:99–113

    Article  Google Scholar 

  215. Decker F et al (1992) Electrochim Acta 37(6):1033–1038

    Article  CAS  Google Scholar 

  216. Trotochaud L et al (2012) J Am Chem Soc 134(41):17253–17261

    Article  CAS  Google Scholar 

  217. Trotochaud L et al (2014) J Am Chem Soc 136(18):6744–6753

    Article  CAS  Google Scholar 

  218. Azens A et al (1998) Sol Energy Mater Sol Cells 54(1–4):85–91

    Article  CAS  Google Scholar 

  219. Monk PMS et al (2001) Electrochim Acta 46(13–14):2091–2096

    Article  CAS  Google Scholar 

  220. Smith RDL et al (2013) J Am Chem Soc 135(31):11580–11586

    Article  CAS  Google Scholar 

  221. Brückner A (2001) Chemic Commun 2122–2123

    Google Scholar 

  222. Brückner A (2005) Chem Commun 1761–1763

    Google Scholar 

  223. Zeng K, Zhang DK (2010) Prog Energy Combust Sci 36(3):307–326

    Article  CAS  Google Scholar 

  224. Leenheer AJ, Atwater HA (2010) J Electrochem Soc 157(9):B1290–B1294

    Article  CAS  Google Scholar 

  225. Sides PJ, Tobias CW (1982) J Electrochem Soc 129(12):2715–2720

    Article  CAS  Google Scholar 

  226. Yu HT, Shen JQ, Wei YH (2008) Particuology 6(5):340–346

    Article  Google Scholar 

  227. Balzer RJ, Vogt H (2003) J Electrochem Soc 150(1):E11–E16

    Article  CAS  Google Scholar 

  228. Eigeldinger J, Vogt H (2000) Electrochim Acta 45(27):4449–4456

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter A. Crozier , John M. Gregoire , Shannon W. Boettcher , Peter A. Crozier , John M. Gregoire or Shannon W. Boettcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chan, C.K. et al. (2015). Advanced and In Situ Analytical Methods for Solar Fuel Materials. In: Tüysüz, H., Chan, C. (eds) Solar Energy for Fuels. Topics in Current Chemistry, vol 371. Springer, Cham. https://doi.org/10.1007/128_2015_650

Download citation

Publish with us

Policies and ethics